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Abstract. Let X| be a random observation trom a p-variate normal population with mean vector ¢ and covariance matrix
proportional to identity matrix, NP(B, a-lzlp). In addition to X, there is another observation X, from N,,(H, a-zzlp). In this note, an
unbiased estimator which combines both X, and X, is developed and its risk behavior is studied. Then, assuming that o is

known, a motivation for the best shrinkage estimator in a class of estimators that shrink X, toward X, is given. It is shown that
such shrinkage estimators are unbiased and location equivariant, Also, tor a shrinkage estimator from this class the risk
improvements over X; and the one that shrinks toward the origin are studied.
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1. Introduction

Suppose that there are two independent observations X, and X, such that the first one is from a
p-variate normal population with mean vector 6 and covariance matrix 0]211,, NP(H, alzlp) and the second
one is from N, (8, 0311,). The parameters 8 = R?, 02> 0, and o2 > 0 are unknown. In this paper, the
problem of estimation of the common mean vector based on X, and X, is considercd. The merit of an
estimator is evaluated by the sum of the squared error losses

A 4 A2 A2
L(6,6)=Y (6,—6) =le—-4l, (1.1)
i=1

where 6 = ((51, ...,8,) is an estimator of 6.
While both 012 and 022 are unknown, one may estimate 8 based on some prior knowledge on the
variabilities of X, and X, by

8, =nX,+(1-n)X,, (1.2)

where 7 is a known number in the interval (0, 1). George (1992) proved that the estimator &, is
dominated by a shrinkage version of it when p > 3. This result is further improved by Krishnamoorthy
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(1992) and extended to the k-sample situation by Sarkar (1992). However, there is no estimator based on
X, and X, that dominates either of them under the loss (1.1).

Ideally, the problem of interest here is to develop a combined estimator that dominates both X, and
X,. If o and o] are known, then

6(05,”22)=012(012+022)_1X2+022(af+027)_1X1 (1.3)

is the best linear unbiased estimator (BLUE) and dominates both X, and X,. Therefore, when o{ and
o2 are unknown, it is intuitive that a combined estimator of the form wX, + (1 — w)X,, where w is an
estimator of o2(o?+0o2)”!, would be preferable to both X; and X,. However, such an estimator
proposed in the following section neither dominates X and X, uniformly under the loss (1.1) for any p.
Interestingly, when & is known, a combined estimator of the form wX, +(1 - w)X, turns out to be the
shrinkage estimator that shrinks X, toward X,. This combined as well as shrinkage estimator not only
improves X, but also is unbiased and location equivariant. As a result, its risk is independent of 8 and it
improves X, significantly. To understand the impact of X, on improving X, this combined estimator is
compared with the one that shrinks X, toward the origin. The study shows that the former dominates
the latter over a large parameter space.

The example given by George (1992) can be used as a motivation for this problem too. Suppose that
the value of each of p parcels of real estate was assesed by an assesser who is known for several years
and as a result the variability of his assessment X, is known. Also to get a second opinion, another
assessor is called and the variability of his assessment X, is unknown. In this setup, one may consider X,
as a reliable estimate of the true value as its varibility is know. Now the goal is to improve X, using the
estimate X,. Again, as pointed out by George, it may be necessary Lo use transformed units to obtain
constant variance for each assessor.

Finally, it is to be mentioned that several authors have considered related versions of the above
problem when there are more than one observations from each of the populations. For details see Chiou
and Cohen (1985), Kubokawa (1989) and Krishnamoorthy (1991).

2. Main result

Suppose that both o2 and ¢ are known. Then, (07X, + 0 X,) /(o] +a3) is the best linear unbiased
estimator of 6. Therefore, il (he vatiances arc unknown, replacing of(of | o7) and ot /(af + o})
respectively by suitable estimators one can develop an estimator of 6. The following lemma is needed to
develop such an estimator and also to study its statistical properties.

Lemma 2.1. Let X; ~ N (8, o-lzlp) independently of X, ~ N (6, a'zzlp) and Z =X, — X,. Then,

L (x ofl, il
® (z])NNZ”(g)’(afzp (o2 +07)1,
() X|Z~N,(0+0i(of+0F) ' Z, oioR(o} +03) 'L,
iy E[xz)z] 7 —o(o2+ad),
(v E[-xiz12)7 =o(o?+ed)
V) E(8'Z/\Z]) =00/p,
i) E(XZ/|ZN) =oF(poi+o3)(of +03)” +0'0/p.
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Proof. (i) and (ii) are well known.
(iii} The conditional expectation of (X/Z || Z || ~2) given Z yields

E[0Z)z) ) + oo} +02) " =al(ot+ad)”

since Z || Z || % is distributed as —Z || Z || 2 implies that E@'Z || Z || ~*) = 0.

(iv) follows from (iii).

v) E(B’Z{ N Z1)?=E0'ZZ'6/1|Z||*) and as Z~N (0, (o +crz)l ) it can be easily verified that
EZ7Z'/NZ1Y=1,/p.

(vi) Noting that (X[Z/NZID* =t X, X |ZZ' /IIZHZ) and taking conditional expectation given Z
yields

olo? ot oi(pol+ o} 0’0
Etr{ |00+ ———cl + ———72'|22' /| Z|? =~L7—‘2—2)+—. a
(of +07) (of +07) of +o;3 p
From the above lemma (iii) and (iv) it is clear that one can estimate o(o? + 0})~! and ¢ X(g2 + 0:2)™!
respectively by X/(X, - X,)/Il X, - X, ||* and X;(X, - X))/l X, - X, | and hence one can propose
ézXl(Xl"Xz) Xz(Xz'Xl) X{Z

2 154~ (2-])

X1 =X, | X - X, | Iz)?

as an estimator of 8. Also, its expectation
R X/ Z
E6.=60-FE(E 1z ” -E

Adjusting for bias yields that pB /(p—1)is an unb;ased estimator of #. In order to compare various
estimators in the class {cB c is a real # 0}, the risk of cB is obtained in the following theorem.

!

Zl=(p-1)6/p.

2
1|

Theorem 2.1. The risk of cés, where c is a real number, is given by

R(6, cGAS) =c*(p-1)oio}/(of +0})+ [(c ~DXp-1)+ 1]6'9/1). (22)

Proof, It can be easily shown that
R(6, cb) = E(||cX, ~ 0|°) - E(X{Z/| Z|)* + 2¢E[(0'2Z'X,) /11 Z )] (2.3)

After substituting E[E(0'ZZ'X, | Z || *Z)=E@0'ZZ'0\| Z1| ") and using Lemma 2.1, (v) and (vi), (2.3)
can be expressed as

o-,(pcr, +02)

R(6, cf,) =E(|cX, - 0[*) —c e

+2¢60'6/p. (2.4)
Substituting £(llcX; ~ 8||*)=c?cip + (c — 1)*0'0 in (2.4) and after simplification one can get (2.2). O

It is clear from (2. 2) that for any given c¢ the risk of cB Is an increasing function of [|6!. Hence, as
the risk of X is poZ, none of the estimator of the form cG dominates X,. Also, because of symmetry,
CH does not beat X,. The estimator 0 has lower risk than that of pG /(p — 1) although the latter is an
unbxased estlmator of 6. At present, it is not clear how to improve over both X, and X, simultaneously
when ol and o7 are unknown. However, if one of the variances is known then one can develop a
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shrinkage estimator which is location equivariant, unbiased and also substantially better than the X;
whose variance is known.

When o2 is known, note that o2(p — 2)|| X, — X, || =7 is an unbiased estimator of o (a2 + o)~ . So,
for the same reason given for (2.1) one can propose

b,=02(p - X, - X,| 72X, + (1-a2(p - )| X, - X,|| %)X,
=X,—of(p-2)| X, - X2“—2(X -X;)
X+ [1—o(p - 21X, ~ X, 2] (X, — Xy) (2.5)

as an estimator of 8. Note that this estimator (2.5) is nothing but the usual James—Stein (1961) estimator
that shrinks X, toward X, instead the origin. Although by shrinking X, toward any arbitrary fixed
vector one can improve X, in this situation it is more reasonable to shrink X, toward X, as it is also an
unbiased estimator of 6. Also, it follows from (2.5) that this shrinkage estimator é can be interpreted as
a weighted average of X, and X,. Further, as X, and X, are independent usual conditional argument
yields that 6 dominated Xj.

Consxdermg 2.5), whether 012 is known or not, one can propose a class of estimators of the form

- [r(1zIP) /112 IP) 2 (2.6)

where r(-) is a real valued and differentiable function. Clearly, the estimator (2;6) is location equivariant.
Also, using the fact that Z is distributed as —Z it can be easily verified that -6, is unbiased.

Next, in order to compute the risk of the estimators of the form (2.6), the following chi-square identity
which is a special case of Haff’s (1979) Wishart identity is needed.

Lemma 2.2 (Chi-square identity). Let V ~ a%x2. For a suitable function h(V),
E|o™2h(V)] =2E[h(V) /] + (m = 2)E[V 'h(V)], (2.7

provided all the expectations exist. O

Theorem 2.2. The risk of the estimator (2.6) can be expressed as

R(6,6,)=R(6, X,) + E{(1Z] *r (1ZIF)[ (121} - 2(p ~ 2)0?]} ~ 4oE[r (1 2])].
Proof. The risk function of 6, is

R(6.6,)=R(0, X,) +E[r*(1ZI")| 211 "] = 2E[r (1 2)")( X, - ) 2] 2] 7]
and so the risk difference RD = R(4, 6 )—R(6, X)) is

RD = E[r2(12|)I 2] 7] - 2E,E[r(12IF)(X, - 0) Z) 2] *Iz]. (28)
Using the conditonal expectaiion E[(X, — )| Z]=o{(0{ + 07)7'Z, (2.8) can be simplificd as

i — -1

RD = E[r2(1Z)1 2| 7] - 203 (02 + o) "E[ (1 Z])]. (2.9)

Noting that || Z||*>~ (¢ + 0)x?2 and using (2.7) the second term of (2.9) can be expressed as

E|(o? +02) 7' r(1217)] = 2E[~ (121P)] + (p -2 E[1Z)*r (12 ))]. (2.10)
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Substituting (2.10) in (2.9), the RD can be written as

RD = E{| 2| (12IP)[r(127) - 2 p - 2)0?]} - 40PE[ (1 2)] (2.11)

and this completes the proof. O

Remark 2.1. It is clear from (2.11) that RD <0 for all # in R” and o} in R* provided r{) is
nondecreasing and 0 < () < 2 p — 2o, where o, is a known lower bound of . An obvious choice
of r(-) is the constant function. Another choice is r(}| Z || %) = ¢/ (T+c I Z]| ~2) with the corresponding
estimator being X, —c,Z/ || Z||* + c,) where ¢, = (p — 2o,

Remark 2.2. If (|| Z || ®) is a constant function and af is known, then it follows from (2.11) that the best

choice of r = (p — 2)o'2. Interestingly, this leads to the estimator which is the weighted average 6 given
in 2.5).

Remarks 2.3. For comparison purpose, without loss of generallty, ai is assumed to be equal to one.
Then, the risks R(8. X,)=p and R(8. ;) =p — (p — 2*E |l X, II* where 6, =(1 — (p — 2)| X, | ")) X,
is the James-Stein shrinkage estimator. Also, it can be easily seen from (2.8) that R(9, 6 )=p—
(p — 2X1 + o). Further,

risk of s =2 as 6P —0; and —p as ||6]* — =
and
riskof 6,2 asoZ—0; and —»p as g2 — .

Thus, there is no clear cut winner between 6 and 0,5 However it is evident from the risk expressions

and the following graph that , is preferable to 6,5 when o2 is small and /or ||6 l|* is moderately large.
In Figure 2.1, the four horlzontal lines represent the R(8, B )=3.0, 3.5, 40 and 5 respectively at

=0.5, 1.0, 2.0 and <, and the curve represents the risk of 0,5 when p=S5.
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