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Abstract. Let Sl and 52 be independent Wishart matrices, with
S£ﬂ~w%(ni,2i), 1=1,2. In this paper the problem of fgtimating the
eilgenvalues 61,52, cees Bp (61 2 622 e 2 6p> 0) of 2122 i8 considered.

A random matrix F which ig& a function of Sl and SZ 18 defined such

that the eigenvalues of F have the same distribution as that of Sls-l
and the probability density function of F depends on a positive definite
matriz A whfse eigemvalues are 51,52,...,6p. Then orthogonally ingariant
estimators O(F) based on F of D are obtained. The eigenvalues of A(F)
are taken as the estimators of 61,...,6p. Monte Carlo study shows that
thege eigenvaluee estimators perform very well under the entropy loss.
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1. INTRODUCTION

Suppose that S and S, are independent p x p Wishart random matrices with S;~ Wp(ni,Zi)
where 3; is a positive definite matrix and n; (= p) is degrees of freedom, i = 1,2, Let
L 1’9'2""’9'p Ry>8,>..> lp >0) denote the eigenvalues of S;S,1. We consider here the
problem of estimating eigenvalues § 1,82,...,8p 12 82 > Sp >0) of 2122'1. We need to
estimate these eigenvalues, for example, in the problem of testing X = 35 against Xj #X5. The
power function of any test statistic which is a function of 1"“’9'p’ dependson X; and X, only
through 81,82,...,8p.

As pointed out by Muirhead and Verathaworn (1985), to estimate 81,82,...,8p through a

decision theoretic approach, one should specify a loss function in terms of 8;'s and 8;'s, where &,
is an estimator of &, (i =1,2,...,p). However, for this loss, computing the risk of an estimator under

the joint distribution of £,,%,...., Qp seems to be infeasible due to the complexity of the distribution

of the ordered eigenvalues. Instead, we follow the approach given in Muirhea{d and Verathaworn
(1985).

Define a random matrix
F=V,'V, V)’
7 2, 2 2, 2 -2 -
where V) =%, 8, %, ~ W{nuA), V,=3,"8,5, ~W(nl) and A=3," 3 2.
The density function of F is given by

- mR2 -pH2 -
o " e s A B> o .1

where
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pp-1)

c= I‘p(n/2)/( Fiy2) Fp(nz/z)), r@=n"

B r(Za-i+l)
[I=—=—
=1

ni>p+1, np>p+1, n=n;+ny and A is a positive definite parameter matrix. The eigenvalues

of F are the same as those of SIS;1 and their distribution depends only on the eigenvalues

8pp-ees8p Of 212'21 or equivalently of A. We then estimate A by A(F) and take the

eigenvalues of A(F) as esimator§ of § 1,...,8 p Note that F is not observable. However, if we

estimate A by only orthogonally invariant estimators of the form A(F) =RYL)R' (whére

F=RLR’ is a spectral decomosition of F, L = diag(2 1,...,Qp) with 2;>0,>..> Qp >0, -and

P (L) = diag(P 1(L),...,<,P p(L))) then the eigenvalues ¢ 1@, tPZ(L),..., (,Pp(L) of A(F) are

observable and they may be considered as estimators of 8§ 1,...,8p.
Therefore we, hereafterwards, consider the problem of estimating A by orthogonally. invariant

estimators under the loss

o ~ - .
L(AA)=(AA )-loglAA t-p. (1.2)

The usual unbiased (under the density (1.1)) and also orthogonally invariant estimator of A is given
by

AFy=2——F. (13)

Muirhead and Verathaworn (1985) have shown that AU(F) is the best multiple of F for the loss

(1.2). They also derived an estimator Ag =RP(L)R' with
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2(n-p-D
L= 1. -p-
PL) = 4/l - p- D2+ e O e Z,(n 27,

(1.4)
i=1,2,.,p. As an estimator of A, their Monte Carlo comparison study shows that Z&R(F)
performs better than Au(F) when A =

cl or when A has groups of equal eigenvalues. However,
Monte Carlo study under the entropy loss function in terms of eigenvalues,

-~ ~ .1 ~ .1
L2(Ae,Ae) = tr(AeAe )- loglAeAe l-p (1.5)

(where, for a matrix A, A, = diag()\l,...,kp), A;'s are the eigenvalues of A) indicates that the

eigenvalues of Au(F) dominate the eigenvalues of AR(F) when the & i's are much dispersed.
In Section 2, we give some preliminary results which will be used to prove the dominance-of the

estimators given in this paper over the usual unbiased estimator AU(F).

It can be easily seen that the largest root of AU(F) overestimates 8 and the smallest root
underestimates Sp. This means that the roots of [SU(F) tend to be more spread out than those of
A. In Section 3, we give four simple orthogonally invariant estimators ﬁl(F), ﬁz(F), &3([:‘) and
A 4(F) (say). Each of them shrinks the larger eigenvalues of F and expands the smaller eigenvalues

toward some central value. We show that AI(F) is uniformly better than AU(F) using the

approximate unbiased estimate of the risk function of any orthogonally invariant estimator given by

Muirhead and Verathaworn (1985). Numerical study indicates that Z&z(F) and 53(F) are better

than AU(F) under certain conditions on ny and nj.
Muirhead and Verathaworn (1985) derived the best lower triangular invariant minimax estimator
ﬁm(F) of A under the loss (1.2). Since this estimator is not orthogonally invariant, it is not of

much interest in the present problem. Following the approach given in Krishnamoorthy and Gupta



A. K. Gupta, K. Krishnamoorthy 251

(1987), we develop the orthogonally invariant estimator A 4(F) from I‘Sm(F). This estimator
A 4F) is of simple form and Monte Carlo study indicates that it is minimax. Also, the comparison

study under the loss (1.5) indicates that, as an estimator of 8],82,. ,8p, the roots of A 4(F)

perform better than those of AU(F) significantly, and perform better than the eigenvalues of AR(F)

when 8;'s are much dispersed. When 8,'s are approximately equal, the eigenvalues of 54(F) and

those of [SR(F) are not comparable.

2. IMINARY RE T,
For the loss (1.2), omitting the constant term in it, Muirhead and Verathaworn(1985) have

derived an unbiased estimate of the approximate risk of AF = RP(L)R' following the approach
given in Haff (1982). The unbiased estimator is given by

5 N 2n)p-1 L) - (P(L) 2n-p-1) 3P.(L)
ARPLIR) = .
RARPLIR) = ny(n, -p - 1)2% 2(“2'9'1) Fry ani

(n,-p-1) & PM)
L. ) log Q(L). 2.1
+ » g, ) iZ,ogq{() 2.1)

We now consider the estimators of the form

A F =RYLR (2.2)

where @ (L) = diag(d; 2 1,...,dp Qp), dj's are constants such that 0 <dj <dy <..< dp.

In the following lemma we give an upper bound for the risk of the estimators of the form (2.2).

LEMMA 2.1. For any orthogonally invariant estimator ﬁd(l'-), an upper bound for the
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unbiased estimate of the risk is given by

o . o 1 1
R(A,A (F) << (“ pp z) 2 (p-i+ 1), + P i d.- log(d 2). (2.3)
i=1

Proof. From (2.1), we get

2(np1) d,-d2, L 2n-p-1)
RO == 1)22 MO l)id

i=1 i

p-1
+ -(E-!—p—)- i d; - i log(d, ] D- ; 2.4
n i1 i=1 ‘

For t>i, d;>d; and so

Zdﬂ -d g, szn -d.8, i(p o 25

i=1 t>i =l t>i
Using the inequality (2.5) in (2.4), we prove (2.3).

We next give an upper bound for the risk difference R(A,A 4 - R(A,AU(F)) in the

following lemma.

LEMMA 2.2. For any orthogonally invariant estimator A 3, we have
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R(AA (F))-R(AA L) < =P 2(" p 1) i(p i+ 1)d, sl idi

i=1

- logd, +p log(—T—-) - p. (2.6)
i=1 1

Proof. Theriskof A (F) under (1.2) is given by

“p-

R(AA )= trﬂFA ) Flog |A A JBl-p

n,

-1 n-p-1
=- HoglA Fl-plog—ZT—. : @.7)

Adding the constant terms in (1.2) to (2.3), we get

A 2(n-p-1)
R(A.Ad(F))< TR l)i(p i+ Dd, + Z’di

ilogd EloglA Fl - (2.8)

i=

From (2.7) and (2.8), we prove (2.6).

3. ORTHOGONALLY INVARIANT ESTIMATORS QF A.

Here we introduce three orthogonally invariant estimators of A, namely,

Ap) = R(P;(L)R' 3.1
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where (pi*(L)=diag(di1,di2,...,dip) and

djj=(ny-p-DAng +p+1-2))
dyj=(np-p-1+j}ny-p-2+jny(ng-1)
d3j = nldldej/(nz- p-1)

i=123 and j=12,.,p. Note that 0 <djj <djp <.. < dip for i=1,2,3. These constants

dj j's and dzj's are chosen, respectively, from the best invariant minimax estimators of the normal

covariance matrix ¥, (James and Stein (1961)) and Z‘l (Krishnamoorthy and Gupta (1987)).

We need the following lemma to prove that AI(F) dominates AU(F).

LEMMA 3.1. For any positive integers k and p, k> p,

ilog(k\& p+l-2))<plogk.
j=1

Proof. Using the fact that

log(a + b) + log(a - b) = log(a2 - b2) < log(az) =2 log(a),

when p is even, we have

i log(k +p+1 -2j)=i {log(k + p + 1-2j) +log(k - p - 1 +2j)] <p log(k).
1 7l

When p is odd, writing
i logtk +p+1 -2j)=log(k)+2 logk +p +1-2j)

- =1
=1 Wtz
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the inequality can be similarly proved.

THEOREM 3.1. For the loss (1.2), we have

R(AA (F)<R(AA (Fy) (32)
forall ny,np>p+1.

Proof. Since the estimator & I(F) is of the form (2.2), from (2.6) we have,

An-p-1) (P-j+1)
n

R(A,AI(F)) - R(A'A“(F)) < P n] + p+ 1- 2j

2

+(nl-p-1)(n2-p-l)
n,

2(n1+p+ 1 -2j)'1+210g(n1+p+ 1-2j)-plogn, -p. (33)
i=1 j=1

It follows from Lemma 3.1 that the r.h.s. of (3.3) is less than zero if

2(n-p-1) @-j+1) (1 -P-n,-p-1
n

i (n+p+1-2)" <p.  (34)
2§91 (n +p+1-2j) n i=1

Writing the Lh.s. of (3.4) as

2(n-p-1) (p-]+l) +("2‘P'1) l(nl+p+l’2j)'2(p+l'j)]
D n (@, +p+1-2j)

(35)

2 =t (n, +p+1-2j) 2 i=1

and after some simplification, it can be shown that (3.4) holds if and only if
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®-i+D) _plp+1) 2 p-j+1  p-j+1
g(nﬁpﬂ-Zj) = 2 ( 22 ) <o

2n n+p+i-3 36)

Now t 6)let a=—PI*1  p-j+l = ach j
w to prove (3.6), let aJ n1+p+l-2j - and xj aj+ap+j+1. For each j, xj<0.

If p iseven, ia —ix <0. If p is odd ey = 0 and ia _'2’( < 0. This then

i=1

proves the inequality (3.2).

For the estimators Ai(F), i=2,3, proving that the r.h.s. of the following inequality

1
R(A.A (F) - R(AA(F))< 2(“ p D i(p i+, Joop )2‘1 ilog(d)

.p- 1
+plog (:2'?—‘"" (37)

is less than or equal to zero seems to be difficult. Numerical computations show that it is negative for

AyF) if njng>p+1 andfor AyE) if npny>2p+1.

We next develop an orthogonally invariant estimator following an approach given by
Krishnamoorthy and Gupta (1987). Muirhead and Verathaworn (1985) have derived the best lower

triangular invariant estimator Am(F) of A, for the loss (1.2), which is given by -

A F)=TDT

where T is a lower triangular matrix with positive diagonal elements such that TT' =F,
D= diag(d41,...,d4p) and
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_ (ny-p-1+j)n,-p-2+j) .
$ @ T m, P Ir D e pEpo D L P @9

Since the group of lower triangular matrices is solvable Am(F) is minimax. But this estimator is not
very useful in the present problem, because its eigenvalues are not observable. However, we can

develop an orthogonally invariant estimator from &m(F) as follows:

Notice that the loss function (1.2) is nonsingular invariant and Am(F) is a constant risk

minimax estimator. Therefore, for any orthogonal matrix I,
A (F=TA (I'FDI (39)

is also a constant risk minimax estimator (the proof is similar to the one given in the problem of
estimating normal covariance matrix. See, for example, Sharma and Krishnamoorthy (1983)). In

(3.9), if welet T’ =R, where R is an orthogonal matrix such that RLR' =F, L = diag(l 1,...,Qp)
with 2 1> 12 >.. Qp >0, then AmT(F) becomes an orthogonally invariant estimator

Am = R(P:(L)R' (3.10)

where (P4*(L) = diag(dg & l,....d4p!lp). We also observe that 54(17) shrinks the larger

eigenvalues and expands the smaller eigenvalues of F towards some central value.

REMARK 3.1. Note that the eigenvalues of the estimators &i(F) (i=1,..,4) and 'ZS‘R(F) are

unordered. We also observe, from (1.4), that some eigenvalues of AR(F) may not be positive.

Therefore, it is desirable to use isotonizing algorithms to insure that

P L29,L)2 .. 29,WL)>0, (3.11)
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where (Pi(L)'s are eigenvalues of an orthogonally inviarant estimator. To construct the eigenvalue

estimates from AR(F) we use the algorithm given in Lin and Perlman (1985) and from Ai(F) (=

1,...,4) we follow the algorithm given' in Barlow et al. (1972). These algorithms essentially group
the adjacent eigenvalues to the extent necessary to insure the order (3.11).

4. MONTE CARLQ STUDY

In this section, we carry out a Monte-Carlo study to compare the eigenvalues of the new
estimators with those of A (F) and Ap(F) under the loss (1.5). For p =234 and different

values of (ny,np), we compute the risk based on 1000 independent Sy's and 1000 independent
So's generated, respectively, from Wp(nl,A) and Wp(nz.l). As all these estimators considered in
this paper are scale and orthogonally invariant, we take A ‘to be di(lg(l,CZ,C3,...,Cp). For p =4,

we take the same A's considered in Muirhead and Verathaworn (1985).

In each table, the column values represent the risks of isotonized eigenvalues of the estimator of

A. Since we observed that the eigenvalues of A 1(F) and AZ(F) are uniformly dominated by those
of A:;(F), we do not present these values in the t;bles.

Table 1 indicates that for p =2, the eigenvalues of AU(F) perform better than those of &R(F)
when one of the eigenvalues of A is smaller than half times of the other value. Otherwise the
eigenvalues of AR(F) dominate those of Au(F). The eigenvalues of 53(F) and A 4P dominate
those of Au(F) uniformly., We also note that when A = cl, the eigenvalues of 83([:), A 4B
and AR(F) are performing equally, while if the eigenvalues of A are very spreadout the

eigenvalues of 53(F) and A 4(F) dominate those of [&R(F).

Tables 2 and 3 represent the risks for p=3 and 4 respectively. From these tables, we see that,
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when Y = cl, the eigenvalues of A:;(F), 54(F) and AR(F) are not comparable. That is, their
performance depends on the values of (ny,np). However, the eigenvalues of A 4(F) out perform
those of AR(F) when the eigenvalues of A are very spreadout. For all p's, ny's and nj's

considered in these three tables, the performance of thé eigenvalues of 53(15) is as good as those of

A 4.
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TABLE 1

Risk of the eigenvalues of A under loss (1.5 for p=2

1 =10, nyp=15
¢ A u A 3 A 4 A R
1.0 0.55497 0.40477 0.40857 0.41379
95 0.53026 0.38830 0.39170 0.39962
90 0.50688 0.37315 0.37616 0.38529
85 0.48494 0.35940 0.36204 0.37393
.80 0.46452 0.34713 0.34939 0.36809
.70 0.42863 0.32743 0.32902 0.36904
50 0.37972 0.31024 0.31060 0.39494
A0 0.36765 0.31428 0.31407 0.42405
30 0.36506 0.32704 0.32628 0.46877
20 0.37101 0.34715 0.34598 0.51264
.10 0.38145 0.37080 0.36919 0.54484
05 . 0.38622 0.38077 0.37900 0.52850
n; =20, ny=20
1.0 0.32206 0.24837 0.24975 0.23155
95 0.30279 0.23417 0.23540 0.22056
90 0.28510 0.22144 0.22257 0.21519
85 0.26908 0.21040 0.21134 0.20883
.80 0.25479 0.20094 0.20175 0.20648
.70 0.23162 0.18720 0.18776 0.20510
.50 0.20749 0.18052 0.18065 0.23208
40 0.20583 0.18686 0.18680 0.24870°
30 0.20978 0.19731 0.19714 0.26750
20 0.21503 0.20845 0.20813 0.28029
.10 0.21952 0.21674 0.21635 0.27264
.05 0.22073 0.21936 0.21894 0.25989
ny =20, np=10
1.0 0.53648 0.38816 0.39129 0.40820
95 0.51161 0.37147 0.37427 0.38743
90 0.48809 0.35609 0.35858 0.37718
85 0.46601 0.34218 0.34430 0.36517
.80 0.44545 0.32966 0.33154 0.35711
.70 0.40924 0.30960 - 0.31091 : 0.34497
.50 0.35959 0.29196 0.29222 : 0.36287
AQ 0.34795 0.29650 0.29631 0.38870
.30 : 0.34646 0.31023 0.30962 0.42730
20 0.35448 0.33310 0.33214 0.46637
10 0.36749 0.35989 0.35857 0.49751

05 0.37270 0.37014 0.36868 0.48845
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Risk of the eigenvalues of A under loss (1.5)for p=3

TABLE 2

261

n =10, m=15
(23 A, A, A, Ay

1) 1.1964 0.72289 0.73489 0.65751
(.95,.95) 1.1507 0.69738 0.70794 0.63008
(.95..8) 1.0523 0.63947 0.64714 0.58060
(8.7 0.95929 0.59311 0.49765 0.53849
(.7..5) 0.82864 0.53229 0.53240 0.49220
(.6,.3) 0.72557 0.50457 0.50039 0.52681
(.5..5) 0.84555 0.56215 0.56175 0.52908
(.5,4) 0.77364 0.52325 0.52066 0.50148
(5,.3) 0.71760 0.50270 0.49812 0.51539
(4..2) 0.67993 0.50798 0.50123 0.57436
(3,.1) 0.65764 0.53757 0.52850 0.67627
(9.1) 0.81438 0.62837 0.62435 0.83070

n; =20, np=20
an 0.67931 044410 0.44936 0.38259
(.95.95) 0.64450 042138 0.42607 0.36275
(.95..8) 0.56786 0.37065 0.37418 0.32154
(8,7 0.50344 0.33314 0.33547 0.30022
(1.5) 0.41827 0.28874 0.28944 0.28539
(.6..3) 0.36596 0.27823 0.27748 0.32878
(.5,.5) 0.44989 032221 0.32281 0.31705
(5.4) 0.39631 0.28912 0.28889 0.30278
(.5..3) 0.36291 0.27680 0.27589 0.32251
(4,2) 0.35068 0.28595 0.28435 0.35650
(3.1 0.35063 0.30974 0.30745 0.40278
(9..1) 0.43938 0.35876 0.35844 0.40420

=20, np=10
Ly 1.1993 0.7027 0.71332 0.70419
(.95.,.95) 1.1515 0.67646 0.68583 0.67130
(.95..8) 1.0536 0.62093 0.62784 0.63002
(8.7 0.95435 0.57225 0.57640 0.57617
(1..5) 0.82203 0.51347 0.51382 0.53350
(.6,.3) 0.71963 0.49007 0.48687 0.53178
(.5..5) 0.82881 0.53589 0.53576 0.54255
(.5.4) 0.76016 0.50076 0.49875 0.51755
(.5..3) 0.70758 0.48516 0.48147 0.52134
(4.2 0.66972 0.49265 0.48719 0.54939
(3.1 0.65068 0.52674 0.51938 0.62491
(9..1) 0.81206 0.61147 0.60846 0.75699
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TABLE 3
Risk of the cigenvalues of A under loss (1.5) for p=4

n; =10, np=10
(€1.€2.3.¢4) A, A, A, A,
(1,1.1,1) 2.8265 " 1.3727 1.3966 1.4404
(25,1,1,1) 2.0453 1.3707 1.3399 1.2317
(10,10,1,1) 1.9402 1.3219 1.2794 1.3273
(8,4,2,1) 1.6350 1.0312 0.9772 0.9794
(100,50,10,1) 1.5759 1.2479 1.1797 1.4240
(25,25,1,1) 1.9658 1.4145 1.3702 1.3993
(10,10,10,1) 2.2548 1.3360 1.3156 1.6068
(1.75,1.25,.75,.25) 1.7619 1.0629 1.0158 1.0511

ny; =25 np=25
(1,1,1,1) 0.90066 0.54023 0.54845 0.40818
(25,1,1,1) 0.64431 0.48371 0.48354 0.38438
(10,10,1,1) 0.57996 0.46238 0.46105 0.43932
(8,4,2,1) 0.38321 0.30277 0.29919 0.40065
(100,50,10,1) 0.4087S 0.38180 0.37701 0.43657
(25,25,1,1) 0.58236 0.47169 0.47017 0.40771
(10,10,1,1) 0.66833 0.47906 0.48131 0.47526
(1.75,1.25,.75,.25) 0.41799 0.31847 0.31594 0.41331

ny=10, n3 =10
(1,.9,.2,.1) 1.7673 1.1427 1.0929 1.1902
(1,.8,.1,.01) 1.7026 1.3073 1.2454 1.5429
(1,.8,.3,.1) 1.7257 1.0999 1.0483 1.1581
(1,.2,.1,.1) 1.7036 1.1392 1.0887 0.99184
(1,.5,.3,.1) 1.6400 1.0510 0.9958 1.0572
(1,.7,.4,.1) 1.7306 1.0925 1.0424 1.1928
(1,.7,.6,.2) 1.8919 1.0749 1.0375 1.0360
(1,.8,.3,.1) 1.7257 1.0999 1.0483 1.1581
(1,.1,.05,.05) 1.7157 1.1891 1.1374 1.0268

ny = 10, fig = 50
(1,1,1.1) 1.4019 0.81425 0.82204 0.58245
(25,1,1,1) 1.0466 0.75170 0.75052 0.61184
(10,10,1.1) 0.93451 0.72153 0.71825 0.78692
(8.4,2,1) 0.68241 0.50149 0.49586 0.63147
(100,50,10,1) 0.69343 0.62597 0.61844 0.82181
(25,25,1.1) 0.94562 0.74783 0.74436 0.70914
(10,10,10,1) 1.0503 0.73735 0.73770 0.89174
(1.75,1.25,.75,.25) 0.72901 0.52120 0.51665 0.66563
(1,.4,.1,.05) 0.68545 0.62122 0.61347 0.82800
(1,.5,.1,.05) 0.68736 0.56479 0.55806 0.69431
(1,.6,.2,.10) 0.68975 0.52898 0.52305 0.68771
(1,.8,.2,.15) 0.77770 0.57399 0.56946 0.68123
(1,.9..1,.1) 0.89556 0.69637 0.69247 0.76804
(1,.7,.2,.1) 0.71062 0.54531 1.53969 0.69238
(1,.99,.1,.01) 0.82035 0.69978 0.69439 0.86253

(1.8.2.1) 073857 0.56519 0.55994 0.70912
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