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ABSTRACT

Let S, x, have a Wishart distribution with parameter matrix % and n degrees of freedom. We con-
sider here the problem of estimating the precision matrix 3 ~! under the loss functions L;(Z ™, £ 1) =
r@ '3 —log|27'S| - pand LyE L3 7Y = tr 3 '3 — I)%. James-Stein-type estimators have
been derived for an arbitrary p. We also obtain an orthogonal invariant and a diagonal invariant
minimax estimator under both loss functions. A Monte-Carlo simulation study indicates that the risk
improvement of the orthogonal invariant estimators over the James-Stein type estimators, the Haff
(1979) estimator, and the “testimator” given by Sinha and Ghosh (1987) is substantial.

RESUME

Soit S, x , une matrice aléatoire suivant une loi de Wishart avec » degrés de liberté et matrice des
paramétres 3. On étudie le probléme de Iestimation de 3, ! lorsqu’un utilise les fonctions de perte:
L L3 =@ ') -1log|2 '3 - pet L& 37 = tr ('S — I)* Des estimateurs de
type James-Stein sont définis pour n’importe quelle valeur de p. Relativement aux deux fonctions de
perte considérées, on obtient des estimateurs minimax qui sont invariants sous les transformations
orthogonales ou celles dont la matrice est triangulaire (inférieure). Une étude de simulation Monte-
Carlo indique qu’on obtient une diminution importante du risque en utilisant les estimateurs inva-
riants sous les transformations orthogonales plutdt que les estimateurs de type James-Stein, ou de
Haff (1979), ou le “test-estimateur” proposé par Sinha et Ghosh (1987).

1. INTRODUCTION

Let § ~ Wy(n, %), where 3 is unknown and n > p + 1. We are interested in estimating
2.~ under the loss functions

LE 2 )=t@ '3 - log|S!'S|-p (1.1)
and . .
LE LI HY=u@ '3 -1 (1.2)

The loss function L, is analogous to the one considered by James and Stein (1960) for
estimating 3, and L, is the multivariate generalization of the univariate quadratic loss
function. Note that both loss functions are fully invariant and strictly convex.

The usual estimator of 3 71 is (n — p — 1)S ! and is the best multiple of $ ! under L,.
For the loss L,, Haff (1979) has shown that the best multiple of $™! is {(n —p — 3)
(n—p)/(n— 1D}S™}, and is dominated by

_y_(n—=p—=3)n—p)

—1
H = =1 [$7 +vr()I] (1.3)
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where v = (tr §)"! and t(v) is an absolutely continuous function such that 0 < r(v) =
2(p — 1)/(n— p) and t'(v) < 0. No Haff-type estimator of % ! is available for the loss L,.

Olkin and Selliah (1977) (under L;) and Sharma and Krishnamoorthy (1983) (under L,
and L,) have derived the best lower triangular invariant estimators of 2! for the case
p=2.

In Section 2 we derive, for any p, the best lower triangular invariant estimator, E,, s
under the loss L; (i =1,2). In Section 3 we obtain a diagonal invariant estimator Ed,
which dominates 3! (i = 1, 2).

Sharma and Krishnamoorthy (1983) derived an orthogonal invariant minimax estimator
Ui(s) of 27! for p =2, which is better than 21, , under the loss L; (i =1, 2). Such
orthogonal invariant estimators are not available for p = 3. In Section 4 we develop an
orthogonal invariant estimator of %! for an arbitrary p, which is analogous to the estimator
of 3 given by Dey and Srinivasan (1985).

Finally, in Section 5, we carry out a Monte-Carlo simulation study to indicate the nature
of the risk improvement. The study indicates that our orthogonal invariant estimators are
substantially better than Haff’s (1979) estimator (under L,), than Sinha and Ghosh’s
(1986) “testimator” (under L,), and than the best lower triangular invariant estimators
$ (under L, and L,). Note that a “testimator” is not available for the loss L,.

2. DERIVATION OF %' UNDER THE LOSS L; (i =1, 2)

Let S ~ W,(n, %), and consider the group G, of lower triangular matrices A acting on
{S:8>0}as S — ASA’. This induces the transformation 3, 7! > 4’ '3 71471 $-1(§) >
A’ _lﬁ_l(S JA~!, and with the loss functions L, and L,, the estimation problem remains
invariant under G4. It is easy to verify that any estimator invariant under G4 must be of
the form T' ~!DT !, where T is a lower triangular matrix with positive diagonal elements
such that TT' = §, and D is a diagonal matrix whose elements are independent of S. Since
the group G, acts transitively on the parameter space {Z:3 > 0}, the risk function
RC LT 'DT H)=¢LE ', T'""'DT™") (i =1, 2) is independent of ..

In the following theorem we derive the best lower triangular invariant estimator 37!
under L;.

THEOREM 2.1. For the loss Ly, the best lower triangular invariant estimator is given by
Sil=17"'AT! Q.1
where Ay = diag (A1, A1z, ..., Ap) and Ay =(n—i—D(n—0/(n—1),i=1,2,...,p.

Proof. Since the risk R((2 ™', T" 7' DT~ ") is independent of %, without loss of generality,
we may take 2 =I. Then

R, T 'DT H=¢u(T"'DT")—¢log|T""'DT"!| - p
P
=¢tr(T'T)"'D + Elog|S| — ; log d; — p.
From Section Al of the Appendix we have € tr (T'T)”! = tr H = 3¢h;, where
n—1

hi:(n—i)(n—i—l)’ i=1727'-'7p- (2'2)
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We can rewrite
P P
R, T 'DT™ Y= }12 hid; — ; logd; + €log|S| — p,
which is minimum when d;=h; ' =Ay;, i=1,2,...,p. Q.E.D.
We next derive the best lower triangular invariant estimator )3 1> under the loss L,.
THEOREM 2.2. For the loss L,, the best lower triangular invariant estimator is given by
SR =T"'A,T7, 2.3)
where A, = diag (A1, Ags, ..., Azp), 8p;=d; (i=1,2, ..., p) is the solution of the equations

_ n—1
BT ==’

j=12,...,p, (2.4)

and the g; s are given by (A.8) of the Appendix.

Proof. For the reason given in Theorem 2.1, without loss of generality we take % = 1.
We have

R, T 'DT Y =<¢€tr(T"'DT" ! — I)?
=€t(T'T) 'D(T'T)"'D -2 (T'T) 'D +p. (2.5
From the results reported in the Appendix we get €(T'T)™! = diag (hy, ko, ..., h,) and

&T'T)"'D(T'T)"! = diag(qy, ..., qp), Where the h/s are given in (2.2) and the g;s in
(A.8). Substituting the above relations in (2.5), we get

P

p
RI,T''DT ™Y = 3 gid; =2 2 hyd; + p.
j= j=

Differentiating the above equation with respect to the d/s and equating the derivatives to
Zero, we obtain

= " , i=1,2,...,p. 2.6
3, ni-pm-j-n° 7 P 26)

g+ .
J

L2 6 i 2 - 1
Zl d; q (n )
Since (T'T)~! is symmetric and €(T'T) 'D(T'T)"! is a diagonal matrix, we can write

the diagonal entries g; as

(q17 qz;, - qp)l = A(dla d21 LRRE) dp),’

where A is a symmetric matrix whose (i, j)th element is the expected value of the square
of (i, j)th element of (T'T)~ . This implies that

P
aq; )
Sadi-g  (G=1,2,..p),
i=1 dj

QD

REMARK. For p=2 and 3 one can find the solution of the equation (2.4). For p =4,
solving (2.4) will be quite messy. Here we give the solution for p = 2 and 3. For a given
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p = 4, one can use the FORTRAN subroutine called REDUCE to get the analytic solution. For
p=12

_ (=D —H{(n -3 (n—5)}

oy v e v iy gy S
2.7
A = (n—2Y(n—3)n—4)(n—-25)
2 T -Dn=-32-(n—-5 °
and for p = 3,
T Ay _ Ay(n —2)
A== o T =3
A = n—2Y(n—3Nn—-4)(n~->5)
2 =D —-37%-(n—5)
_ (n—2)(n—3)(n—5)(n—-06)
(n=Dlr=2(n=3)n—-4)—-2(n-6)]"
L= (n—2)(n—3)n—4)(n~-50n-06) 2.8)

(n=Dl(n=2)(n=3)(n—4)—2(n—6)]

Since the risk of T'~'DT ! is constant under L;, the best invariant estimator 3;; !
(i=1,2) is minimax among the estimators invariant under G4. Also, as Gy is solvable,
from Kiefer’s theorem (Kiefer 1957), 2,7 L =1, 2) is minimax. For any >0, bSlis
invariant under G4 and, being different from 2 ;! (i =1, 2), it is inadmissible.

For the loss L,, the minimax risk is given by

p
R, 25 =%log|S|— ; log Ay;

P P
= 21: %IOng?—jH - ; log Ay;

P — i+ 14
=plog2+ X ¢ (”—é—l) - 2 log Ay, 2.9)

where {(x) is the digamma function and the A,/s are given in Theorem 2.1.
For the loss L,, since Ry(I, T' ' DT ') is minimized when D = A,, we have
€ tr(T'_1A2T_1 T'_lAzT_l) =% tr(T,_lAzT_l)
and the minimax risk is given by

Ro(I,T' ATy =p —Btr(T'T) "' A,
p
=p = 2 Moy, (2.10)

3. DERIVATION OF 3, UNDER L, (i = 1, 2)

Let L(Z ™%, $71) be a fully invariant loss function. If &(S) is a constant-risk minimax
estimator, so is ¢g(S) = BH(B’SB)B’ for any nonsingular matrix B (e.g. see Sharma and
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Krishnamoorthy 1983). In particular, letting &;(S) = 2;‘, we have the family
{b:r(S) = TOI'SDYI" : T € Gr, the group of orthogonal matrices} 3.1

of constant-risk minimax estimators under L; (i = 1, 2). Note that when I’ =1, ¢,r(S) =
3!, and for T' = (y;) withy; =1 if i + j = p + 1 and 0 otherwise,

dir(S) = 251 = U 1AYU ! (3.2)
where U is an upper triangular matrix with positive diagonal elements such that UU’ = §,
and A? = diag (Ajp, Aip_1, ..., Ayy) is the best upper triangular invariant estimator of 3!

under L; (i = 1, 2).

AsL;is astrictly convex function of St any average ad,r(S) + (1 — a)bin(S),n#T,
is better than 3! (i =1, 2) and so it is minimax. In the following theorem we prove that
3 is the best choice of a.

THEOREM 3.1. The best choice of o which minimizes the risk of
351 = adar(S) + (1= a)dan(9)
under the loss L, is }.
Proof. We first observe that
RyE7Y dar(8)) = Ry(Z71, dq(S)) and Etrdpr($HZ ' =Etrdpn($)E7L (3.3)

Let 272, = (1 = a)dyr(S) + ad24(S). Then the equations in (3.3) imply that R,(Z ™!, 21)
=R(Z ", 21, for any @, 0 < e < 1. Suppose that some a # } is the best choice. Then,
forany B, 0<B <1, BX;'+ (1~ B)2 1, is different from 3. and 3!, and domin-
ates each of them. Thus, we arrive at a contradiction. Q.E.D.

For the loss L;, we do not know the best choice of a for which R{(Z ™!, adr(S) +
(1= a)d1,(S)) is minimized. A sufficient condition for § to be the best choice of a is

RiE, adir(S) + (1 — )bi4(S)) = RiE 7', (1 = a)dir(S) + adi4(8)).

Although one can consider a simple average of any two members of the family (3.1), we
take

Sit+ 3t

St = 5 , (3.4)

since 27! and 3! are easy to compute. Note that 33! is diagonal invariant.

4. DERIVATIONOF 351 (i=1,2)

Though the best lower triangular invariant estimator 3 7' (i=1,2) is minimax, it
suffers from the fact that some elements of %! are grossly underestimated while other
elements are overestimated. As pointed out by Eaton (1970), this is because “the standard
orthonormal basis in IR plays a vital role under the action of elements of G". A way out
is to give equal importance to all orthonormal coordinate systems. In other words, we will
look for an orthogonal invariant minimax estimator.

Sharma and Krishnamoorthy (1983) derived an orthogonal invariant minimax estimator

bi(S) = J $;r(S) du(l) 4.1

Gr
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TasLE 1: Risksof b,S~'and 3 ' under L;, i = 1, 2.2

n=10 n=20 n=10 n=20
R{(b;S7Y) 0.3837 0.1694 0.8553 0.3518
RGiH 0.3737 0.1663 0.7825 0.3387
Ry(b,S7Y) 0.7302 0.3282 1.4444 0.6513
R(E5H 0.6995 0.3222 1.3201 0.6274

by=(n-p-1,bp=(n—p-3Nn-p)/n-1.

of 7' under L, (i=1,2) for the case p = 2, where &;(S) is given in (3.1) and v is an
invariant Haar measure over the orthogonal group Gr. For p = 3, evaluation of the integral
(4.1) seems to be difficult and ;(S) is not available explicitly.

We develop here an orthogonal invariant estimator of 3, ! for an arbitrary p. Note that

Q;r(S) = I'pu(I"SDHI” 4.2)

is a constant-risk minimax estimator for any orthogonal matrix I independent of §. Let S
have the spectral decomposition § = RLR' where RR' =1, L = diag(/,, ..., 1,), and [, >
L,>-->1,>0.1In(4.2), if we let ' =R, then

261" = ir(S) = RO(LR' .3)
becomes an orthogonal invariant estimator with
di(L) = diag (AnIT ', Al Y, o, Al (i=1,2).

The estimator (4.3) is analogous to the estimator of 2 given by Dey and Srinivasan (1985).
They have shown that, under L(Z, £) = tr E3 ") — log|SZ~!| - p, their orthogonal
invariant estimator is minimax using the “unbiased estimator of the risk expression of any
orthogonal invariant estimator” given by Haff (1982). Deriving such an unbiased estimate
of the risk in the present problem seems to be difficult, and we do not know, theoretically,
if the estimator 2&1 dominates i; 1(i =1, 2). However, the Monte Carlo simulation study
in Section 5 indicates that $;! is not only minimax but is also substantially better than
217 1(i=1,2). We also observe that the estimator 5),}',-1 shrinks the larger eigenvalues and
expands the smaller eigenvalues toward some central value. All these lead us to make the
following conjecture.

CONJECTURE 4.1. Let L(Z~% 3 1) be a fully invariant and strictly convex loss function.
If &(S) is a constant-risk minimax estimator of 3!, then R&(L)R’, where RLR' = S,
RR' =1, and L = diag(l;,1,, ..., 1,) with [;>15,>--->1,>0, is orthogonal invariant
and better than $(S). The same type of conjecture may also be stated for the estimation

of 3.

5. MONTE CARLO SIMULATION STUDY

In this section we compute the risks of Haff’s estimator (1.3) and of the estimators
presented in this paper, and compare their performances. For convenience we shall write
RELETN =RET.

Table 1 gives the exact risks of 371, of the best lower triangular invariant minimax
estimator, and of ;S ™", the best multiple of S ' under the loss L; (i = 1, 2). The risks of
the estimators 27, 35;!, and 371 have been estimated from the generation of 2000 inde-
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TABLE 3: Risks of £7] and 3.5, under L,.*

n=10 n=20

R(2Hd RN RC5H RCE&hH

3 = diag(l,¢), p =

c= 0.01 0.703 (0.011) 0.672 (0.009) 0.318 (0.007) 0.301 (0.007)
0.1 0.699 (0.012) 0.635 (0.008) 0.316 (0.006) 0.300 (0.006)
0.3 0.695 (0.009) 0.590 (0.008) 0.313 (0.006) 0.298 (0.006)
0.5 0.689 (0.008) 0.588 (0.007) 0.313 (0.006) 0.292 (0.007)
0.7 0.686 (0.009) 0.581 (0.006) 0.312 (0.004) 0.288 (0.006)
0.9 0.684 (0.008) 0.580 (0.006) 0.310 (0.005) 0.279 (0.006)
1.0 0.680 (0.007) 0.578 (0.009) 0.310 (0.005) 0.274 (0.005)
3 =diag(l,c;,c2), p=3

(c1,¢2) = (0.01, 0.01) 1.39 0.012) 1.24 (0.009) 0.639 (0.009) 0.613 (0.008)
(0.1,0.1) 1.38 (0.011) 1.17 (0.011) 0.634 (0.010) 0.601 (0.007)
(0.1,0.2) 1.37 (0.013) 1.14 (0.009) 0.631 (0.008) 0.599 (0.008)
0.2, 0.5) 1.37 (0.011) 1.06 (0.011) 0.630 (0.007) 0.561 (0.008)
0.3,0.6) 1.36 (0.010) 1.04 (0.014) 0.625 (0.009) 0.522 (0.008)
0.4,0.7) 1.37 (0.009) 1.03 (0.008) 0.621 (0.009) 0.501 (0.008)
(0.8,0.9) 1.37 (0.009) 1.02 (0.009) 0.618 (0.008) 0.467 (0.008)

a, 1y 1.36 (0.008) 1.02 (0.009) 0.618 (0.008) 0.457 (0.01)

*The numbers in parentheses represent the estimated values of the standard error.

pendent samples from a W,(n, %). The FORTRAN subroutine given by Smith and Hocking
(1972) was used. For each risk estimation we also computed the sample standard error.

We present the values of R; (20,1) and R; (Ed,‘) (i=1,2) in Tables 2 (for p = 2) and 4
(for p=3). As Ed, is diagonal invariant and 20, is orthogonal invariant, for the purpose
of comparing them, their risks are computed only for the cases where 3, is a diagonal or a
correlation matrix. We also note that R,(3, 35 = R(I,3z) (i =1, 2) forall $ =
diag (cy, ¢, ..., c,). Tables 2 and 4 indicate that 3o performs better than 3 ! under the
loss L; (i= 1 2) except when |3| is near zero. We also observe that Eo, is not only
minimax but also dominates the minimax estimator ﬁ,, (i =1, 2) substantially for smaller
as well as for larger values of n.

We compare the estimator 202 with 2,,2 in Table 3. To compute the risk of Eyz, we
take t(v) = (p — 1)/(n — p) in (1.3). Since both 202 and Em are scale and orthogonal in-
variant, to compute their risks we can take % = diag (1, c;cy, ..., ¢p—1). Again, Table 3
indicates that 202 dominates 35 #2 uniformly.

Comparison of R; (Eo,‘) with R; (w,(S)) [¥;(S) is given in (4.1)] computed in Sharma
and Krishnamoorthy (1983) shows that 35;' dominates U;(S) (i = 1, 2) except when | 3|
is near zero. We also compared RI(EOI ) with the risks of the “testimator” computed in
Sinha and Ghosh (1987). We again infer that 25! is uniformly substantially better than
the “testimator”.

APPENDIX

AL

We need to compute H = 8(T'T)™ !, where T = (1;) is a lower triangular matrix with
positive diagonal elements such that TT' = S ~ W,(n,I). We know that the #;'s (i =)
are independent with 12 ~ x2_,,, (i =1, 2, ...,p) and t; ~ N(O, 1) (i # j). So for any
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diagonal matrix D with =1 on the diagonal, DTD and T have the same distribution, and
H=%TT)'=¢(DTD)(DTD)]"' = DE(T'T)"'D = DHD
implies that H must be a diagonal matrix. Using this fact, Eaton and Olkin (1987) obtained

n—1
h'= >
o= pn—j—1)

i=12,..,p, (A.1)

for the jth diagonal element of H.

AlIl
To evaluate Q = €(T'T)”'D(T'T)™! we need the following lemmas.

LEMMA A.l. Let X ~ Np(O,I) be independent of S ~ W,(n,I). Then

1 1 _ p
X(Trn'x~ p— Fonp+is

where F,, ,_,,_1 is Snedecor’s F-distribution with (p,n — p — 1) degrees of freedom and
T is a lower triangular matrix with positive diagonal elements such that TT' = §.
See Theorem 2.2 of Tan and Guttman (1971).
LEMMA A.2. Let S ~W,(n,2). Then
tr(z—l)z—l N 2—-2
(n=pn—p-Dn=p=3) (n—p)n—p—3)°

For example, see Haff (1979).

Using the procedure given in Section Al, one can show that Q is a diagonal matrix. Let
,=8C)  =m—i-D'ad B, =8(ty) *=(n—-i-D'n—-i-3)i=
1,2, ..., p. Writing

S ) =

g (Sll(p—l)X(p—l) Si2 ) e~
$71 Sa2(1x1)

and partitioning T accordingly, one can easily obtain
0= [Qll(p—l)x(p—l) o ] ’
o Onaxn
where
0 = (T T1) ' DT Ti) ™' + (T T1) ™ T3y Taz ' Do T3 Ty (T4, Ty 7'}
= €T/, T~ " (D1 + a,d, )T}, Ty )7 '},
02 = €T3 Ay To ' Dy TR As Toy ' + T3' Ay T35 ' Dy(T5 Ty) ™!
+ (T2 T2) ' DaT5' Ay Ti ' + (T T2) "' Do(T5,Tyy) !
+ T To(TH ) DT T~ T3 Ths '),
Ay = To(T)\Ty) ' Ty, Dy = diag(dy, b, ..., dy,_1), and D, =d,.
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Let g1, g2, ..., g, denote the diagonal elements of Q. Then
g = d,8(1,,) H{€(A2))* + 28(A,y) + 1}
+ G(t,,) 2 € tr{T5 T (T}, T1) "' Dy(T1, T1)) '} (A.2)
Note that (T, T21) = I,_;. From Lemma A.1,

p—1

Ay ~ ——
2 n—p+2

Fp—l,n—p+2
and hence

p’-1
(n=pn-p-2)°

-1
%<A21)=’;Tp, and  €(A)? =

Substituting these expectations in (A.2), we obtain

2
p°—1 2Ap—1) )
= + +
% = &Py ((n—p)(n—p—2) n—p :
+ o, tr (@) — dya2€ tr (), 1)~ (T, i) ™" (A3)

Notice that Ty, T1; = S, is distributed as W,_(n, I). Therefore, from Lemma A.2,
Etr(T1; T1)” (11 T1))™' =€ trS;7°
_ (n—D(p—1) ‘
(n=ptD(n—p)n—-p-2)
Substituting (A.4) in (A.3) and simplifying, we get

(A4)

-4 n—1
P(n—pn—p-Dn-p-2
N [(n —3n—p-Dn-—p+tHhH-(n-p=-3)p-1)
(n—p+tDn—p-—DHn—p-3)
From the partitioned matrix @ note that
q1 = €(11))"*[d) + € tr (T2 T2) ' D*] (A.6)

where D* = dlag (dz, d3, veey dp), and Tzz Tz’z = S22 - S21 Sl_l 1 Sél = S22.1, which follows
aW,_i(n—1,I). Applying the result (A.1) to (A.6), we get
il di(n — 2) )
=By |d + - :
a B‘( 't im0 =D
Since O, is similar to Q, Equation (A.5) together with (A.7) yields the inductive relations

p i i1
qj=[d,.+{ > ( [1 ak)d,Hc,-+a,. .Zl ¢  Jj=23,...,p—1, (A8

=741 \k=j+1

qp

p—1
] +a, ; g (A5)

(A7)

where
n—1
¢ = . ; A
(n=—jpn—j—Dn—j—2)
9 [(n—3)(n—j—1)(n—j+1)_(”_j_3)(j_1)]
(n=—j+D(n—j—-Dn—-j—-3) )
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