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Simultaneous Estimation of Independent Normal
Mean Vectors with Unknown Covariance Matrices
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Temple University

Based on independent samples from several multivariate normal populations,
possibly of different dimensions, the problem of simultaneous estimation of the
mean vectors is considered assuming that the covariance matrices are unknown.
Two loss functions, the sum of usual quadratic losses and the sum of arbitrary
quadratic losses, are used. A class of minimax estimators generalizing the
James-Stein estimator is obtained. It is shown that these estimators improve the
usual set of sample mean vectors uniformly under the sum of quadratic losses. This
result is extended to the sum of arbitrary quadratic losses under some restrictions
on the covariance matrices.  © 1993 Academic Press, Inc.

1. INTRODUCTION

Suppose that there are k& independent random vectors X, .., X such
that X;: p,x 1 is from the normal population with unknown mean vector
;o p;x1 and unknown positive definite covariance matrix X;: p,x p,,

" N,(u;, &), i=1, .., k. Further, suppose that we have independent random
matrices S, .., S, where S; follows Wishart distribution with parameter
matrix Z, and degrees of freedom n, (> p,), W, (n,, Z,), i=1, .., k. Assume
that X,’s are independent of S;’s. Let i=[j], ..., iix] be an estimator of

u="{u, .., url. We consider the problem of estimating p under each of
the loss functions

X .
Li(u, )= Z (A;i—w) Zi_l(ﬁi— Ki) (L.1)
i=1
Received February 18, 1992; revised February 9, 1993.

AMS 1980 subject classifications: primary 62F 15, secondary 62F10, 62F25.
Key words and phrases: minimax estimator, Wishart, normal, loss function, risk function,

cigenvalue.
329

0047-259X/93 $5.00
Copyright © 1993 by Academic Press, Inc.
Al rights of reproduction in any form reserved.



330 KRISHNAMOORTHY AND SARKAR

and

Lo(p, iy= 3, (fi— py Q.-(ﬁ,-—u.-)/[tr ) Z.-Q.], (1.2)

i=1 i=1

where Q,’s are known positive definite matrices. The setting is the same as
that for the problem of estimating the mean vectors of several normal pop-
ulations based on complete sufficient statistics derived from the samples.
The usual estimator X=[X), .., X1’ is minimax as well as the best
equivariant for y under the loss (1.1). James and Stein [11] first showed
that, when k=1 and p, >3, X, is inadmissible for estimating p,. They
indeed found minimax estimators that improve X, significantly under the
loss (1.1). Since this monumental work, a substantial number of papers
that extend this so-called James—Stein result in different directions have
appeared; among them are Alam and Thompson [ 1], Baranchik [2], Berger
[3], Bock [6], Efron and Morris [8,9], Stein [17], and Strawderman
[18]. Recently, the idea of shrinkage has been successfully extended
to the problem of estimation of the common mean vector of two normal
populations (George [10], Krishnamoorthy [127], and Sarkar [15]) and
to the problem of estimation of the coefficient vector in Fisher’s linear
discriminant function (Sarkar and Krishnamoorthy [16]). However, only
limited results are obtained in the simultaneous estimation of several nor-
mal means with unknown variances. Efron and Morris [7] considered this
problem when p,=...=p, and X, = ... =2, and derived empirical
Bayes estimators dominating X under the loss (1.1). Rao [14] treated this
problem in a regression setting. In the context of several independent linear
regression models, he was interested in estimating the regression coef-
ficients simultaneously using the criterion of minimum mean dispersion
error matrix. He also obtained empirical Bayes estimators dominating X
under the assumption that p,= --- = p, and X, =gV, for all i, where o>
is an unknown scalar and V is a known full-rank matrix. Readers are
referred to this article of Rao to see examples where the simultaneous
estimation problem of the type considered here arise. Berger and Bock [4]
considered a similar estimation problem for the special case when
py= --- = p,=1 under the loss (1.2). Their proposed shrinkage estimators
dominate X if k>3 and n,’s are large. When k=1, Berger et al. [5]
showed that the usual estimator X, is inadmissible under the loss (1.2).
The problem considered in this paper is more general in form than the
problems treated in some of aforementioned papers. We not only allow the
dimension to vary from population to population, but also the covariance
matrices are assumed to be unknown and different. The present problem
can also be regarded as that of estimating the mean vector with a patterned
covariance matrix, an extension of Berger and Bock’s [4] problem.
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The estimators considered here are of the form

ﬁ¢=[1—¢(F)<i Fi>_l]X, (13)

i=1

where ¢(F) is a function of F=(F,, .., F,) with F,=X;S;'X,, i=1, .., k.
In Section 2, we first prove that i, dominates X and hence is minimax,
with respect to the loss (1.1), if p=3%_, p,>2 and ¢ satisfies some condi-
tions. This is a natural multi-population generalization of Baranchik’s [2]
main result; of course, a new inequality (Lemma 2.2) needs to be developed
to establish this generalization. This general result leads to the interesting
conclusion that even in the case of an unequal number of observations
from several independent multivariate normal populations (possibly of
different dimensions) with unknown covariance matrices the usual set of
mean vectors can be dominated by its suitable shrikage version.

Finally, we make an attempt to extend our result to the loss (1.2). We
indeed show that, if p > 2, some estimators from the class (1.3) dominate
X also under the loss (1.2) and a condition on tr(¥%_, Q,X,). We also
explain in Remark 2.5 that, when k& = 1, a condition on the parameter space
is in fact necessary for fi, to dominate X under the loss (1.2).

It should be pointed out that since the distributions of the sample
covariance matrices are sensitive to outliers, the dominance of the
proposed estimators over X is questionable when outliers are present. We,
however, do not make any attempt here to investigate the robustness

aspect of the present results in order to avoid deviating from the main
theme of this paper.

2. MAIN RESULTS

First, we give the following lemmas, which are needed to prove the main
results of this paper stated in Theorems 2.1 and 2.2. In the following, E(-, -)

denotes the joint expectation of the arguments and E(-|Y) denotes the
conditional expectation given Y.

LEMMA 2.1. For any positive valued random variable x, we have that
E[x'¢(x)])/E(x") is nondecreasing (nonincreasing) in t if ¢(x) is a non-
decreasing (nonincreasing) function of x and the expectations exist.

Proof. Let f(x) be the density of x. Then,

E[x'¢(x))/E(x") = j $(x) x'f(x) dx/E(x"). (2.1)
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Now, the family of densities {x’f(x)/E(x')} has monotone likelihood ratio
in x. Hence the lemma follows from Lehmann [13, Lemma 2, p. 85].

LEMMA 2.2. Let xy,.., x;, be mutually independent positive random

variables. Then, for some nonnegative constants g, .., g, satisfying £*_ g,=1,
we have

E[(Zi, &%) ¢(X)]_ {E(X’-)

EL(SE, i) 9001 o8, \Ex! (22)

E(xﬁ')}
when t' <0, ' <t <t'+1 and ¢(X) is a nonnegative, componentwise non-
decreasing function of X =(x,, .., x,)', and the indicated expectations exist.

Proof. Without any loss of generality, we can assume that all g,’s are
positive. Under the condition on ¢ and ¢, since x'~" is a concave function
of x, we have from Jensen’s inequality that

k =1 k
(Z g,-x.-> =) gixi " (2.3)
i=1 i=1

Using (2.3), we note that the left-hand side of (2.2) is

SELEL 8% YEE &ix) (X)) _ < Elxiyi(x)]

g E[(ZF_, gix)" ¢(X)] Z S Ex . (x)1

(2.4)

where

b)=E[(1+ % U—) $x)1x, . 25)

k,e,'gixi

i=1, .., k. Observe that, for each i, ¥ ,(x;) is nondecreasing in x; if /' <0

and ¢(X) is nondecreasing in x;. Application of Lemma 2.1 then gives that
(24) is

L E(xY) . E(x))
>Y =2 > min =0
,.; 8T TR EGD

under the conditions on ¢, ¢, and ¢’ stated in the lemma. Thus, the lemma
is proved.

THEOREM 2.1. Let p>3 and ¢*=[max,c,c,(n,—p,+3)]1"". Then,
the estimator fi, given in (1.3) dominates X under the loss (1.1) and hence
it is minimax if 0 <$(F)<2(p—2)c* and §(F) is differentiable and non-
decreasing in F,, i=1, .., k.
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Proof. The risk of fi; under the loss (1.1) is given by

Ri(u fd4)=E (

'__:)

- ) 57 G- )

) 5 u)}

son (%)

Iy u)(iﬂ-)_l}- (26)

J=1

1| M= EM»

n-,

{
_2E{

To show that /i, dominates X, it is sufficient to verify that the difference
Ry(p, X)—Ry(u, fi4) is =0, that is,

k k -1 k -2
26 3 {oxiz - (T ) —exizrx (3 E) fzo e
j=1

i=1 j=1

for all ;and Z,. Let Y,=X;"2X, and V,= X7 28,2772 where £ !? is
a symmetric square root of X', i=1,..k As X,~N,(u;, X, inde-
pendently of S;,~ W, (n;, 2,), Y,~ N, (0;, I,) independently of V.~ W, (n,, I)),
where I, denotes the identity matrix of order p,x p, and 8,=X "y,
i=1, .., k. Also, note that F,=X;S7'X,=Y V'Y, for all i In terms of
these new variables, (2.7) can be expressed as

EY {qﬁY (Y- 0)(2 F>—l—¢2Y,fY,-<Ji 17,.)_2};0. (2.8)

i=1 =1

We here observe that, for fixed i, the components y; of Y, are independent
normal random variables with means 6; and variance unity. Now, applying
Stein’s [17] identity, that Eh(y;)(y;—0,)= Eh'(y;) for any differentiable
function h satisfying E|h'(y,)| < oo, to the first term in the left-hand side

of (2.8) and under the conditions on ¢, it can be checked that (2.8) is
reduced to

cfuae(E ) e (5 )5 )

i=1 i=1

+4 i (0¢/0F,) F,.(i F,)_I}ZO. (2.9)

i=t i=1

Let Y=[Y',.. Y.] so that |[Y|*’=ZX ,le Y.. Further, let U,=Y.Y,/
YV 'Y, and w;=Y[Y,/IIY)? i=1, .., k. It is well known that U, follows
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chi-squared distribution with n,—~ p,+ 1 degrees of freedom independently
of Y, i=1,...k Also, note that F,=|Y|?>w, U/, i=1,..,k Thus, in
terms of these new variables and under the conditions on ¢, (2.9) holds if

2<p—2)E{nY\\-2E[¢(i wurt)

i=1

o)

for any a such that ¢/(2(p—2))<a<c* As w,>0 (with probability 1
under the distribution of Y,), £*_, w,=1, and ¢ in nondecreasing in U ',
i=1,..,k, applying Lemma 22 (with = —1 and ¢ = ~2) to the first
conditional expectation in (2.10), we see that (2.10) holds if

Y}ZO, (2.10)

i=1

k -2
2(p—2)(c*—a)E[¢ ¥ <z w-iU:*)} >0, (1)

As ¢ is bounded above, the proof will be completed if we show that
E[|IY) (Z*_, w; U;")] 2 is finite. Using Jensen’s inequality, we get

k -2 k 2 k
(Z w,-U,f‘) S(Z w,~U,-> <Y w UL (2.12)
i=1 i=1

i=1

So, it follows from (2.12) that

el mor) ]

Y}sE[nYn—z » w.-(EU?)]

=1

<E|Y|7* [ max EUT] (2.13)

As U?’s independently follow 2 _ st i=1, .k, and ||Y||? follows a chi-
squared distribution with p + 2Z degrees of freedom, where Z is a Poisson

random variable with mean 3"%_ | (u; X! u,)/2, the right-hand side of (2.13)
exists provided p—2>0.

Remark 2.1. Clearly, the most obvious choice of ¢ satisfying the condi-
tions of Theorem 2.1 is a constant function. Another choice is ¢(F)=
co/L1+ co(X F))~'), with the corresponding shrinkage estimator equal to
o=t F/(Tt_ Fi+ co)1X, where 0 <co<2(p—2)c* This is a
generalization of Example 2 of [2] and the estimators in [1].

Remark 2.2. When we have independent observations X, .., X,

from the ith population, define n,=N,—1, Ny,=max, ¢, «,{N.;}, X;=
N,

NOX,IN, S,=%M (X,—X)X,-X), and F,=X;S;'X,, i=1,... k.
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Let, fiy= [y, A with fig= {1 — Nk F) '} X, i=1, k.
Then f,, when 0 <@ <2(p—2)c*/Ny, and ¢ satisfies the other condition
of Theorem 2.1, dominates the sample mean vector X = [ X7, ..., X, ]’ under

the loss (1.1). An optimal choice of ¢ for practical purposes is ¢ =
(p—2) c*/Ny,.

Remark 2.3. The positive part version of ji,, that is,

pe(i-e(3) )

where a* =max(0, a), will improve on j,.

We next consider the estimation of u under the arbitrary quadratic
loss (1.2). For this loss, when p,= --- = p,=1, Berger and Bock [4]
proposed the estimator given componentwise by §,(X, W)= (1—-r(X, W)/
LIXI3 ¢: W) X,, where |X|3,=X0_, [X7/(g;W7})] and W,=5,/(n,~2).
They proved that this estimator, when k > 3, r satisfies some conditions,
and the sample sizes are sufficiently large, dominates the usual minimax
estimator. When k=1, Berger et al. [5] demonstrated that the estimator
AX,,8,0)=1~-caQ 'S /(X S7'X,)) X,, where « is the minimum
eigenvalue of Q,S,/(n, — p,—1), dominates X, with respect to the loss
(1.2) for some appropriate values of c. In the following theorem we show
that the estimator /i, dominates X also under the quadratic loss (1.2) and
certain conditions on ¢ and the covariance matrices.

The following lemma is also needed to prove Theorem 2.2.

LemMa 23. Let X~ N,(0, ) independently of S~ W,(n,I). Also, let
n(B) denote the maximum eigenvalue of a positive semidefinite matrix B.
Then, for a positive real-valued function f,

0< E(X’BS'Xf(X'S™'X))<n(B) E(X'S™'Xf(X'S™'X)),
provided the indicated expectations exist. .

Proof. Choose an orhtogonal matrix R such that RX = | X| e,, where
e, is the column vector whose first component is unity and others are
zeroes. Let B.= RBR’' and A = RSR’'. Also, write A as

(‘111 A'21>
Ay Axn

such that A, (p—1)x(p—1) and define a,, ,=a,, — A5 45" 4;,. It is
easy to sce that

X'BST'Xf(X'S™'X)=|X||* €, B, A" e, f(I X’ 1A e)
=1XI% a5 €1 B, — 45" 4) fUIXN apy!

11.27+
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We now note that 4 =S independently of X, from which we see that
{a,,.,, X) is independent of (4,,, 4,,), and A, | A, ~N,_ (0, 45,).
Using these results and taking expectation on both sides of the above equa-
tion, we then get

0<E(X'BS™'Xf(X'S™'X))=E(IX|* a;;' 1 B.e  fUIX]* af;',))

11-2

<n(B) E(1X)* a1 X1 a7;'y)).
To obtain the second inequality we used the result that e} B e, <n(B,)=
n(B). Thus, we complete the proof by noting that | X|?a;;',=¢X'S™'X.

THEOREM 2.2. Let A, denote the maximum eigenvalue of £.Q,, i=1, .., k,
A=max, o, {4}, P=3, and ¢*=[max, ;. {n,— p;+3}]1". Further,
assume that tt(¥5_, Q,X,)>3A. Then, the estimator ji, dominates X under

the loss (1.2), if 0 < ¢(F) < 2c* and is differentiable and nondecreasing in F,,
i=1,..,k

Proof. Proceeding as in the proof of Theorem 2.1 and after using Stein’s
[17] identity we can see, under the loss (1.2), that the risk difference
R,(u, X)— Ry(u, 4.)=0 if and only if

é‘ E{2¢ trg,(i Fj>_l—4¢Y;Q,V,“Y,(é:l F,)

j=1

-2

k ~1
+ 4(0B/OF,) YR,V ! Y.( F,-)
j=1

k -2
~¢riax (3 E) 3o 2.14)
j=1

where Y,~ N, (8,,1,) independently of V,~ W, (n;, 1), 6,=X7"?y,, and
Q=X?Q.3 i=1,..k Now, for each fixed i, applying Lemma 2.3 to
the second term in the left-hand side of (2.14) we can see, under the condi-

tions of the theorem, that (2.14) holds if

k -1 k k -2
E{2A¢< Fj) —ap ¥ Y;Q,Y,( F,.) }zo (2.15)
j=1 i j=1

i=1

for any a such that 0 < ¢ <a<2c*. Define U,, ,, and Y as in Theorem 2.1.
Using the relation that Y[Q,Y,/Y,Y; <A, i=1, .., k, we see that (2.15) is
true if

i=1

i=1

k -1 k -2
AE{M(): w.-U.-‘) ||Yu-2—a¢(2 mUr‘) nYu-’}zo. (2.16)
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Thus, applying Lemma 22 (with ¢'=—2, t=—1) to (2.16) and then
proceeding along the same lines as those in the proof of Theorem 2.1, we
can complete the proof.

Remark 2.4. In stead of ji, one can also consider a more general class
of estimators of the form

where c¢;’s are known positive constants. Theorems 2.1 and 2.2 will
still hold with 4, and c* respectively replaced by i, and c** =
[maxlsisk{ci(ni_pi'*"3)}]_1-

Remark 2.5. The estimator j, is independent of the positive definite
matrices Q,’s given in the loss (1.2), whereas the estimators suggested by
Berger and Bock [4] and Berger et al. {S] are dependent on Q/’s.
Although these estimators are functions of Q,’s (thus depending on the loss
function), they uniformly dominate the usual estimator. As ji, does not
improve X uniformly, one may be interested in knowing whether there is
any estimator that is free of Q,’s and better than the usual estimator. For
k=1, the answer is no and it can be proved as follows: Let
fy=(fiy1, s f1,) be an estimator of u,=(u,, .., #y,,) independent of
Q,. Assume that it dominates X, = (x,,, .., x,,,)’ under the loss (1.2). This
implies that, for some u, and X, '

E(X,—u,) Qu(X,—uy)—E(f, — ) Q1(f, — py)=tr(Q, P)>0,

where P=E(X, — u, (X, — ) — E(fi, — u,)(i, — 1, ). It is not difficult to
verify that tr(Q,P)>0 for any arbitrary positive definite matrix Q, if
and only if P is a positive semidefinite matrix with at least one positive
eigenvalue. This means that E(x,;— u;;)* > E(jfi,;— #4,;)*> for at least one
ipi=1, .., p,, which contradicts the fact that x,; is admissible as an
estimator of u,;, i=1, .., p,, under the squared error loss function. Thus
we prove that, when k=1, X, is admissible in the class of estimators that
are independent of Q,. However, when & > 3, it is plaussible in the class of
estimators that are indpendent of Q,. However, when k& = 3, it is plausible
that the usual estimator is inadmissible even in this subclass. We are
currently investigating this problem and plan to report it separately.
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