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Combining Independent Information in a Multivariate
Calibration Problem

K. Krishnamoorthy
University of Southwestern Lowisiuna
and
Darren J. Johnson

United States National Biological Service

The problem of combining independent information from different sources in a
multivariate calibration setup is considered. The dimensions of the response vectors
from various sources may be unequal. A lincar combination of the classical
estimators based on the individual sources is proposed as an estimator for the
unknown explanatory variable. 1eis shown that the combined estimacor has (iniwe
mean provided the sum of the dimensions of the response vectors exceeds one and
has finite mean squared error if it exceeds two. Expressions for asymptotic bias and
medn squared error are given. ¢ 1997 Academic Press

I. INTRODUCTION

Multivariate calibration involves two sets of variables, namely, response
set and explanatory set. In practical situations, the explanatory variables
represent the true characteristics of interest determined by a difficult and
expensive method and the response variables represent the measurements
related to the same characteristics obtained by easy and inexpensive methods.
Usually, the response set is regarded as random and the explanatory
variables are considered as fixed. The problem of interest is to establish a
relationship between the two sets of variables based on the experimental
data in order to make inferences about the unknown explanatory variables
of a future observation based on its known values of the response variables.
Applications and practical examples of multivariate calibration can be
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172 KRISHNAMOORTHY AND JOHNSON

found, for example, in Brown [1, 2], Heise and Marbach [5], Lieftinck-
Koeijers [93, and Oman and Wax [12].

This article is concerned with the situation where the experimental data
are available from k different sources for the same objective. As pointed out
by Johnson and Krishnamoorthy [ 7], such situations arise when a calibra-
tion experiment is conducted by different laboratories, using different
methods or different measuring instruments. They also give a practical
example mn the univariate case. Stolaski [ 13] points out that measuring
ozone with a variety of instruments promises to reduce calibration errors.
In short, we have calibration data (X, Y;), i=1,..,k and j=1,..,n,
where X; rcpresents truc valucs of the jth unit and Y represents the
measurements related to the X, obtained by the ith measuring instrument
or method. It is assumed that Y,’s are linearly related to the X’s.

Thus, the calibration models and the prediction models assumed in this
paper are, respectively,

Y=o, +8,X;+¢y, i=1,.,k j=1,.,n (1.1)
and
Y=o, +p,X,+s,, i—1,2, ..,k (1.2)
where

. p;x 1 vector of responses,

2L

: 1x1 fixed explanatory variable,
: p;x 1 intercept parameter,

: p.x 1 vector of regression parameters,

: p;x 1 error vector, and

=

NP =™ R

i-p:x 1 is observed response for the unknown X,,.
It is assumed that all the errors are independent with
e;~N,(0,2)) and  ¢,~N,(0,2). (1.3)

The problem is to estimate X, based on the calibration models (1.1) and
the Y, s from the prediction models (1.2).

ol

Define

X\ 1¢ Xj> (SXX,. SXY> u <XJ-—X’)<X/.—)?>'
— |=- and i) = > Y (14)
<Y"> " /gl <Yff Svx Svr, jgl Y;—Y/\Y,— Y,
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The least-squares estimators of «; and f§, based on the calibration samples
are given by

a;= Yi_ﬁiyi and ﬁ’\i:SY,XS;);]" (15)
Let

S;=n=2)""A4,=(n=-2"" Y (Y,—&,~B.XNY,—4,—f.X;). (L6)
j=1
We note that Y, ... Y., ¥\, o Yo, Brs s By Ay, n A, are all statisti-
cally independent with

Y(’i~Npi(ai+ﬁ;X()’2i)s Yi'\’pr(ai—*_ﬂ/{‘X_,aZi/n)s

—124 2 — / (17)
Z‘i l’-ﬁiS_I\‘i\‘.NNp,(Zi l/zﬁiS,l\:/\?’ Ip,) and Ai~ Wpi(n—za 21‘)’

where W, (m, X) denotes the Wishart distribution with m degrees of
freedom and parameter matrix X.
When k=p =1, it is well known that the classical estimator

X, =X+(Y, - Y8 (1.8)

has infinite absolute moments. However, for k=1 and assuming that the
error covariance matrix is known, Lieftinck-Koeijers [9] showed that a
natural generalization of the classical estimator (1.8) has finite mean if
p1 =3 and finite MSE if p, > 5. Her results were strengthened and extended
to the unknown covariance matrix case by Nishii and Krishnaiah [11].
For estimating a vector X, of dimension g, they showed that the classical
estimate has finite mean provided p, > ¢+ 1 and finite MSE provided p, >
g+2, and also give exact expressions for the bias and MSE when ¢g=1.
Brown and Spiegelman [3] considered the case of known diagonal error
covariance matrix and gave insights as to why Nishii and Krishnaiah’s con-
ditions are sharper than those of Lieftinck-Koeijers. Fujikoshi and Nishii
[4] give asymptotic expressions for the first two moments of the classical
estimator when p, >¢ > 1. For confidence estimation of X,, we refer the
readers to Brown [ 1] and Mathew and Subramanyam [10].

In this article, we consider the models (1.1) and (1.2). The classical
estimator of X, based on the ith model alone is given by

pro—1 _V
X,“[:X,jhﬁfs,-A (Y, —Y,) (1.9)
BiS; B
An estimator based on all calibration data and the prediction data is given by
s - Xk piISTNY,-Y,
X(=X+ l:lﬂ/ i ( ol z)' (110)

-1 BiSB;
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This is a natural generalization of the univariate estimator proposed by
Johnson and Krishnamoorthy [7] and can be regarded least-squares
estimator for it minimizes Y*_, (Y, —4; —g.x)y STNY,—8&; —f.X,) with
respect to X,.

In the following section, we give some preliminary lemmas which are
needed to show that the X, has finite mean and finite MSE. In Section 3,
we show that the X, has finite mean if p=3*_, p,>2 and finite MSE if
p > 3. We also give asymptotic expressions for the bias and MSE. In passing,
we clarify some discrepancies between the results of Lieftinck-Koeijers [9]
and those of Nishii and Krishnaiah [ 11]. Finally, in Section 4 we point out
some practical applications of the results of the paper and some future
research in this area.

2. SOME PRELIMINARY RESULTS

The following lemmas are needed to find expressions for the bias and
MSE of the combined estimate X, in (1.10). Lemma 2.1 can be easily
verified.

LEMMA 2.1. Let v be a chi-squared random variable with m degrees of
freedom, v~ x2,. Then, for any real k,

E[v*f(v)] = 2T (m/2 + k) E[ f(v.)1/T(m/2),

where v, ~ y7, . o, provided the indicated expectations exist.

LeEmMMA 2.2 (Hwang [6]). Let Z be a Poisson random variable with
mean A and |g(—1)| < oo0. Then,

E[Zg(Z—1)]=E[¢(Z2)].

provided the indicated expectations exist.

LEMMA 2.3. Let n,, ..., n, be nonnegative numbers such that 35_,n;=1
and v, ..., v, are independent random variables with v,~ x>, i=1, .., k. Let
m,;, denote the ith smallest of the mjs. Further, let r>2s520, r+s=1,
m,>2Ar+ 1), and t,~2" PST(m, /2 — r) Tm, /2 — $)/[ Tom, /2) Tm/2)]2
Then,

vrrvz—x
(Zi\fl ’7’ i 7+\
<t 27 ((m /2 + 17+ 5))/T{m,, /2).

tlz(m(,)—2r—2)"+“‘<E[
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Proof. Using Lemma 2.1, we get

v vy’ 5 3 N
E|:(Z{<_llrllb2—l)r+sil tlZE(fEZ”ivi l+”lvoll+’72002> (21)

where v, ~x2, _, and v,,~x2, . Since r +5 > 1, it follows from Jensen’s
inequality that

—r—y r+s
< Y nivf'+'ilv(71‘+nzv,iz') << Y 77,»v,-+'7.v,)1+f72v02>

i# 1.2 i#1,2

< Y it 3t (22)

1#12

Substituting (2.2) in (2.1) and then taking expectation we get the desired upper
bound. To get the lower bound, write V= (X, 1,707 +1,0,," +17,05").
Since V7" 7" is a convex function of V, using Jensen’s inequality, we get

E(V= =) > [E(V)] 7~

=< ¥ n,-/(m,-~2)+m/<ml—zr—2>+n2/<mz—2s—2>)_ N

i#1,2

=(m,—2r—2)"*° (2.3)
Substituting (2.3) in (2.1), we get the desired lower bound.
Lemma 24. Let Uy, .., U, be independent normal random vectors with

U;~N, (4, 1,), where 1, denotes the identity matrix of order p;, i=1, ..., k.
Let p=3*_, p;. Then,

k —1
(i) E(ZMU,-nZ) —E(p+2Z-2)"" i p>3,
i=1
i=1 l.u _ . N
(i1) { —IHUHZ} 2AE(p+27)7! if p=?,
‘) _ 2Z+1 .
(i) E{ ,ﬁ.uw?} ’uE[(p+2Z)(p+2z—zJ if p=3
e U 1} [ Sh_ piki }
E =F
() [(ZLHUH) (p+2Z)p+2Z-2)
[ I‘li— .
+2E[(p+2Z)(p+ZZ+2)} if p23
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where Z is a Poisson random variable withmean A=3"*_, A;and A= |y, %2,
i=1,..,k

Proof. (i), (ii), and (iii) are trivial generalization of Lemma 3 of Nishii
and Krishnaiah [11].

(iv) Note that ||U|*~y; ,,,, wWhere Z’s are independent random
variables with Z, ~ Poisson(4,), i=1,.., k. So, conditioning on Z/s,
Lemma 2.1 can be applied to get

[25_1 ||U,-||2/11} =E|: {-{~|(p;+22;)/1i :|
i 1o 3)? (p+2Z)p+2Z2-2]"

where Z=3"*_| Z,~ Poisson(4). Now, applying Lemma 2.2, we prove (iv).

Remark 2.1. It is interesting to observe that Lemma 1 of Nishii and
Krishnaiah [11] (which is crucial to show that the classical estimate in the
multivariate case has finite absolute moments) can also be proved by
writing an absolute standard normal random variable as a positive square

root of a y? random variable and then applyng Lemma 2.1 in a straight-
forward manner.

The following lemma is due to Nishii and Krishnaiah [ 11]. However, we
prove it here using a slightly different approach. Further, the arguments
used to prove the lemma facilitate the proot of Theorem 3.2.

Lemma 25. Let U ~N,(u,,1,) independently of Vi~W,(m,,1,)
where I, denotes the identity matrix of order p, and W, (m, 1, ) denotes the
Wishart distribution with degrees of freedom m and E(V\)=m, I, . Then,

. RSN N )
0) E| iy | =2 E #2207 o piz2
.. r Uit
(i) E| g = tm =D Epi+220-2)omy =)
if pi=3,
'U;V;',ul}2 [ 2Z,+1
—— | =2,E
@) £\ Gvoo,) = E | G2z 122, -2)
; 1 |7 pzs
(p1+2Z,—2)(m,—p)) Pz
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Proof. (i) Let I' be an orthogonal matrix with first row (u,,/||U, |, ..,
“1p|/” U,|)so that I'U, =U,=(|U,|,0, .., 0). Then,

UV
vivr'u,

U\r'Tv'r'ru,
u\r'rvy'r'ru,
=E{U;Vr‘(U’lﬂl/IlUlIl,u’lfé)’]
u,viu, |

(24)

where I", denotes the matrix formed by the last (p, — 1) rows of I". In (2.4),
we replaced I''V,I" by V, since they are identically distributed Let
V,=TT’, where T is the upper triangular matrix with positive diagonal
elements (Cholesky decomposition). It is well known that ¢;’s are inde-
pendent with i~y> ., for i=1,.,p, and t;~N(0,1) for i<j.
Partition T as

Iy T12> - <t1_|] —tl_l‘T12T2_21>
T= sothat T '=
<0 T, o ma 0 T,
t;? G
and V7! =( " ‘2>, (2.5)
' G21 G22
where G, = —1,°T\,T,". Thus, in terms of the elements of 7", (2.4) can

be expressed as

E[ UW."M} =E[tl_12U’1#1+ U, Glzrzﬂl]
uywi'u, 1R

U’l 1
ZE{ T 2} ' (26)

The rhs of (2.6) follows from the fact that U, and T are independent and
E(G,)= —E(¢;’T\,T5')=0. Now, applying Lemma 2.4 (ii) to (2.6), we
prove (i).

(i1) Using orthogonal transformaton and Cholesky decomposition as
in the proot of (1), it can be shown that

E[ UL ViU, }_ [1+T12T{z‘T551T12
wvrtuy?) 1o ?

2.7)

Note that T, Ty ~ W, (m,I, ) and hence E[(TT3) ']l=
(my—py)~"1, _,. Using this result and noting that E(T},T;)=1, _i,
we get E[T,,T5'T5; ' T1,] = E[t(T, T5,' T35 ' T15) 1 = (my —py) ™! I, ..
Substituting this expression in (2.7) and then using Lemma 2.4(i), we
prove (ii).
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(iii) It follows from (2.6) that

El: U Vl‘ltul ]2=E[’|_|2U'|,u| + | U, | GIZFZ.ul:'Z
u\vi'u, A

E{ ’1.“1}2+E[T|2Ti]rzﬂlﬂ,1r§T£2lT{z
10,11

U,hul:lz [ #i M ]
=F EFl——mM . 28
[nvlnz B TS AE (28)

Now, using Lemma 2.4 (i) and (iii) in (2.8), we prove (iii).

Lemma 2.6. Let U,, .., U, be independent random vectors with U, ~
N,,,_(,u,-,I,,‘_), and v, .., v, be independent random variables with v,-~)(}7},,’
i=1,..k Let p=3*_, p, For large m/s,

k Ufﬂ.u_"
(l) E[ f:l P 17
i U2t
S X UM Un) vl 'v;‘}
(i 1P ey
- E[ ¢>=1 Zj?éi(U;Hiz( U/,.U,)} i
(= 1ul%)?
kA NUNP v 2 m,
(iii E[ A ’J,’}io or p=3,
R AN AL for p

J

1

} =2 AE(p+2Z)"'  for p=2,

(if) E[

where Z is a Poisson random variable with mean ’1=ZL: A; and A=
I N2, i=1, .., k.

Proof. (i) Let U;=(uy, .., u;) and pu;=(uy, ..., u;)". The expecta-
tion in the lhs of (i) is absolutely convergent provided

Lyl v jl [ lpyuyl v j{
E ___//—'____ =FE - / 7/ ' —~ 2'9)
[Z;:l (R PN R B N o (

is finite, where #, = | U, || Z/Z/‘.’:, | U, |1%, i=1, ..., k. For notational simplicity,
let us consider (2.9) with i=1 and j=1. Conditioning on USs and
applying Lemma (2.3), we see that (2.9) is less than a constant time
EQ\uy 0 |/Z5_1 1U1I?], which is finite provided p>2 (from Lemma
2.4(ii)). Next, to get the rhs of (i), we note that the density of u,, can be
expressed as exp( —u?, /2 + uy,U,) $(u,,), where ¢(-) denotes the standard
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normal density. Using this result and letting u,, ~ N(0, 1) and |U,,|*=
u?, +3,_,uj, it can be shown that

-1
LT ]
El o557
[ S 1017 0
/“]Iluf: 101—1
”Uol “Z + Z;:Z ” Uj“z) Zjl"=l ’7nj'vj—1
o 2,2 Yh+1 ,—1
2 . unlu,y) 0,
— 2 e H2E ¢ - — (2.10)
phe " X T 0 1 + 50 1O S ;|
where 7,,= | U I2/(1U, 1>+ S4_, |U;|1?) for j#1 and 7,0 =1=37_, 7,
To get the last equation in (2.10), we note that E[u’ "o ' /((1U,.1*+
LU 1,07 ") =0 for I=0,2,4, .., since the distribution of u,,
is symmetric about zero. We can now apply Lemma 2.3 to get bounds for
the expectation in (2.10). Indeed, conditioning on all the U’s and applying
the lemma to (2.10), we get

my,—4 < Rl ) [ ﬂn“n“l_l ]
m;—2 ;=| ”U,“2 f:l I U,-HZU,- :

< Loy E< adlRedl > @2.11)

m;—2 S 10012

5 o
=p,e M0y
(Zo I

where p;, denotes the jth smallest of the p/s. Thus, for large m/s,
E[ﬂn“llvl_]/( ‘f=| “U/'szj—l)] iE(.ullull/zjl'(=1 ”U;Hz) Using this result
and Lemma 2.4(ii), we get

Zf: U;/‘ivfl Zf(= Uin; 1 . _
E —Z‘—WF =F| ==t T = 0)E(p+22Z)7", (212)
j=1 i J

S U
where Z is a Poisson random variable with mean A=Y*%_, |u,1°2=
S. Y%, B3 'B,;/2. Thus, we complete the proof of (i).
(ii) Similar to the proof (i) and hence is omitted.
(ii) As in the proof of (i), by applying Lemma 2.3, we see that for
lage m;’s
ppa L0y
(O3 12 P
- E{ f'(=1 A |U; Hz/mz]
(- 1o 1%?
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where Z is a Poisson random variable with mean A=3*%_, 1, and 4,=
lu:1?/2, i=1, .., k. The last equation in (2.13) follows from Lemma 2.4(iv).
It is easy to show that, for p>3, E((p+2Z)(p+2Z-2)) '<E(Z+1)
(Z+2) '=A"2(1—(1+A)exp(—A)) <A~ Using this relation along
with the inequality that >*_, A7/A* <1, it can be easily shown that the
second expectation in (2.13) is approximately zero for large m;’s. Similarly,
it can be shown that for large m’s. the first expectation in (2.13) is also
approximately zero. Thus, we complete the proof of (iii).

3. BIAS AND MSE OF X,

We first give expressions for the bias and MSE of the estimate in (1.10)
for the case k=1 in the following theorem.

THeoreM 3.1. For k=1 andp,>2,
BIAS(X,)=(X—X,) E[1 =24, E(p, +2Z,) "] (3.1)

and for nzp,+2 and p, =3,

™ xx

MSE(£)=c, s, —"—3 E[ ! }

n—p,—=2 | p+2Z,-2
— , 41,
+(X-X)E|]l ———ue
24, <2Z,+1 1 >}
+ , 3.2
P +2Z,-2 p,+22,+n—p,—2 (3.2)

where ¢, =1+ 1/n and Z| is a Poisson random variable with mean A =

AY/ Sxxﬁ’lzflﬁl/z'
Proof. Letting a, = £, S /(£ S;'f,), we note that

(X, =X, S ~NX~X,+d\ f|(X,~ X), c,d\Z7'a,). (33)

Therefore,
A
BLEL = X1 1. 51 = - X, + 5| B2
Bis: B,
74 UllVrlﬂl
={(X-X)E|] ———— 34
(X-X,) { UqV;'U,]’ (3.4)
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where U, = r l/zﬂl N, (ui, 1), = \/—;421 2By, and V, =
(n—=2) X718, 27 1/2~W (n—2,1,). Now, applying Lemma 2.5(i) to
(3.4), we get the des1red expressmn 'for the bias. To find the MSE of X, o
note that

E[E(X.— X, 8.8
. - ) B,Sr‘(él—ﬂ.)r
=c ka2 a)+(X—X )y E| 22270
c,blai 2 a,)+( o) { ﬁ,lsl_lﬂl
' -2
UiV, U ]+()?—XH)ZE{1

_ U Vl_lﬂl 2
UV, 0’

=c,,Sx,.E[ T, Vr‘U,} , (3.5)

where U, and V, are defined as above. Now, using Lemma 2.5 in (3.5), we
get the expresson for the MSE.

Remark 3.1. Nishii and Krishnaiah [11] pointed out that Lieftinck-
Koeijers’ expression for the bias (with known covariance matrix) is finite
even when p, = 2. On the contrary, we note that her expression for the bias
(X—x,)(p,—2) E(p, +2Z—2)"! is finite only when p, >3, whereas the
expression (3.1) is finite for p; >2. Applying Lemma 2.2 to (3.1), we see
that for p, >3 (otherwise the lemma is not applicable) the expression (3.1)
is equal to Lieftinck-Koeijers’ expression given above. It is interesting to
note that whether the error covariance matrix is known or unknown, the
bias of the classical estimate remains the same. Further, Lieftinck-Koeijers’s
expression (7.2) for the MSE is finite only when p, >5. Again, applying
Lemma 2.2 to (3.2), it can be verified that for p, =5 and large n, (3.2) is in
agreement with (7.2) of her paper. We also checked that the bias (3.1) is in
agreement with Nishii and Krishnaiah’s ([11, expression 4.2]) result.
However, their (4.3) is indeed E(£ — x)? not the MSE. Further, the expression
for E(b'S~'y,/b'S™'b)* given in their paper is incorrect. After correcting
these errors, we checked that the MSE (3.2) is in agreement with their resuit.

TuEOREM 3.2. Let p=3*_, p,. For k=1 and large n,
BIAS(X.) = (X=X,)((1—=24E(p+2Z)-") if p22,  (36)
and

MSE(X,) =S  E(p+2Z—-2)"!

. ) 2Z+1 2
+HX-X) [1+2'1E((p+2Z)(p+2Z—2)—P+2Z>}

Jor p=3, 3.7)

where Z is a Poisson random variable with mean A=S.. Y _, B1Z7"'B:/2.
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Proof. 1t follows from (3.3) that

k prg—1
E[E(£,~X)|B,S1=(X—X,)+(X,- D) E (_lﬁ_Slf_>

L BiSTB
_ UV 'y,
=(X-X,)|1-E A—— , 38
w-n (=g Fegag]) o
Where Ui = vV S.\'.\‘Z‘Fl 2Bi ,Ll,, I ,)’ Hi= S\‘\‘Z‘rl zﬁi’ and Vi =
(n—2) T2V, E 1P~ W, (n 2, 1,). Note that Uy, .., Uy, V,, .., V, are

all statistically independent. As in Lemma 2.4, using orthogonal transfor-
mation and Cholesky decomposition, we get

UV 'u, Ulpti?
E{ F—— ﬂll }:E{ & “u”lvl 47}, (39)
UiV U, = MU 27

where ¢;,, is the (1, 1) element of 7, V,=T,T;, and T, is the upper tri-
angular matrix with positive diagonal elements. Recall that ¢7,’s are
independent chi-squared random variables with m,=n—p,—1 degrees of
freedom, i=1, .., k. So, we can apply Lemma 2.6(1) to get the expression
for the bias given in (3.6). To find the MSE of X, we note first that

EX,—X,)}=E[EX.-X,)*|$,S.]
=c,,E[ ‘L BiST'ZS ‘ﬁ]
(ko B1S; ' B)?
+()?—X)zE[ f BiS B~ /?)J
Zf—lﬁ/ lﬁ/
3 Y
—CHE{( j=l UiVi Ui)}
+()?-X,,)HE[1-Z~—'g'ilf—’[‘]}~ (3.10)

As in Lemma 2.5, using orthogonal transformations and Cholesky decom-

positions, it can be shown that

| S UV, FE[ZL' 10N 330 + T, T Tl Tia))
(Zio U VU (U )2

i= ‘U” t, /(n pl_z)]
=(n-3)E 1 1}
(n=3) { S U

S Ut (n—p,— 2)}
=n-3)E =1, (3.11
(n=3) {(z,_IHU,-u vt G
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where #, = U, I%/L5_, |U,I% i=1,..,k Now, conditioning on Ujs,
applying Lemma 2.3 and then using Lemma 2.4(i), we see that for large n,
El: f'(=l U!’ ViizUl'

& -1
m] iE(E. l}U1l|2> =Ep+2Z-2)"1 (312)

Next,

| L,(U;V:‘U,-)ZJ=E[2¢=,(U;u,-)2t;?}
DAL B o A A RHE

+2E[ ff:.iiJ;Uiltha:‘/(mf—’)} (3.13)

YN TR
Using Lemma (2.3), we can show that, for large n, the first expectation in
(3.13) is approximately equal to E[Y*_, (Uiu(Z5_, 1U,1)?] and,

using Lemma 2.6(iii), we see that the second expectation is nearly zero.
Hence,

k r—1,,\2 k "1 )2
E[_:._(U_MJ _E[_z:'ﬂ_’i] (3.14)

o uyituy) T LEL pre

Again, as in the proof of Lemma 2.5(i), using orthogonal transformations
and Cholesky decompositions, it can be shown that

E[ o Z;‘#[ Ui V;_]ﬂin"V,i'l/‘j} =E[Z¢=’ Z./#i(U'{/"‘)(U.;”J) m‘zt;”zJ
(. uy'uy? I U1 17y

- E[Zf:l Z/‘#i U;ﬂfv}’ﬂ_i]

ooy L

for large n (Lemma 2.6(ii)). Combining (3.14) and (3.15), and then using
Lemma 2.4(iii), we get

(3.15)

Zf;,U;Vi“,u,-:]’ . [ZL;IU;”CIZ
E\ S| SE| S5
{ ;‘=1 U/ V/ IUI ‘;‘=1 “U,”—

2Z+1
E[(p+22)(p+22—2)}' (3:16)

Further, from the expression for the bias, for large n, we have

El: :'(:l Ul, Vi—llui

: ——— =2AE(p+2Z)~". (3.17)
;\=| Ui lV_;‘ lUf]
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Substituting (3.12), (3.16), and (3.17) in (3.10), we get the desired expres-
sion (3.7) for the MSE.

Remark 3.2. As argued in the proof of Lemma 2.6(iii), it can be shown
that both the bias and MSE approach zero when A tends to oo. This
means, from the defimition of A, that both the bias and MSE will be small
if the slopes are large and/or the error covariance matrices are “small.”
Further, for large n, 5., is expected to be large and so will be 4, and as a
result bias will be small. However, the MSE—Y*_ f/='f, as n— o
(see Johnson and Krishnamoorthy [7]).

Remark 3.3. Simpler approximations to the bias and MSE can be
obtained using the Taylor series expansion. It can be shown, along the lines
of Lieftinck-Koeijers [9], that

BIAS(X,) = (X — X, )(p/(p+21) —8A%/(p +24)%) (3.18)

and

MSE(X,) =

Sul, K= Xa>‘+1’_*_1], (3.19)

N 7

X

Remark 3.4. To understand the validity of the approximations of the
bias and MSE of X,, we estimated (3.8) for bias and (3.10) for MSE using
simulation (100,000 runs), and computed (3.18) for bias and (3.19) for
MSE numerically for n=25(k=2,p,=p,=2, k=3, p,=3,p,=1,p;=1)

TABLE 1

Simulated and Approximated Values of Bias and MSE

k=3 k=5
Simulation Approximation Simulation Approximation
A Bias MSE Bias MSE Bias MSE Bias MSE
2 0.63 1.77 0.67 1.50 1.02 1.51 1.02 1.75
3 041 1.10 0.47 0.94 0.79 1.02 0.80 1.06
4 0.30 0.77 0.35 0.69 0.64 0.75 0.65 0.75
s 0.23 0.59 0.28 0.54 0.53 0.59 0.55 0.58
6 0.18 0.47 0.23 0.44 0.45 047 047 047
7 0.16 041 0.19 0.38 0.39 0.39 0.40 0.40
0.14 0.36 0.17 0.33 0.35 0.35 0.36 0.34
10 0.11 0.28 0.13 0.26 0.29 0.27 0.30 0.27
15 0.07 0.18 0.08 0.17 0.19 0.18 0.20 0.18

20 0.05 0.14 0.06 0.13 0.14 0.14 0.15 0.13
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and various values of 4. They are given in Table I for x=0, S, =1, and
x,= —2. These values are in good agreement even for small values of A
when k=35; but when k=3 they are in agreement for moderately large
values of 4.

4. CONCLUSION AND DISCUSSION

The results of this paper are applicable to practical problems where
response variables are measured using alternative measuring devices or
methods. For instance, when we have two machines and one is capable of
measuring two characteristics of each unit and another can read at least
one of these two characteristics, then the combined estimator X, in (1.10)
has finite bias an MSE. Thus, it is advantangeous to use a variety of
instruments to measure the response variables in order to make better
inferences about the explanatory variable.

Regarding confidence estimation, Johnson and Krishnamoorthy [7]
provide two confidence sets for X, when p;’s are equal to 1. One of them
is obtained by inverting the absolute sum of independent r-statistics which
is always nonempty and a condition, similar to the one in Brown [1],is
needed for it to be a finite interval; another is obtained by inverting the
sum of independent F-statistics which can be empty and two conditons
are needed for it to be a finite interval. The later confidence set can be
easily extended to the present setup along the lines of Johnson and
Krishnamoorthy [7]. In general, developing a satisfactory confidence set
based on all independent multvariate models seems to be difficult even if
the confidence sets based on individual models are bonafined nonempty
ellipsoids (Jordan and Krishnamoorthy [8]).

This paper further opens up a few problems. For instance, it is plausible
that the results can be extended to the case where the dimension of the
explanatory variable exceeds one. In this case, the combined estimator will
involve “matrix weights” which make the problem more complex. We
further note that this article is concerned only with the classical approach.
However, in the area of calibration, the so-called inverse approach is also
commonly used (in particular, when the explanatory variables also involve
measurement errors) to estimate the explanatory variables. Therefore, one
may want to investigate a method of combining inferences about X, using
the inverse approach.
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