
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lssp20

Communications in Statistics - Simulation and
Computation

ISSN: (Print) (Online) Journal homepage: www.tandfonline.com/journals/lssp20

Combining independent tests for a common
parameter of several continuous distributions: a
new test and power comparisons

K. Krishnamoorthy, Shanshan Lv & Md Monzur Murshed

To cite this article: K. Krishnamoorthy, Shanshan Lv & Md Monzur Murshed (2024) Combining
independent tests for a common parameter of several continuous distributions: a new test
and power comparisons, Communications in Statistics - Simulation and Computation, 53:4,
1837-1856, DOI: 10.1080/03610918.2022.2058546

To link to this article:  https://doi.org/10.1080/03610918.2022.2058546

Published online: 06 Apr 2022.

Submit your article to this journal 

Article views: 147

View related articles 

View Crossmark data

Citing articles: 1 View citing articles 

https://www.tandfonline.com/action/journalInformation?journalCode=lssp20
https://www.tandfonline.com/journals/lssp20?src=pdf
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610918.2022.2058546
https://doi.org/10.1080/03610918.2022.2058546
https://www.tandfonline.com/action/authorSubmission?journalCode=lssp20&show=instructions&src=pdf
https://www.tandfonline.com/action/authorSubmission?journalCode=lssp20&show=instructions&src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/03610918.2022.2058546?src=pdf
https://www.tandfonline.com/doi/mlt/10.1080/03610918.2022.2058546?src=pdf
http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2022.2058546&domain=pdf&date_stamp=06 Apr 2022
http://crossmark.crossref.org/dialog/?doi=10.1080/03610918.2022.2058546&domain=pdf&date_stamp=06 Apr 2022
https://www.tandfonline.com/doi/citedby/10.1080/03610918.2022.2058546?src=pdf
https://www.tandfonline.com/doi/citedby/10.1080/03610918.2022.2058546?src=pdf


Combining independent tests for a common parameter of
several continuous distributions: a new test and power
comparisons

K. Krishnamoorthya , Shanshan Lvb, and Md Monzur Mursheda

aDepartment of Mathematics, University of Louisiana at Lafayette, Lafayette, LA, USA; bDepartment of
Statistics, Truman State University, Kirksville, MO, USA

ABSTRACT
The problem of testing a common parameter of several independent con-
tinuous populations is considered. Among all tests, Fisher’s combined test
is the most popular one and is routinely used in applications. In this article,
we propose an alternative method of combining the p-values of independ-
ent tests using chi-square scores, referred to as the inverse chi-square test.
The proposed test is as simple as other existing tests. We compare the
powers of the combined tests for (i) testing a common mean of several
normal populations, (ii) testing the common coefficient of variation of sev-
eral normal populations, (iii) testing the common correlation coefficient of
several bivariate normal populations, (iv) testing the common mean of sev-
eral lognormal populations and (v) testing the common mean of several
gamma distributions. Our comparison studies indicate that the inverse chi-
square test is a better alternative combined test with good power proper-
ties. An illustrative example with real-world data is given for each problem.
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1. Introduction

In many applications, it is desired to combine the results of several independent studies to seek
evidence to support some common hypotheses of interest. Such problems arise, for example,
when two or more independent agencies are involved in measuring the effect of a new drug or
when different measuring instruments/laboratories are used to measure the same variable to
assess the overall average quality. There are many ways to combine the results for estimating/test-
ing the common parameter of interest. In this article, we address hypothesis tests that are devel-
oped by combining p-values of several independent tests for a common parameter or parametric
function. The combined test that we propose and other existing tests are applicable to any con-
tinuous distribution under some assumptions.

To describe the problem formally, let us suppose that there are k independent populations
with the same parameter or function of parameters such as the coefficient of variation and correl-
ation coefficient. Let us denote the common parametric function by n ¼ nðh11, :::, hl1Þ ¼ � � � ¼
nðh1k, :::, hlkÞ: Assume that independent samples, each of size ni, i ¼ 1, :::, k, are available from
these populations. Consider testing

H0 : n ¼ n0 vs: Ha : n 6¼ n0, (1)
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where n0 is a specified value. Let Pi denote the p-value of a test for the above hypotheses based
on the ith sample, i ¼ 1, :::, k: The p-values are based on independent samples, so they are inde-
pendent uniform(0, 1) random variables. To arrive at a combined test based on all samples, some
transformed p-values are combined to find a single test statistic for the hypotheses in (1). Fisher

(1932) has proposed the combined statistic �2
Pk

i¼1 ln Pi, which has the v22k distribution under
the null hypothesis. Fisher’s method is one of the popular methods in meta-analysis, and com-
parison of several combined tests for the normal case by Kifle and Sinha (2021) indicated that
Fisher’s test is better than other combined tests.

As noted by Whitlock (2005), Fisher’s method treats large and small p-values asymmetrically.
Rice (1990) provided an example to describe this asymmetry problem and Whitlock (2005) pro-
vided an extreme case as follows. Suppose there were p-values from two studies on a topic that
would be combined to arrive at a single combined test. One of these studies rejected the null
hypothesis with p-value of 0.001, while the other did not reject with p-value of 0.999. Fisher’s
combined test produces a p-value of 0.008. The combined p-value is statistically significant des-
pite the fact that the individual p-values clearly indicate that the data are equivocal. In this sense,
Fisher’s method is asymmetrically sensitive to small p-values compared to large p-values. Stouffer
et al. (1949) have proposed another combined test based on the z-scores, where the z-score based
on Pi is defined as Zi ¼ U�1ðPiÞ, i ¼ 1, :::, k, where U is the standard normal distribution func-

tion. This test is also easy to use, because the null distribution of
Pk

i¼1 Zi is normal with men
zero and variance k. For the extreme case described earlier, the p-value of the combined z-score
test is 0.5, which indicates that the z-score test does not have asymmetrical problem. Whitlock

(2005) also suggested the weighted z-score test based on the combined z-scores
Pk

i¼1
wiZiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk

i¼1
w2
i

q : For

testing a common mean of several normal populations, Whitlock recommended wi ¼ ni � 1, the
degrees of freedom (df) associated with the t-test based on the ith sample of size ni. Combining
independent studies with weights seems to be reasonable as one would want to weight studies
with more information more strongly than those with less information. For testing a common
mean of several normal populations, Whitlock has noted, on the basis of simulation results, that
the weighted score test is better than the Fisher test in terms of power.

In general, to arrive at a combined test, the p-values Pi’s of independent studies are trans-
formed so that the distributions of transformed p-values do not depend on any unknown quan-
tity and have the additive property. On the basis of this idea, we propose yet another combined
test where the p-values Pi’s are converted to v2ni;Pi variates, where v2m;a denotes the 100a percentile
of the chi-square distribution with degrees freedom (df) m. Note that, since Pi is a uniform ran-
dom variable, by inverse transformation method, v2ni;Pi has the chi-square distribution with df ¼
ni: As the chi-square distribution is stochastically increasing in the degrees of freedom, this
v2 score test gives more weights to the individual tests based on larger sample sizes.

In the following section, we describe the Fisher test, z-score test, the weighted z-score test by
Whitlock (2005) and the new inverse chi-square test. These tests are applicable as along as the indi-
vidual tests are based on some continuous distributions. In Sec. 3, we address the problem of com-
bining independent tests for a common mean of several normal populations and compare the
combined tests in terms of power. In the subsequent sections, we consider the problems of testing a
common coefficient of variation of normal populations, testing a common correlation coefficient of
bivariate normal populations and testing a common mean of several lognormal populations. For
each problem, we compare the combined tests with respect to power and illustrate them using exam-
ples. In Sec. 7, we describe a combined test for a common mean of several gamma distributions and
compare them in terms of power. An illustrative example with real-world data is given for each
problem. Some concluding remarks along with discussion are given in Sec. 8.
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2. Combined tests

We shall describe some combined tests that are applicable to any continuous distributions. Other
combined tests that are applicable to only normal family is described in the next section.

2.1. Fisher’s test

Fisher’s test is based on the combination of the p-values of the individual tests given by F ¼
�2
Pk

i¼1 lnPi: Under H0, Pi’s are independent uniform(0, 1) random variables and �2 lnPi are
independent v22 random variables. As a result, F has the v22k distribution under the null hypothesis
in (1). Let pi be an observed value of Pi, i ¼ 1, :::, k: For a given level a, Fisher’s test rejects H0

when �2
Pk

i¼1 ln pi > v22k;1�a, where v2m;q denote the 100q percentile of the v2m distribution.

Equivalently, the Fisher test rejects H0 whenever the p-value

P v22k > �2
Xk
i¼1

ln pi

 !
< a:

2.2. Inverse normal test

Let U denote the standard normal cumulative distribution function (CDF), and U�1 denotes the
inverse function. Since Pi’s are independent uniform(0, 1) random variables, the corresponding
normal scores Zi ¼ U�1ðPiÞ are independent standard normal random variables. The inverse nor-
mal test rejects H0 when

Z ¼ 1ffiffiffi
k

p
Xk
i¼1

U�1ðPiÞ < za,

where za denotes the 100a percentile of the standard normal distribution. This test was proposed
in Stouffer et al. (1949).

2.3. Weighted inverse normal test

Note that the weights for the individual p-values in the inverse normal test are the same. Instead,
Whitlock (2005) has proposed the weight �i ¼ ni � 1 for the p-value of the t-test for a normal
mean based on the ith sample. The resulting combined test rejects the null hypothesis when

Zw ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPk
j¼1�

2
j

q Xk
i¼1

�iU
�1ðPiÞ < za:

2.4. Inverse v2 test

Let v2m;q denote the 100q percentile of the chi-square distribution with df m. Notice that the

Fisher test combines the independent p-values by converting them to v22;Pi variates, and then uses

the single combined statistic
Pk

i¼1 v
2
2;Pi ¼ �2

Pk
i¼1 ln ðPiÞ which has the v22k distribution. Instead,

we convert the p-value Pi to v2ni;1�Pi variate, where ni is the sample size from the ith population.

Since
Pk

i¼1 v
2
ni;1�Pi has the v2N distribution, where N ¼Pk

i¼1 ni, the inverse v2 test rejects the null
hypothesis in (1) when

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 1839



Xk
i¼1

v2ni;1�Pi > v2N;1�a:

Since the v2m distribution is stochastically increasing in m, for any 0 < u < 1, v2ni;u > v2nj;u, pro-

vided ni > nj. Thus, we see that, unlike the Fisher test and the inverse normal test, the inverse v2

test gives more “weights” to individual tests with large sample sizes. As a result, this test is
expected to be better than the Fisher test when the sample sizes are unequal.

In the following sections, we apply these tests for several examples and compare them with
respect to power. For each example, the tests are illustrated using real life data.

3. Tests for a common mean of several normal distributions

Let ð�Xi, S2i Þ denote the (mean, variance) based on a sample of size ni from a Nðl,r2i Þ distribution,
i ¼ 1, :::, k: The variance S2i is defined with the divisor mi ¼ ni � 1, i ¼ 1, :::, k: For testing
hypotheses

H0 : l ¼ l0 vs: Ha : l 6¼ l0 (2)

consider the t-statistic
ffiffiffiffi
ni

p ð�Xi � l0Þ=Si, based on the ith sample. Let tm denote the t random
variable with df ¼ m: The p-values for testing above hypotheses is given by

Pi ¼ P jtmi j >
ffiffiffiffi
ni

p ð�Xi � l0Þ
Si

����
����

 !
, i ¼ 1, :::, k: (3)

As the p-values are independent, we can combine them to arrive at a single combined test
using the methods described in the preceding section. Furthermore, the following combined test
due to Zhou and Mathew (1993), which is valid only for testing a common mean of several nor-
mal distributions, will also be considered for power comparison.

3.1. The Zhou-Mathew test

This test is valid only for testing two-sided hypothesis in (1). Let t2i ¼ nið�Xi � l0Þ2=S2i , i ¼
1, :::, k: Further, let Qi ¼ �2 ln ð1� Fiðt2i ÞÞ, where Fi is the cumulative distribution function of an

F1,mi random variable with dfs 1 and mi ¼ ni � 1, i ¼ 1, :::, k: Let W ¼Pk
i¼1 Qi: Note that the

Fisher test rejects H0 if W > v22k;a, and it gives equal weight to all the individual tests even
though the sample sizes and variances could be unequal. Instead, Zhou and Mathew (1993) (also

see Jordan and Krishnamoorthy 1995) have proposed the test based on Q ¼Pk
i¼1 ciQi, where

ci ¼
ni=TiPk

j¼1ðnj=TjÞ
and Ti ¼ miS2i þ nið�Xi � l0Þ2

ni

is an unbiased estimate of r2i when H0 in (2) is true. Zhou and Mathew (1993) have shown that
the test that rejects H0 wheneverXk

i¼1

ck�1
i e�Q=ciQ

j¼1;j 6¼iðci � cjÞ
� að1þ gÞ, (4)

where

g ¼ 2
kðk� 1Þ

X
i<j

ð�Xi � l0Þð�Xj � l0Þ
j�Xi � l0jj�Xj � l0j

is an exact level a test.
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3.2. Power studies

All the combined tests in Sec. 2 and the Zhou-Mathew test are exact in the sense that their null
distributions do not depend on any unknown parameter. Therefore, the type I error rates of these
tests should be the same as the nominal level. To compare the tests in terms of power, we esti-
mated the powers using simulation with 100,000 runs. The estimated powers for testing H0 : l ¼
l0 vs. Ha : l 6¼ l0 at the level 0.05 are reported in Table 1 for k ¼ 2, 3, 4, 5 and 8. The sample
sizes and the standard deviations (SDs) are chosen according to following combinations:

i. sample sizes are equal, but SDs are different,
ii. sample sizes are different, but the SDs are equal,
iii. sample sizes and SDs are negatively associated; that is, smaller SDs are associated with larger

sample sizes,
iv. sample sizes and SDs are positively associated,
v. no apparent association between sample sizes and SDs, and
vi. Sample sizes are approximately equal and the population SDs are approximately equal.

For convenience, we write F to denote the Fisher test, v2 to denote the inverse v2 test, ZM to
denote the Zhou-Mathew test, Z to denote the inverse normal test and WZ denote the weighted
inverse normal test. Furthermore, we write X>Y to indicate the comparison that the test X is
more powerful than the test Y and X ’ Y to indicate that the powers of the tests X and Y are
approximately equal.

Case 1: For this case of equal sample size, but different SDs, we find the following power com-
parisons from Table 1. Note that, for this case, the inverse normal test Z and the weighted inverse
normal test WZ are identical, and so only the test Z is included in the power comparison.

Power comparisons in the above table clearly indicate that the Zhou-Mathew test followed by
the Fisher test are preferable when sample sizes are equal or close by, and SDs are different. In
some cases, the inverse v2 test is better than the other tests. The inverse normal test is less power-
ful than all other tests.

Case 2: Power comparisons are given in the following table when the sample sizes are unequal
and the population SDs are the same.

n r Power comparison

(5) (1, 2) ZM > v2 ¼ Z ¼ F
(12) (1, 5) F > v2 > ZM > Z
(15) (1, 4) F > v2 > ZM > Z
(8) (1, 2) ZM > F > v2 > Z
(10) (1, 4, 5) ZM > v2 ’ F > Z
(4) (1–4) v2 ’ ZM > F > Z
(5) (2, 3) v2 ’ Z > F > ZM
(5) (1–6) ZM > v2 ’ F > Z

n r Power comparison

(5, 10) (2) ZM > WZ > v2 > Z > F
(5, 10) (4) ZM > WZ > v2 > Z ’ F
(5, 10, 15, 30) (4) v2 ’ WZ > F > ZM > Z
(3–5, 8–10, 15) (3) v2 ’ WZ > F > Z > ZM

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 1841



Table 1. Powers of the combined tests for a common mean of several normal populations.

Tests for H0 : l ¼ 0 vs: Ha : l 6¼ 0

l
n ¼ ð5, 5Þ, r ¼ ð1, 2Þ n ¼ ð5, 5Þ, r ¼ ð1, 4Þ n ¼ ð8, 8Þ, r ¼ ð1, 2Þ n ¼ ð10, 5Þ, r ¼ ð4, 4Þ

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.0 .051 .051 .049 .050 .050 .050 .050 .050 .050 .050 .049 .049 .049 .049 .049 .050 .050 .049 .051 .050
0.5 .128 .127 .170 .129 .129 .112 .112 .147 .113 .113 .208 .208 .275 .205 .205 .065 .063 .069 .064 .065
1.0 .391 .384 .500 .392 .392 .300 .304 .408 .284 .284 .672 .676 .764 .651 .651 .111 .106 .127 .106 .113
1.25 .564 .558 .676 .563 .563 .425 .436 .556 .393 .393 .857 .863 .907 .834 .834 .148 .140 .171 .141 .152
1.5 .726 .721 .811 .718 .718 .557 .574 .681 .502 .502 .955 .958 .968 .937 .937 .197 .185 .225 .188 .202
1.75 .850 .846 .898 .837 .837 .677 .700 .774 .606 .606 .988 .991 .989 .979 .979 .256 .241 .289 .244 .262
2.0 .928 .927 .947 .916 .916 .780 .804 .835 .696 .696 .998 .998 .996 .994 .994 .325 .305 .360 .311 .333
2.25 .969 .969 .972 .960 .960 .859 .881 .877 .770 .770 .999 .999 .998 .998 .998 .402 .380 .436 .384 .412
2.5 .988 .988 .985 .983 .983 .914 .934 .906 .830 .830 1.00 1.00 .999 .999 .999 .483 .458 .513 .464 .492

l n ¼ ð10, 10Þ, r ¼ ð3, 3Þ n ¼ ð12, 12Þ, r ¼ ð1, 5Þ n ¼ ð15, 15Þ, r ¼ ð1, 4Þ n ¼ ð15, 14Þ, r ¼ ð1:5, 2Þ
0.0 .049 .049 .049 .049 .049 .049 .050 .050 .049 .049 .050 .050 .050 .050 .050 .050 .050 .050 .050 .050
0.5 .084 .085 .100 .084 .084 .252 .267 .312 .234 .234 .327 .349 .399 .304 .304 .247 .246 .308 .242 .245
1.0 .210 .207 .259 .210 .210 .736 .790 .717 .649 .649 .861 .902 .815 .788 .788 .776 .769 .828 .767 .773
1.25 .314 .307 .374 .314 .314 .898 .936 .802 .806 .806 .967 .984 .883 .914 .914 .933 .929 .951 .926 .930
1.5 .438 .428 .503 .440 .440 .970 .987 .851 .901 .901 .994 .999 .925 .969 .969 .987 .986 .990 .984 .985
1.75 .570 .557 .631 .573 .573 .993 .998 .888 .952 .952 .999 1.00 .954 .989 .989 .998 .998 .998 .997 .998
2.0 .695 .681 .745 .699 .699 .998 1.00 .917 .976 .976 1.00 1.00 .974 .996 .996 .999 .999 .999 .999 .999
2.25 .802 .789 .837 .806 .806 .999 1.00 .940 .989 .989 1.00 1.00 .985 .999 .999 1.00 1.00 .000 1.00 1.00
2.5 .884 .873 .904 .885 .885 1.00 1.00 .958 .995 .995 1.00 1.00 .992 .999 .999 1.00 1.00 1.00 1.00 1.00

l n ¼ ð10, 5Þ, r ¼ ð2, 2Þ n ¼ ð10, 5Þ, r ¼ ð2, 2:5Þ n ¼ ð10, 5Þ, r ¼ ð4, 1Þ n ¼ ð10, 5Þ, r ¼ ð1, 4Þ
0.0 .049 .049 .049 .049 .049 .049 .049 .049 .049 .050 .050 .050 .050 .050 .050 .049 .049 .049 .049 .049
0.5 .108 .104 .125 .103 .112 .105 .100 .120 .099 .110 .110 .120 .160 .120 .095 .238 .216 .261 .194 .262
1.0 .326 .306 .362 .311 .334 .294 .274 .331 .271 .308 .301 .345 .463 .334 .231 .707 .675 .637 .543 .738
1.25 .483 .457 .515 .464 .494 .437 .408 .472 .402 .455 .433 .496 .632 .471 .323 .878 .859 .738 .700 .893
1.5 .645 .617 .666 .626 .655 .588 .556 .616 .544 .608 .567 .645 .771 .604 .425 .962 .954 .795 .818 .965
1.75 .785 .760 .792 .768 .793 .730 .699 .743 .682 .749 .691 .775 .864 .721 .526 .991 .989 .833 .891 .991
2.0 .887 .868 .882 .873 .892 .843 .817 .841 .799 .857 .795 .870 .922 .814 .623 .998 .998 .866 .937 .997
2.25 .948 .937 .939 .938 .951 .919 .902 .907 .885 .928 .872 .932 .954 .881 .710 .999 .999 .893 .964 .999
2.5 .980 .974 .970 .975 .981 .963 .953 .947 .939 .968 .925 .967 .972 .926 .787 1.00 1.00 .917 .980 .999

l n ¼ ð5, 5, 5Þ
r ¼ ð3, 2, 1Þ

n ¼ ð5, 5, 5Þ
r ¼ ð1, 3, 5Þ

n ¼ ð10, 10, 10Þ
r ¼ ð3, 2, 1Þ

n ¼ ð10, 10, 10Þ
r ¼ ð5, 4, 1Þ

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.0 .051 .051 .051 .051 .051 .050 .050 .050 .050 .050 .051 .050 .050 .051 .051 .049 .049 .049 .049 .049
0.5 .121 .120 .157 .120 .120 .104 .103 .150 .103 .103 .242 .246 .341 .230 .230 .187 .195 .311 .176 .176
1.0 .365 .360 .463 .355 .355 .275 .278 .432 .258 .258 .762 .781 .876 .718 .718 .576 .629 .827 .497 .497
1.25 .533 .528 .637 .514 .514 .398 .405 .594 .364 .364 .924 .937 .970 .887 .887 .764 .825 .951 .659 .659
1.5 .696 .693 .776 .667 .667 .530 .542 .732 .477 .477 .984 .989 .994 .965 .965 .891 .938 .991 .788 .788
1.75 .824 .825 .870 .793 .793 .656 .673 .831 .585 .585 .998 .998 .998 .991 .991 .958 .983 .998 .877 .877
2.0 .912 .913 .924 .882 .882 .763 .783 .892 .683 .683 1.00 .999 .999 .998 .998 .986 .996 .999 .934 .934
2.25 .961 .962 .954 .938 .938 .847 .866 .928 .765 .765 1.00 1.00 .999 1.00 1.00 .996 .999 .999 .966 .966
2.5 .985 .986 .971 .969 .969 .907 .924 .949 .833 .833 1.00 1.00 .999 1.00 1.00 .999 1.00 .999 .984 .984

l n ¼ ð10, 7, 4Þ
r ¼ ð1, 3, 5Þ

n ¼ ð10, 7, 4Þ
r ¼ ð5, 3, 1Þ

n ¼ ð20, 10, 4Þ
r ¼ ð6, 2, 2Þ

n ¼ ð20, 10, 4Þ
r ¼ ð2, 2, 6Þ

0.0 .050 .050 .050 .049 .050 .050 .050 .050 .049 .050 .050 .049 .049 .049 .050 .050 .050 .051 .050 .051
0.5 .214 .190 .304 .170 .238 .089 .096 .128 .098 .079 .095 .099 .109 .097 .085 .188 .161 .194 .153 .200
1.0 .657 .619 .808 .478 .685 .228 .257 .367 .262 .178 .265 .282 .305 .277 .210 .626 .559 .621 .502 .651
1.25 .840 .817 .934 .639 .849 .335 .381 .522 .380 .253 .397 .425 .450 .415 .308 .828 .771 .812 .699 .846
1.5 .942 .934 .978 .767 .940 .458 .516 .673 .509 .342 .543 .585 .601 .570 .421 .941 .910 .925 .848 .950
1.75 .983 .982 .989 .860 .978 .583 .649 .794 .632 .441 .684 .733 .736 .713 .537 .985 .974 .974 .936 .988
2.0 .996 .996 .993 .920 .992 .698 .764 .878 .740 .541 .803 .849 .841 .826 .649 .997 .994 .991 .976 .998
2.25 .999 .999 .993 .957 .997 .795 .854 .932 .827 .638 .888 .926 .912 .906 .745 .999 .999 .996 .993 1.00
2.5 .999 .999 .994 .978 .999 .870 .918 .962 .891 .723 .943 .969 .954 .954 .824 1.00 .999 .997 .998 1.00

l n ¼ ð10, 10, 10, 10Þ
r ¼ ð3, 3, 3, 3Þ

n ¼ ð15, 13, 10, 5Þ
r ¼ ð4, 3:5, 3, 2Þ

n ¼ ð15, 13, 10, 5Þ
r ¼ ð2, 3, 3:5, 4Þ

n ¼ ð15, 13, 10, 5Þ
r ¼ ð4, 4, 4, 4Þ

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

0.0 .049 .049 .049 .050 .050 .049 .050 .050 .049 .050 .049 .049 .049 .050 .049 .050 .050 .050 .049 .050
0.5 .098 .097 .103 .097 .097 .096 .096 .096 .094 .092 .133 .124 .156 .118 .138 .082 .080 .081 .077 .081
1.0 .305 .299 .308 .297 .297 .283 .283 .274 .284 .263 .451 .419 .503 .383 .467 .200 .190 .194 .184 .199

(continued)
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Table 1. Continued.

Tests for H0 : l ¼ 0 vs: Ha : l 6¼ 0

l
n ¼ ð5, 5Þ, r ¼ ð1, 2Þ n ¼ ð5, 5Þ, r ¼ ð1, 4Þ n ¼ ð8, 8Þ, r ¼ ð1, 2Þ n ¼ ð10, 5Þ, r ¼ ð4, 4Þ

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1.25 .470 .460 .465 .463 .463 .441 .441 .420 .445 .407 .663 .627 .704 .576 .678 .306 .289 .289 .279 .306
1.5 .653 .639 .637 .645 .645 .615 .613 .577 .622 .572 .830 .803 .849 .744 .838 .433 .408 .401 .401 .432
1.75 .802 .789 .778 .795 .795 .772 .770 .728 .778 .726 .933 .919 .936 .873 .937 .578 .548 .530 .539 .576
2.0 .910 .900 .885 .904 .904 .883 .882 .842 .888 .846 .979 .973 .973 .944 .980 .709 .679 .648 .671 .705
2.5 .995 .993 .964 .995 .995 .969 .963 .916 .968 .968 .969 .974 .961 .935 .935 .999 .999 1.00 .985 .994
2.5 .989 .986 .978 .987 .987 .982 .982 .963 .983 .967 .999 .998 .994 .993 .999 .902 .882 .842 .875 .899

n ¼ ð15, 10, 5, 3Þ
r ¼ ð2, 3, 5, 6Þ

n ¼ ð15, 10, 5, 3Þ
r ¼ ð6, 5, 3, 2Þ

n ¼ ð10, 8, 5, 3Þ
r ¼ ð1, 2, 4, 6Þ

n ¼ ð10, 8, 5, 3Þ
r ¼ ð6, 4, 2, 1Þ

0.0 .049 .049 .049 .049 .049 .049 .049 .049 .049 .049 .050 .050 .049 .050 .050 .050 .051 .051 .050 .050
0.5 .125 .107 .144 .101 .139 .066 .067 .066 .068 .064 .222 .191 .302 .171 .249 .081 .086 .097 .088 .072
1.0 .397 .330 .441 .282 .442 .129 .131 .125 .135 .117 .697 .638 .813 .511 .736 .192 .216 .258 .227 .150
1.25 .581 .498 .621 .416 .633 .184 .187 .174 .194 .163 .877 .839 .935 .685 .896 .287 .324 .385 .340 .214
1.5 .751 .672 .774 .559 .796 .258 .263 .238 .274 .224 .964 .948 .976 .819 .968 .401 .452 .524 .468 .295
1.75 .876 .816 .875 .694 .906 .346 .353 .319 .373 .299 .992 .988 .987 .905 .992 .524 .586 .661 .600 .386
2.0 .949 .914 .934 .803 .964 .450 .457 .412 .484 .385 .998 .998 .991 .954 .998 .644 .710 .779 .717 .483
2.25 .982 .966 .962 .882 .988 .558 .568 .511 .599 .478 .999 .999 .992 .980 .999 .750 .813 .867 .814 .581
2.5 .995 .989 .974 .934 .997 .663 .674 .612 .705 .573 1.00 1.00 .992 .991 1.00 .836 .889 .926 .885 .671

n ¼ ð6, 5, 4, 4, 5Þ
r ¼ ð2, 2, 2:2, 1:8, 2Þ

n ¼ ð5, 5, 5, 5, 5Þ
r ¼ ð2, 3, 2, 3, 2Þ

n ¼ ð12, 8, 7, 4, 3Þ
r ¼ ð6, 4, 2, 1, 1Þ

n ¼ ð12, 8, 7, 4, 3Þ
r ¼ ð1, 1, 2, 4, 6Þ

0.0 .050 .050 .050 .050 .050 .050 .050 .049 .049 .049 .048 .049 .050 .049 .048 .050 .050 .049 .050 .049
0.5 .099 .096 .092 .099 .100 .087 .086 .085 .087 .087 .108 .117 .124 .122 .088 .368 .310 .406 .276 .411
1.0 .312 .296 .257 .313 .319 .245 .236 .223 .245 .245 .342 .397 .419 .408 .237 .938 .901 .943 .796 .957
1.25 .488 .465 .394 .492 .500 .390 .375 .347 .391 .391 .518 .593 .618 .600 .351 .994 .986 .987 .928 .996
1.5 .672 .645 .551 .679 .686 .548 .530 .482 .554 .554 .686 .767 .791 .766 .477 .999 .999 .994 .980 .999
1.75 .826 .801 .700 .830 .836 .712 .693 .628 .715 .715 .823 .891 .905 .880 .601 1.00 1.00 .996 .995 1.00
2.0 .924 .908 .819 .927 .931 .838 .821 .753 .840 .840 .913 .957 .964 .946 .711 1.00 1.00 .996 .998 1.00
2.25 .973 .965 .900 .975 .976 .923 .911 .853 .923 .923 .963 .986 .988 .978 .802 1.00 1.00 .996 .999 1.00
2.50 .992 .989 .950 .993 .993 .950 .951 .922 .954 .926 .986 .996 .996 .991 .871 1.00 1.00 .996 1.00 1.00

n ¼ ð3, 4, 5, 5, 4, 5Þ
r ¼ ð4:1, 3:9, 4:5, 3:9, 4:2, 3:8Þ

n ¼ ð4, 4, 4, 4, 4, 4Þ
r ¼ ð4, 3, 2, 2, 1, 1Þ

n ¼ ð9, 7, 7, 6, 5, 5Þ
r ¼ ð1, 9, 3, 6, 4, 2Þ

n ¼ ð9, 7, 7, 6, 5, 5Þ
r ¼ ð1, 1, 2, 2, 3, 4Þ

0.0 .048 .048 .048 .048 .049 .050 .049 .049 .050 .050 .049 .049 .049 .050 .050 .049 .049 .049 .050 .050
0.5 .057 .058 .056 .058 .057 .121 .118 .130 .121 .121 .158 .147 .254 .135 .168 .270 .249 .315 .232 .285
1.0 .092 .090 .082 .092 .094 .407 .395 .426 .403 .403 .504 .494 .726 .386 .500 .853 .830 .879 .756 .858
1.25 .122 .119 .104 .123 .125 .604 .592 .608 .590 .590 .703 .702 .876 .546 .680 .970 .964 .969 .915 .968
1.5 .165 .157 .133 .164 .169 .778 .769 .760 .755 .755 .852 .859 .946 .694 .816 .997 .996 .991 .978 .995
1.75 .220 .208 .170 .221 .228 .899 .893 .860 .872 .872 .940 .949 .972 .810 .906 .999 .999 .995 .995 .999
2.0 .289 .272 .218 .292 .300 .962 .960 .918 .942 .942 .980 .985 .984 .894 .957 1.00 1.00 .997 .999 .999
2.25 .370 .349 .273 .374 .384 .988 .988 .949 .976 .976 .994 .996 .990 .946 .982 1.00 1.00 .998 .999 1.00
2.50 .460 .435 .338 .465 .477 .997 .996 .965 .991 .991 .998 .999 .993 .974 .993 1.00 1.00 .998 1.00 1.00

n ¼ ð5, 4, 6, 5, 4, 5, 6, 4Þ
r ¼ ð3:2, 3, 2:7, 3:1, 3:3, 3, 3, 2:7Þ

n ¼ ð5, 5, 5, 5, 5, 5, 5, 5Þ
r ¼ ð2, 1, 3, 4, 2, 6, 5, 5Þ

n ¼ ð4, 3, 8, 9, 4, 10, 15, 5Þ
r ¼ ð4, 4, 5, 6, 5, 3, 5, 6Þ

n ¼ ð4, 3, 8, 9, 4, 10, 15, 5Þ
r ¼ ð3, 3, 3, 3, 3, 3, 3, 3Þ

0.0 .050 .050 .051 .050 .050 .050 .049 .050 .050 .050 .049 .049 .049 .049 .049 .049 .049 .050 .049 .049
0.5 .076 .076 .069 .076 .077 .103 .102 .135 .101 .101 .071 .068 .066 .066 .072 .103 .095 .082 .093 .105
1.0 .189 .182 .141 .185 .191 .312 .309 .414 .292 .292 .160 .143 .131 .138 .164 .340 .300 .217 .288 .347
1.25 .296 .282 .208 .290 .299 .477 .477 .589 .440 .440 .241 .214 .187 .203 .246 .531 .474 .338 .458 .536
1.5 .434 .412 .299 .426 .439 .648 .652 .739 .596 .596 .347 .308 .261 .291 .350 .725 .668 .484 .648 .726
1.75 .590 .563 .412 .582 .597 .796 .801 .846 .739 .739 .472 .424 .352 .399 .472 .870 .826 .632 .810 .868
2.0 .738 .712 .535 .732 .744 .899 .904 .912 .849 .849 .605 .553 .450 .520 .599 .953 .928 .756 .916 .950
2.25 .854 .833 .654 .849 .859 .956 .961 .950 .920 .920 .730 .679 .552 .641 .720 .987 .977 .847 .970 .985
2.50 .929 .915 .761 .926 .932 .984 .986 .970 .962 .962 .831 .789 .647 .750 .819 .997 .994 .905 .992 .996

1¼ Inverse chi-square; 2¼ Fisher’s test; 3¼ Zhou-Mathew’s test; 4¼ Inverse normal; 5¼Weighted inverse normal.
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The v2 test and the weighted inverse normal test are more powerful than the other tests. For
smaller number of groups, the Zhou-Mathew test also performs better. The Fisher test and the
inverse normal test are less powerful than the other tests.

Case 3: Power comparisons, when the sample sizes and the SDs are negatively associated, are
given in the following table.

For Case 3, the inverse normal test is the least powerful among all five tests. The weighted
inverse normal test and the Zhou-Mathew test are preferable to other tests. The inverse v2 test is
better than the Fisher test for all cases in the above table.

Case 4: Power comparisons on the basis of reported powers in Table 1 are given in the follow-
ing table for the case where sample sizes and the SDs are positively associated.

For Case 4, the Zhou-Mathew test and the inverse normal test are preferable to others. The
weighted inverse normal test is inferior to all other tests.

Case 5: When there is no apparent relation between sample sizes and SDs, the inverse v2 test
and the weighted inverse normal test are similar and they are better than others; see the powers
for n ¼ ð4, 3, 8, 9, 4, 10, 15, 5Þ,r ¼ ð4, 4, 5, 6, 5, 3, 5, 6Þ: The Zhou-Mathew test is the worst. For the
case n ¼ ð9, 7, 7, 6, 5, 5Þ,r ¼ ð1, 9, 3, 6, 4, 2Þ, the Zhou-Mathew test is better than all other tests. In
general, the inverse v2 test is stable and performs satisfactorily for Case 5.

Case 6: When the sample sizes are approximately the same and the population SDs are
approximately equal, the Fisher test seems to be less powerful than all other tests. If the sample
sizes are small, the Zhou-Mathew test is less powerful than all other tests; see the powers for n ¼
ð6, 5, 4, 4, 5Þ, r ¼ ð2, 2, 2:2, 1:8, 2Þ; n ¼ ð3, 4, 5, 5, 4, 5Þ, r ¼ ð4:1, 3:9, 4:5, 3:9, 4:2, 3:8Þ; n ¼ ð5, 4, 6,
5, 4, 5, 6, 4Þ, r ¼ ð3:2, 3, 2:7, 3:1, 3:3, 3, 3, 2:7Þ: For these cases, the inverse v2 test and the inverse
normal test perform very similar and they are more powerful than the other tests.

On overall basis, no test dominates others uniformly. Among the five tests, the inverse v2, the
Zhou-Mathew test and the weighted inverse normal test are competing tests for a common mean
of several normal populations.

3.3. Example

This example is concerned with the estimation of Selenium in nonfat milk powder by combining
the results of four different analytical methods. The data, taken from Eberhardt, Reeve, and

n r Power comparison

(5, 10) (1, 4) ZM > WZ > v2 > F > Z
(4, 7, 10) (1, 3, 5) WZ > ZM > v2 > F > Z
(4, 10, 20) (2, 6) ZM > WZ ’ v2 > F > Z
(5, 10, 13, 15) (2,3,3.5,4) WZ > ZM > v2 > F > Z
(3, 5, 10, 15) (2, 3, 5, 6) WZ > ZM > v2 > F > Z
(3, 5, 8, 10) (1, 2, 4, 6) WZ > ZM > v2 > F > Z
(3, 4, 7, 8, 12) (1, 2, 4, 6) WZ > ZM > v2 > F > Z

n r Power comparison

(5, 10) (1, 4) ZM > F > Z > v2 > WZ
(4, 7, 10) (1, 3, 5) ZM > F > Z > v2 > WZ
(4, 10, 20) (2, 6) ZM > F > Z > v2 > WZ
(5, 10, 13, 15) (4,3.5,3,2) Z > v2 > F > ZM > WZ
(3, 5, 10, 15) (2, 3, 5, 6) Z > F > v2 > ZM > WZ
(3, 5, 8, 10) (1, 2, 4, 6) ZM > Z > F > v2 > WZ
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Spiegelman (1989), are reproduced here in Table 2. Application of Bartlett’s test by Jordan and
Krishnamoorthy (1996) have shown that the variances are significantly different, and so the t-test
for the mean based on the pooled data is not appropriate. To illustrate the testing methods, con-
sider testing H0 : l ¼ 108 vs. Ha : l 6¼ 108, where l is the mean selenium content in nonfat milk
powder. The p-values of the t test based on the measurements by methods 1, 2, 3 and 4 are P1 ¼
0:3899, P2 ¼ 0:2102, P3 ¼ 0:0048 and P4 ¼ 0:0375, respectively. The results based on the five
combined tests are given in the following table.

P-values of all the combined tests are much smaller than the nominal level of 0.05, and so all
the tests reject the null hypothesis. The p-values of the inverse v2 test is smaller than that of the
Fisher test. Among the five tests, the weighted normal test produced the smallest p-value.

Note that the p-values of the two individual tests based on samples 3 and 4 are P3 ¼ 0:0048
and P4 ¼ 0:0375, respectively, which are smaller than 0.05. All the combined tests produced p-
values that are smaller than the smallest p-value P3 ¼ 0:0048:

4. Tests for a common coefficient of variation

The coefficient of variation is commonly used as a measure of precision and repeatability of data.
For example, Plesch and Klimpel (2002) have noted that the coefficient of variation is often used
to assess the meter-to-meter variability when comparing different types of equipment that per-
form the same task. In practical situations where the CV is an appropriate measure of variability,
the variable is usually positive. For a normal population, the ratio of the mean to the standard
deviation has to be on the order of three or more, for the probability of a negative value is negli-
gible. As a consequence, the CV must be at most.33 in practical situations where the CV is a suit-
able measure of variability (Johnson and Welch 1940).

To describe the problem of testing a common coefficient of variation for the normal case, let
Xi1, :::,Xini be a sample from a normal distribution with mean li and the variance r2i ¼ l2i s

2, i ¼
1, :::, k: Let mi ¼ ni � 1, i ¼ 1, :::, k: Note that s is the common coefficient of variation for all
populations.

4.1. An exact test for s

To derive a test for s based on the ith sample, let us find the distribution of the quantity �Xi=Si as
follows. Let Zi be a standard normal random variable and U2

i be a v2mi
=mi random variable.

Noting that ð�Xi � liÞ=ri � Zi=
ffiffiffiffi
ni

p
independently of Si=ri � Ui, we can write

Table 2. Selenium content in nonfat milk powder using four methods.

Methods Sample size Mean Variance

1. Atomic absorption Spectrometry 8 105.00 85.711
2. Neutron activation: Instrumental 12 109.75 20.748
3. Neutron activation: Radiochemical 14 109.50 2.729
4. Isotope dilution mass spectrometry 8 113.25 33.640

Tests Statistics p-value

Inv v2
P

v2ni ;1�Pi ¼ 71:887 Pðv242 > 71:887Þ ¼ :0028
Fisher �2

P
ln ðPiÞ ¼ 22:261 Pðv28 > 22:261Þ ¼ :0045

Zhou-Mathew — LHS of (4) ¼.0036; g¼ 0
Inv Normal 1

2

P
U�1ðPiÞ ¼ �2:7290 Uð�2:7290Þ ¼ :0032

Weighted Inv Norm
P

wiU
�1ðPiÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiP
w2
i

p ¼ �2:8929 Uð�2:8929Þ ¼ :0019
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�Xi

Si
¼ ð�Xi � li þ liÞ=ri

Si=ri
� Zi þ ffiffiffiffi

ni
p

=sffiffiffiffi
ni

p
Ui

:

Thus,
ffiffiffiffi
ni

p �Xi=Si � tmi

ffiffiffiffi
ni

p
=s

� �
, where tmðdÞ denotes the noncentral t random variable with df

¼ m and the noncentrality parameter d. For an observed value
ffiffiffiffi
ni

p
�xi=si, Johnson and Welch

(1940) have obtained an exact 1� 2a confidence interval ðŝL, ŝUÞ as the solutions of equations

tmi;a
ffiffiffiffi
ni

p
=ŝL

� � ¼ ffiffiffiffi
ni

p �xi
si

and tmi;1�a
ffiffiffiffi
ni

p
=ŝU

� � ¼ ffiffiffiffi
ni

p �xi
si
: (5)

Now consider testing

H0 : s ¼ s0 vs: Ha : s > s0, (6)

where s0 is a specified value, based on the ith sample. The test that rejects the null hypothesis
whenever ŝL > s0, or equivalently, the p-value

Pi ¼ P tmi

ffiffiffiffi
ni

p
=s0

� � � ffiffiffiffi
ni

p �xi
si

� �
< a, (7)

is an exact level a test. A combined test for testing the hypotheses in (6) can be obtained using
the p-values P1, :::, Pk, where Pi is based on the ith sample.

4.2. Power comparisons

We evaluated the powers of the inverse v2 test, Fisher’s test, inverse normal test and weighted
inverse normal test. The powers of the tests depend only on s, and so the powers were estimated
as a function s and reported in Table 3 for k¼ 2, 4 and 6 and various sample sizes. The reported

Table 3. Powers of the combined tests for testing a common coefficient of variation.

Tests for H0 : s ¼ s0 vs: Ha : s > s0; s0 ¼ :05

n ¼ (5,5) n ¼ (10,5) n ¼ (15,5) n ¼ (20,10) f n ¼ (30,5)

s 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

.05 .049 .049 .049 .049 .049 .049 .049 .049 .051 .051 .051 .051 .049 .049 .049 .050 .051 .051 .051 .051

.06 .216 .216 .209 .209 .275 .269 .263 .267 .332 .318 .308 .319 .428 .415 .415 .418 .469 .435 .413 .455

.07 .443 .441 .429 .429 .575 .566 .553 .559 .677 .660 .639 .658 .819 .810 .804 .807 .867 .844 .808 .852

.08 .638 .637 .623 .623 .791 .783 .770 .775 .881 .869 .851 .865 .964 .960 .957 .959 .980 .974 .958 .975

.09 .778 .777 .764 .764 .905 .899 .890 .894 .961 .957 .946 .954 .994 .993 .992 .993 .997 .996 .992 .996

.10 .866 .865 .856 .856 .959 .957 .950 .951 .988 .986 .981 .985 .999 .999 .999 .999 1.00 1.00 .999 1.00

.11 .920 .919 .911 .911 .982 .981 .977 .978 .996 .995 .993 .995 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

n ¼ (5,5,5,5) n ¼ (10,5,5,5) n ¼ (20,10,4,5) n ¼ (15,15,5,5) n ¼ (30,5,7,4)

.05 .050 .050 .050 .050 .050 .050 .050 .051 .049 .050 .049 .050 .050 .051 .051 .051 .050 .050 .051 .049

.06 .311 .309 .296 .296 .359 .350 .338 .339 .487 .456 .438 .459 .493 .469 .456 .470 .540 .490 .460 .501

.07 .640 .637 .616 .616 .729 .719 .699 .701 .883 .861 .835 .856 .889 .874 .856 .871 .921 .896 .858 .895

.08 .851 .849 .830 .830 .915 .909 .895 .895 .984 .979 .969 .976 .986 .982 .977 .981 .993 .989 .978 .988

.09 .944 .943 .933 .933 .978 .975 .970 .969 .998 .998 .995 .997 .999 .998 .997 .998 .999 .999 .997 .999

.10 .981 .981 .976 .976 .994 .994 .991 .991 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

.11 .993 .993 .990 .990 .998 .998 .998 .998 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

n ¼ (4,4,4,4,4,4) n ¼ (14,4,4,4,4,14) n ¼ (16,3,4,5,4,7) n ¼ (10,10,4,5,4,3) n ¼ (9,7,3,5,4,3)

.05 .051 .051 .053 .053 .051 .049 .052 .049 .052 .051 .054 .049 .049 .048 .047 .048 .049 .049 .051 .048

.06 .332 .335 .308 .308 .526 .495 .467 .487 .477 .449 .417 .442 .439 .419 .397 .410 .387 .376 .353 .362

.07 .678 .678 .643 .643 .905 .887 .857 .877 .864 .837 .801 .820 .843 .825 .794 .810 .782 .764 .735 .746

.08 .883 .884 .858 .858 .989 .985 .977 .982 .981 .974 .958 .965 .969 .963 .949 .958 .946 .940 .922 .926

.09 .958 .959 .945 .945 .999 .999 .998 .998 .998 .997 .993 .994 .996 .995 .992 .994 .991 .989 .982 .983

.10 .988 .989 .982 .982 1.00 1.00 1.00 1.00 1.00 .999 .999 .999 1.00 .999 .998 .999 .998 .998 .995 .996

.11 .997 .997 .996 .996 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .999

1¼ Inverse chi-square; 2¼ Fisher’s test; 3¼ Inverse normal; 4¼Weighted inverse normal.
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powers are Monte Carlo estimates based on 100,000 simulation runs. We observe from the esti-
mated powers in Table 3 that the inverse v2 test performs slightly better than all other tests when
sample sizes are equal, and appreciably better than the other tests for unequal sample sizes. See
the powers for n ¼ ð5, 5Þ, n ¼ ð5, 5, 5, 5Þ and n ¼ ð4, 4, 4, 4, 4, 4Þ; for the cases of unequal sample
sizes, see the powers when n ¼ ð20, 10Þ, n ¼ ð30, 5Þ, n ¼ ð30, 5, 7, 4Þ and n ¼ ð10, 10, 4, 5, 4, 3Þ:
For all the cases, the inverse v2 test performs better than other tests, and so this inverse v2 test
can be recommended for applications. The Fisher test also performs better than the inverse nor-
mal test and the weighted inverse normal test.

4.3. Example

Hong Kong Medical Technology Association conducted a quality assurance program for medical
laboratories in Hong Kong in 1989. In the specialty of hematology and serology, one normal and
one abnormal hematology and serology blood samples were sent to participants for measurements
of variables Hb, RBC, MCV, Hct, WBC and Platelet in each survey. Tests by Fung and Tsang
(1998) on the equality of coefficients of variation of the measurements on the six variables
showed that the coefficient of variation for MCV in 1995 is not significantly different from that
of 1996. Therefore, we are interested in making inference about the common coefficient of vari-
ation based on the 1995 and 1996 data on MCV. For 1995 survey, the sample size n1 ¼ 63, sam-
ple mean �x1 ¼ 84:13, sample variance s21 ¼ 3:390 and the coefficient of variation ŝ1 ¼ 0:0219:
For the 1996 survey, n2 ¼ 72, �x2 ¼ 85:68, s22 ¼ 2:946 and ŝ2 ¼ 0:0200:1 Tian (2005) has also used
the data to find a confidence interval for the common coefficient of variation.

Suppose we take 0.023 as a hypothetical value for the criteria of good precision for the meas-
urements of MCV in the survey. That is, we want to test H0 : s ¼ :023 vs. Ha : s < :023: The p-
value (7) for the 1995 survey is P1 ¼ 0:3104 and the p-value for 1996 survey is P2 ¼ 0:0675: The
combined statistic for the Fisher test is �2

P
ln ðPiÞ ¼ 7:732 and the p-value is Pðv24 > 7:732Þ ¼

0:1019: The statistic for the inverse v2 test is
P

v2ni;1�Pi ¼ 158:71 and the p-value is Pðv2135 >
158:71Þ ¼ 0:0798: The statistic for the inverse normal test is

P
U�1ðPiÞ=

ffiffiffi
2

p ¼ �1:407 and the
p-value is Uð�1:407Þ ¼ 0:0797: The weighted inverse normal test statistic isP

wiU
�1ðPiÞ=

ffiffiffiffiffiffiffiffiffiffiffiP
w2
i

p ¼ �1:451 with p-value Uð�1:451Þ ¼ :0733: Thus, all the tests, except the
Fisher test, reject the null hypothesis at the level of 0.10, and supports the hypothesis that the
common coefficient of variation is less than.023. We also note that all the combined tests pro-
duced p-values closer to the smaller of the individual p-values which is P2 ¼ 0:0675:

5. Combined tests for a common correlation coefficient

Let Xi1, :::,Xini be a sample from a bivariate normal distribution with mean vector li and vari-
ance-covariance matrix

r2i1 qri1ri2
qri1ri2 r2i2

� �
, i ¼ 1, :::, k:

Let Si ¼ ðsi, ljÞ be the sample variance-covariance matrix based on the ith sample. Then the
sample correlation coefficient is given by Ri ¼ si, 12=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
si, 11si, 22

p
, i ¼ 1, :::, k: The problem of esti-

mating a common correlation coefficient of several bivariate normal populations has been
addressed by Donner and Rosner (1980), Paul (1988) and Tian and Wilding (2008). These
authors have proposed some approximate tests and confidence intervals for a common

1Our values of ŝ1 and ŝ2 are based on the means and variances reported in Fung and Tsang (1998). It is not clear how the
authors Fung and Tsang (1998) and Tian (2005) obtained the value of 0.0406 for ŝ1 and the value of 0.0346 for ŝ2:
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correlation coefficient. In the following, we propose combined tests by combining the Fisher Z
tests based on individual samples.

5.1. Fisher’s Z test for q

Even though there are other improved tests for correlation coefficient (e.g., Krishnamoorthy and
Xia 2007), Fisher’s test for the correlation coefficient is simple with practical accuracy. It is based
on the distributional result that

Zi ¼ tanh�1ðRiÞ ¼ 1
2
ln

1þ Ri

1� Ri
� Nðlq, ðni � 3Þ�1Þ asymptotically, (8)

where lq ¼ tanh�1ðqÞ ¼ 1
2 ln

1þq
1�q : As lq is an increasing function of q, inferential procedures

about q can be obtained from the above asymptotic distribution. Specifically, let zi be an observed

value of Zi. That is, zi ¼ 1
2 ln

1þri
1�ri

� 	
, where ri is an observed value of Ri, i ¼ 1, :::, k: Furthermore,

the p-value for testing

H0 : q ¼ q0 vs: Ha : q > q0

on the basis of the ith sample is given by

Pi ¼ PðZi > zijni, q0Þ ¼ 1� U
ffiffiffiffiffiffiffiffiffiffiffiffi
ni � 3

p ðzi � lq0Þ
� 	

, (9)

where U is the standard normal distribution function.
The above p-values can be combined using one of the methods in Sec. 2 to arrive at a single

test. Apart from these combined tests, a test based on a linear combination of Fisher’s Z statistics
can be obtained (Donner and Rosner 1980). This combined test, described below, is also simple
and easy to use.

5.2. A combined test based on fisher’s Z statistics

Using the distributional result in (8), we see that, under H0 : q ¼ q0,

Zc ¼
Xk
i¼1

QiZi � N lq0 , 1=ðN � 3kÞ� �
, (10)

where Qi ¼ ðni�3ÞPk

j¼1
ðnj�3Þ

and N ¼Pk
i¼1 ni: Thus, this combined test rejects H0 in favor of Ha : q >

q0 if
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 3k

p ðZc � lq0Þ > z1�a, or equivalently the p-value 1� Uð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 3k

p ðZc � lq0ÞÞ < a:

5.3. Power comparisons

As the powers of all combined tests depend only on the population correlation coefficient q, we
estimated the powers of all the tests as a function of q and reported them in Table 4 for k¼ 2, 4
and 6 and some small to moderate sample sizes. Examination of the estimated powers clearly
indicates that the test based on the combined statistic Zc in (10), say, Zc tests, outperforms all
other tests. Even though, this Zc test offers only little improvements over the weighted inverse
normal test and the inverse v2 test, still it is better than other tests for all the cases. The inverse
v2 test and the weighted inverse normal test are more powerful than the Fisher test. Indeed, the
Fisher test is less powerful than all other tests. In general, the Zc test and the weighted inverse
normal test perform very similar, and they are preferable to other tests for a common correlation
coefficient of several bivariate normal populations. An advantage of the Zc test over the weighted
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inverse normal test is that the former test yields simple closed-form confidence intervals whereas
the confidence intervals based on the weighted inverse normal test can be obtained only by
numerically.

5.4. An example

The data for this example are from Tian and Wilding (2008) who has used these data to compute
confidence intervals for a common correlation coefficient in three age groups of proposita girls.
These data have also been analyzed by many researchers in the context of making inference on
interclass and intraclass correlations. The data are measurements on diastolic and systolic blood
pressures of proposita girls for age groups 6–8, 9–11, and 12–14 with sample sizes n1 ¼ 7, n2 ¼ 6
and n3 ¼ 7, respectively. The sample correlation coefficients corresponding to the three age
groups are r1 ¼ 0:7454, r2 ¼ 0:6391 and r3 ¼ 0:7379: On the basis of Fisher’s Z test on the equal-
ity of correlation coefficients, Tian has noted that the homogeneity of correlation coefficients
among these three groups is tenable.

Let us consider testing the common correlation coefficient q using the hypotheses H0 : q ¼ :30
vs. Ha : q > :30: The p-values based on the individual samples are P1 ¼ :07865, P2 ¼ :19265 and
P3 ¼ :08366: Fisher’s combined statistic is �2

P
ln ðPiÞ ¼ 12:300 and the p-value is Pðv26 >

12:300Þ ¼ :0556: The inverse v2 statistic is
P

v2ni;1�Pi ¼ 32:383 and the p-value is Pðv220 >
32:383Þ ¼ :0394: The inverse normal statistic is

P
U�1ðPiÞ=

ffiffiffi
3

p ¼ �1:936 and the p-value is

Uð�1:936Þ ¼ :0264: The weighted inverse normal statistic is
P

wiU
�1ðPiÞ=

ffiffiffiffiffiffiffiffiffiffiffiP
w2
i

p ¼ �1:961 and
the p-value is Uð�1:961Þ ¼ :0250: The test statistic Zc in (10) is 1.959 with p-value 1�
Uð1:959Þ ¼ :0250: All the tests, except the Fisher test, indicate that there is enough evidence to

Table 4. Powers of the combined tests for testing common correlation coefficient.

n ¼ (5,5) n ¼ (10,5) n ¼ (10,10) n ¼ (20,5)

Tests for H0 : q ¼ q0 vs: Ha : q > q0; q0 ¼ :1

q 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

.1 .048 .048 .047 .047 .046 .051 .051 .048 .051 .049 .052 .053 .051 .051 .052 .050 .049 .048 .050 .050

.2 .074 .073 .074 .074 .074 .093 .088 .089 .094 .094 .107 .104 .107 .107 .106 .120 .108 .111 .119 .121

.3 .111 .107 .114 .114 .117 .162 .151 .158 .166 .168 .205 .197 .209 .209 .211 .240 .212 .216 .242 .248

.4 .168 .161 .175 .175 .177 .266 .247 .263 .275 .279 .355 .340 .362 .362 .363 .425 .380 .385 .429 .433

.5 .251 .239 .266 .266 .264 .418 .390 .413 .431 .432 .551 .531 .560 .560 .564 .654 .603 .601 .656 .660

.6 .372 .356 .395 .395 .395 .606 .575 .599 .618 .620 .761 .742 .769 .769 .770 .856 .821 .812 .856 .859

.7 .536 .517 .562 .562 .564 .803 .778 .795 .813 .814 .919 .909 .922 .922 .921 .966 .954 .945 .965 .968

n ¼ (5,5,5,5) n ¼ (10,5,10,5) n ¼ (15,5,5,5) n ¼ (30,10,5,5)

.1 .051 .052 .049 .049 .049 .053 .053 .051 .052 .052 .052 .052 .050 .051 .051 .052 .052 .050 .052 .051

.2 .093 .090 .095 .095 .095 .121 .112 .120 .124 .124 .119 .108 .115 .115 .124 .163 .138 .147 .162 .164

.3 .158 .149 .170 .170 .169 .241 .219 .243 .253 .254 .238 .208 .230 .227 .252 .381 .318 .337 .378 .391

.4 .263 .245 .286 .286 .284 .429 .389 .431 .447 .450 .424 .371 .407 .398 .446 .664 .581 .596 .659 .679

.5 .414 .385 .450 .450 .449 .657 .610 .658 .677 .681 .654 .590 .629 .615 .677 .892 .837 .836 .884 .898

.6 .601 .567 .643 .643 .642 .859 .825 .857 .871 .870 .855 .809 .834 .816 .870 .984 .970 .965 .981 .985

.7 .804 .776 .833 .833 .832 .969 .958 .967 .972 .973 .968 .953 .958 .948 .972 .999 .998 .997 .999 .999

n ¼ (8,8,8,8,8,8) n ¼ (20,4,4,14,4,4) n ¼ (10,10,10,20,20,20) n ¼ (30,10,10,10,5,5)

.1 .055 .056 .053 .053 .054 .045 .043 .043 .049 .051 .055 .056 .054 .053 .054 .054 .055 .053 .051 .054

.2 .156 .147 .160 .160 .158 .141 .111 .127 .153 .158 .231 .209 .230 .233 .236 .194 .166 .182 .193 .197

.3 .341 .315 .356 .356 .359 .331 .255 .293 .359 .359 .582 .530 .579 .586 .589 .472 .403 .439 .467 .488

.4 .603 .562 .624 .624 .628 .597 .490 .540 .627 .632 .887 .851 .883 .887 .893 .787 .713 .747 .776 .799

.5 .843 .811 .857 .857 .860 .844 .757 .788 .859 .866 .989 .982 .988 .989 .990 .959 .930 .939 .954 .963

.6 .969 .958 .972 .972 .972 .970 .940 .945 .973 .975 .999 .999 .999 .999 1.00 .997 .994 .994 .996 .998

.7 .998 .996 .998 .998 .998 .998 .995 .994 .998 .998 1.00 1.00 .999 .999 1.00 .999 .999 .999 .999 1.00

1¼ Inverse chi-square; 2¼ Fisher’s test; 3¼ Inverse normal; 4¼Weighted inverse normal; 5¼ test based on Zc in (10).
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support Ha at the level.05. Furthermore, the weighted normal test and the test based on Zc pro-
duced the same smallest p-value.

Finally, we note in this example that the tests based on individual samples do not reject the
null hypothesis at the level 0.05, but some combined tests reject it at the same level of
significance.

6. Tests for a common mean of several lognormal populations

In order to find a combined test for a common mean of several lognormal populations, we first
need to identify a one-sample test for the mean of a lognormal distribution. Let X1, :::,Xn be a
log-transformed sample from a lognormal distribution with parameters l and r2, say, LNðl,rÞ:
Since the mean of a lognormal distribution is given by exp ðlþ r2=2Þ, it is enough to consider a
test for w ¼ lþ r2=2: Even though, there are several tests available in the literature (e.g.,
Krishnamoorthy and Mathew (2003) and Zou, Huo, and Taleban (2009)) we shall describe one of
the most accurate tests by Wu, Wong, and Jiang (2003).

6.1. The MLR test

To derive a test for a common mean of lognormal populations, let us first describe the modified
likelihood ratio test (MLRT) for a single sample by Wu, Wong, and Jiang (2003). Let ðw1,w2Þ ¼
ðPn

i¼1 Xi,
Pn

i¼1 X
2
i Þ: The maximum likelihood estimators (MLEs) are

r̂2 ¼ �w2 � �w2
1 and ŵ ¼ �w1 þ 1

2
r̂2: (11)

where �w1 ¼ w1=n and �w2 ¼ w2=n: For fixed w, the constrained MLE of r2 is

r̂2
w ¼ 2 ðwþ 1Þ2 þ �w2 � 2w�w1 � 2w


 �1=2 � 2:

The minimum (over w) value of the expression within the curly brackets is 1þ r̂2 and hence
r̂2
w is nonnegative. Define

rðwÞ ¼ sgnðŵ � wÞ n ln
r̂2
w

r̂2 þ n �w1 � wþ 1
2
r̂2
w

� �( )1
2

(12)

and

uðwÞ ¼ ffiffiffi
n

p ðŵ � wÞ r̂

r̂3
w

 !, ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
þ 1

r̂2
w

s
: (13)

For testing H0 : w ¼ w0 vs. Ha : w > w0, the MLRT statistic is given by

r�ðw0Þ ¼ rðw0Þ þ
1

rðw0Þ
ln

uðw0Þ
rðw0Þ

, (14)

which follows a standard normal distribution asymptotically. This asymptotic result has third-
order accuracy, and is valid even for small samples. For testing H0 : w ¼ w0 vs. Ha : w > w0, the
p-value of the MLRT is given by

PðZ > r�ðw0ÞÞ ¼ 1� Uðr�ðw0ÞÞ: (15)

To develop a combined test for a common mean of several lognormal distributions, let us suppose
that the means of all the k populations are the same. That is, exp l1 þ 1

2r
2
1

� � ¼ � � � ¼ exp lk þ 1
2r

2
k

� �
,

or equivalently,w ¼ l1 þ 1
2 r

2
1 ¼ � � � ¼ lk þ 1

2 r
2
k: Let Pi denote the p-value for testing
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H0 : w ¼ w0 vs: Ha : w > w0,

based on the ith sample. These p-values can be combined using any of the methods described in
Sec. 2 to arrive at a single test for the common mean of several lognormal populations.

6.2. Power comparisons

The modified likelihood ratio tests based on individual samples are very accurate in terms of type
I error rates even for small samples. So all the combined tests control the type I error rates very
close to the nominal level (see Table 5) and so it is fair to compare them in terms power. The
powers of the combined tests were estimated using Monte Carlo simulation for k¼ 2, 4 and 6,
and presented in Table 5. For each case of k, the values r and w are given in the table. Note
that l ¼ w� 1

2 r
2:

We first observe from Table 5 that the powers of the inverse v2 test and the Fisher test are
approximately the same and are larger than those of the inverse normal test and the weighted
inverse normal test when the sample sizes are equal. See the results for n ¼ ð5, 5Þ, n ¼ ð6, 6, 6, 6Þ
and n ¼ ð4, 4, 4, 4, 4, 4Þ: The weighted inverse normal test dominates all other tests when the sam-
ple sizes and the variances are negatively associated; that is, larger sample sizes are associated
with smaller variances. See the cases n ¼ ð10, 5Þ, ð15, 5Þ; n ¼ ð12, 11, 9, 8Þ, ð15, 12, 8, 4Þ; n ¼
ð10, 10, 4, 4, 4, 4Þ: However, all tests seem to dominate the inverse weighted normal test when the
smaller variances are associated with smaller sample sizes; see the powers for the cases n ¼
ð5, 10Þ, ð5, 15Þ; n ¼ ð8, 9, 11, 12Þ, ð4, 8, 12, 15Þ: In general, the powers of the weighted inverse nor-
mal test heavily depend on the relations between the variances and the sample sizes. Between the
inverse v2 test and the weighted inverse normal test, the former is better than the latter when ri’s
are positively associated with sample sizes or when the sample sizes are not very much different,

Table 5. Powers of the combined tests for testing a common mean of lognormal populations.

Tests for H0 : w ¼ w0 vs: Ha : w > w0; w0 ¼ 1; r ¼ ð:4, :8Þ
n ¼ (5,5) n ¼ (10,5) n ¼ (5,10) n ¼ (15,5) n ¼ (5,15)

w 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1.0 .049 .049 .049 .049 .050 .050 .049 .050 .050 .050 .050 .050 .048 .048 .048 .048 .050 .050 .050 .050
1.1 .141 .139 .143 .143 .196 .182 .182 .204 .151 .153 .157 .139 .247 .222 .216 .257 .162 .166 .173 .146
1.2 .303 .298 .304 .304 .475 .446 .425 .496 .339 .349 .361 .303 .614 .567 .524 .634 .373 .386 .404 .319
1.3 .520 .516 .514 .514 .770 .741 .697 .787 .578 .595 .608 .510 .898 .870 .811 .910 .635 .656 .677 .545
1.4 .729 .727 .713 .713 .937 .924 .882 .945 .791 .810 .817 .711 .987 .981 .950 .990 .847 .867 .877 .757
1.5 .880 .880 .859 .859 .990 .987 .965 .992 .923 .935 .935 .858 .999 .999 .991 .999 .953 .965 .967 .893

r ¼ ð:4, :8, 1:2, 1:6Þ
n ¼ (6,6,6,6) n ¼ (8,9,11,12) n ¼ (12,11,9,8) n ¼ (4,8,12,15) n ¼ (15,12,8,4)

1.0 .048 .048 .048 .048 .050 .051 .050 .050 .049 .050 .049 .049 .048 .049 .048 .047 .049 .049 .048 .049
1.1 .139 .138 .137 .137 .167 .169 .173 .153 .204 .194 .189 .212 .133 .145 .147 .115 .238 .208 .198 .255
1.2 .314 .312 .303 .303 .394 .411 .401 .344 .514 .497 .459 .521 .288 .319 .328 .228 .601 .548 .483 .633
1.3 .546 .549 .514 .514 .673 .706 .671 .585 .816 .810 .741 .812 .503 .554 .561 .389 .890 .861 .768 .904
1.4 .764 .772 .717 .717 .879 .904 .868 .794 .962 .962 .915 .956 .712 .769 .768 .563 .986 .981 .930 .988
1.5 .907 .916 .862 .862 .970 .982 .961 .917 .996 .996 .981 .993 .870 .913 .905 .729 .999 .999 .985 .999

r ¼ ð:4, :8, 1:2, 1:6, 2:0, 2:4Þ
n ¼ (4,4,4,4,4,4) n ¼ (8,4,8,4,4,4) n ¼ (4,8,4,8,4,4) n ¼ (10,10,4,4,4,4) n ¼ (4,4,10,10,4,4)

1.0 .045 .045 .043 .043 .045 .045 .044 .045 .045 .046 .044 .045 .046 .047 .044 .046 .047 .047 .045 .046
1.1 .104 .104 .100 .100 .139 .126 .121 .147 .115 .112 .111 .109 .170 .146 .136 .192 .112 .112 .110 .101
1.2 .208 .207 .197 .197 .324 .293 .260 .341 .242 .237 .227 .222 .421 .358 .302 .467 .229 .234 .227 .190
1.3 .350 .351 .319 .319 .569 .533 .442 .578 .425 .421 .387 .380 .713 .644 .522 .754 .398 .413 .388 .320
1.4 .527 .533 .474 .474 .792 .765 .635 .785 .625 .627 .566 .556 .907 .870 .725 .924 .589 .612 .565 .470
1.5 .692 .702 .615 .615 .928 .917 .791 .914 .797 .803 .727 .717 .981 .970 .867 .984 .760 .788 .728 .622

1¼ Inverse chi-square; 2¼ Fisher’s test; 3¼ Inverse normal; 4¼Weighted inverse normal.
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and worse than the latter when the variances are negatively associated with the sample sizes. The
gain in power of using the inverse v2 test over the weighted inverse normal test or inverse normal
test outweighs the loss.

There is no clear-cut winner between the inverse v2 tests and the Fisher test. For the cases
where sample sizes and the variances are positively associated, the inverse v2 test is better than
the Fisher test; see the powers when n ¼ ð10, 5Þ, ð15, 5Þ and r ¼ ð:4, :8Þ; n ¼
ð12, 11, 9, 8Þ, ð15, 12, 8, 4Þ and r ¼ ð:4, :8, 1:2, 1:6Þ: On the other hand, the Fisher test outperforms
the inverse v2 test when the sample sizes and the variances are negatively associated; see the
powers when n ¼ ð5, 10Þ, ð5, 15Þ and r ¼ ð:4, :8Þ; n ¼ ð8, 9, 11, 12Þ, ð4, 8, 12, 15Þ and r ¼
ð:4, :8, 1:2, 1:6Þ: Even though, no test is uniformly better than others, on an overall basis, the
Fisher test and the inverse v2 test can be recommended in practical applications.

6.3. An example

We shall illustrate the combined tests for a common mean of several lognormal populations using
the example given in Tian and Wu (2007). The data were obtained from an alcohol interaction
study in men (Bradstreet and Liss 1995). For illustrative purpose, we shall consider only the
measurements on maximum concentration (Cmax) and estimate the common mean of active
treatment groups. The group sizes are equal with n1 ¼ n2 ¼ n3 ¼ 22: The sample mean �xi and
the sample variance s2 of the log-transformed data are ð�x1, s21Þ ¼ ð2:601, 0:24Þ, ð�x2, s22Þ ¼
ð2:596, 0:20Þ and ð�x3, s23Þ ¼ ð2:599, 0:17Þ for the three groups.

For illustration purpose, let us test if the common mean is larger than 12.5; that is, H0 :
exp ðwÞ ¼ 12:5 vs. Ha : exp ðwÞ > 12:5: In terms of w, we test H0 : w ¼ 2:5257 vs. Ha : w >
2:5257: The p-values based on the samples 1, 2, and 3 are P1 ¼ 0:03245, P2 ¼ 0:03881, and P3 ¼
0:03751, respectively. The Fisher test statistic is �2

P
ln ðPiÞ ¼ 19:921 and the p-value is Pðv26 >

19:921Þ ¼ :0029: The inverse v2 statistic is
P

v2ni;1�Pi ¼ 105:858 and the p-value is Pðv266 >
105:858Þ ¼ :0013: Since the sample sizes are the same, the inverse normal statistic and the
weighted inverse normal statistic are the same and is

P
U�1ðPiÞ=

ffiffiffi
3

p ¼ �3:1125 with p-value is
Uð�3:1125Þ ¼ :0009: Note that the inverse v2 test produced smaller p-value than that of the
Fisher test. Among all three tests, the inverse normal test produced the smallest p-value.

7. Tests for a common mean of several gamma distributions

Let �X and ~G denote respectively the arithmetic mean and geometric based on a sample of size n
from a gamma distribution with the shape parameter a and the scale parameter b, say, gamma(a,
b). The mean of the gamma(a, b) distribution is given by l. In the following, we shall describe
the modified likelihood ratio test (MLRT) for the mean l ¼ ab by Fraser, Reid, and Wong (1997)
as given in Krishnamoorthy and Len-Novelo (2014).

7.1. The MLR test

The log-likelihood function is expressed as

lða, bj�X , ~GÞ ¼ �n lnCðaÞ � na ln b� n�X=bþ ða� 1Þn ln ~G: (16)

The MLE â is the solution of the equation ln ðaÞ � wðaÞ ¼ ln ð�X=~GÞ, where w is the digamma
function. The MLE can be evaluated by the Newton-Raphson iterative scheme

anew ¼ aold � ln aold � wðaoldÞ � s

1=aold � w0ðaoldÞ
with aold ¼

3� sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� 3Þ2 þ 24s

q
12s

,
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where s ¼ ln ð�X=~GÞ and w0ðxÞ ¼ @wðxÞ=@x is the trigamma function. The MLE of b is b̂ ¼ �X=â:
The signed likelihood ratio test (SLRT) statistic is given by

rðl0Þ ¼ signðl̂ � l0Þ 2 lðâ , b̂j�X , ~GÞ � lðâl0 , l0j�X , ~GÞ
h in o1=2

, (17)

where lða, bj�X , ~GÞ is the log-likelihood function in (16),

lða, lj�X , ~GÞ ¼ �n lnCðaÞ � na ln ða=lÞ � na�X=lþ ða� 1Þn ln ~G,

and âl0 is the MLE of a at l ¼ l0: This constrained MLE âl0 is obtained as the root of the equa-

tion ln a� wðaÞ ¼ ln ðl0=~GÞ þ �X=l0 � 1:
The modified LRT by Fraser, Reid, and Wong (1997) is given by

r�ðl0Þ ¼ rðl0Þ �
1

rðl0Þ
ln

rðl0Þ
Qðl0Þ
� �

, (18)

where Rðl0Þ is defined in (17), and Qðl0Þ ¼
ffiffiffiffiffiffi
nâ

p ðl̂=l0 � 1Þðw0ðâÞ � 1=âÞ12=ðw0ðâl0Þ � 1=âl0Þ
1
2:

This MLRT has third-order accuracy in the sense that the standard normal approximation to the
distribution of MLRT(l0Þ is accurate up to Oðn�3=2Þ: The MLRT for H0 : l ¼ l0vs: Ha : l > l0,
rejects the null hypothesis if the p-value PðZ > r�ðl0ÞÞ < a, where Z is the standard normal ran-
dom variable.

7.2. Power comparisons

To judge the accuracy and powers of the combined tests, which are based on the p-values of the
individual MLRT in the preceding section, for testing a common mean of several gamma popula-
tions, we estimated powers using Monte Carlo simulation. The powers of the tests for H0 : l ¼
0:5 vs. Ha : l > 0:5 were estimated at the level 0.05 for values of k¼ 2, 4 and 6 and various val-
ues of sample sizes. The values of the parameters are chosen as a ¼ 1, 2, 3, 4, 5 and 6 and bi ¼
l=ai, i ¼ 1, :::, 6: The estimated powers are reported in Table 6.

Comparison of the powers of the inverse v2 test, inverse normal test and the weighted inverse
normal test, we see that the powers of the inverse v2 test are quite similar to those of other tests
for some cases (see n ¼ ð5, 5Þ, ð5, 10Þ and (5, 20); n ¼ ð5, 10, 15, 20Þ; n ¼ (5,4,7,10,4,14)). For all
other cases, the inverse v2 test is better than the other two tests. Between the inverse v2 test and
the Fisher test, the former is better than the latter in most cases. These two tests have similar
powers for some cases; see n ¼ ð20, 15, 10, 15Þ and ð15, 5, 5, 5Þ: Overall, the inverse v2 test is pref-
erable to other tests.

7.3. An example

To illustrate the combined tests for a common mean of several gamma distributions, we consider
the data given in Table 1 of Bhaumik and Gibbons (2006). The data represent vinyl chloride con-
centrations (in g/L) collected from clean upgradient monitoring wells. A quantile-quantile plot by
Bhaumik and Gibbons showed an excellent fit of these data to a gamma distribution.
Krishnamoorthy and Len-Novelo (2014) have used the data to outline some inferential methods
for gamma distributions. The data set includes 34 measurements, and we divided them randomly
into two samples so the first sample includes n1 ¼ 20 measurements and the second one includes
n2 ¼ 14 measurements as shown below (Table 7). Let us test if the common mean concentrations
is less than 2.5 g/L; that is H0 : l ¼ 2:5 vs. Ha : l < 2:5: The p-values of the MLRT based on
samples 1 and 2 are P1 ¼ 0:07101 and P2 ¼ 0:31297, respectively. The Fisher test statistic is
�2
P

ln ðPiÞ ¼ 7:613 and the p-value is Pðv24 > 7:613Þ ¼ :1068: The inverse v2 statistic is
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P
v2ni;1�Pi ¼ 45:94 and the p-value is Pðv234 > 45:94Þ ¼ :083: The inverse normal statisticP
U�1ðPiÞ=

ffiffiffi
2

p ¼ �1:383 with p-value Uð�1:383Þ ¼ :083: The weighted inverse normal statistic
is �1.482 with the p-value Uð�1:482Þ ¼ :069: Once again we see that the inverse v2 test and the
inverse normal test produced smaller p-value than that of the Fisher test. Among all four tests,
the weighted inverse normal test produced the smallest p-value and the Fisher test produced
the largest.

8. Conclusion

Our simulation studies clearly indicated that none of the tests dominates others for all sample
size and parameter configurations. For unequal sample sizes, the inverse v2 test appears to be bet-
ter than other tests when the variances are not drastically different. We also noted that the
weighted z-score test does not improve the corresponding unweighted test uniformly. The
weighted z-score test or the Fisher test could be improved by choosing weights that are inversely
proportional to population variances and directly proportional to the sample sizes. As the popula-
tion variances are unknown, one could use the sample variances to weight the individual tests.
However, the null distribution of such a combined test with weights depend on sample variances
is difficult to obtain except for the normal case. We also note that, even for the normal case, the
combined test in Sec. 3.1, does not dominate other tests uniformly. On the basis of our extensive
power comparison studies, we see that there is no single combined test that dominates others for

Table 6. Powers of the combined tests for testing a common mean of several gamma populations.

H0 : l ¼ l0 vs: Ha : l > l0; l0 ¼ 0:5; a ¼ ð1, 2, 3, 4, 5, 6Þ; bi ¼ l=ai

n ¼ (5,5) n ¼ (10,5) n ¼ (5,10) n ¼ (20,5) n ¼ (5,20)

Tests for H0 : l ¼ l0vs: Ha : l > l0; l0 ¼ 0:5

l 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

0.5 .052 .052 .052 .052 .052 .052 .052 .052 .052 .051 .052 .052 .049 .050 .049 .049 .050 .051 .052 .050
0.6 .100 .099 .100 .100 .114 .113 .112 .110 .133 .128 .124 .136 .153 .147 .142 .150 .217 .193 .178 .224
0.7 .202 .201 .199 .199 .263 .262 .260 .254 .331 .315 .299 .338 .394 .380 .366 .381 .571 .524 .469 .585
0.8 .347 .344 .341 .341 .457 .457 .452 .439 .566 .543 .509 .571 .654 .641 .624 .634 .840 .806 .733 .848
0.9 .500 .497 .490 .490 .638 .641 .635 .613 .755 .737 .691 .758 .835 .828 .811 .812 .954 .939 .885 .957
1.0 .635 .634 .622 .622 .776 .778 .772 .751 .873 .861 .816 .874 .929 .925 .913 .912 .988 .984 .954 .989

n ¼ (5,5,5,5) n ¼ (15,5,5,5) n ¼ (5,5,5,15) n ¼ (5,10,15,20) n ¼ (20,15,10,5)

0.5 .053 .054 .053 .053 .052 .053 .053 .051 .052 .051 .053 .051 .050 .050 .050 .050 .050 .051 .050 .050
0.6 .153 .151 .149 .149 .178 .179 .175 .163 .286 .250 .229 .302 .441 .407 .370 .449 .278 .283 .269 .252
0.7 .418 .412 .406 .406 .501 .509 .497 .445 .752 .699 .622 .772 .937 .921 .877 .940 .761 .771 .752 .702
0.8 .711 .707 .689 .689 .801 .812 .799 .727 .961 .944 .885 .966 .998 .997 .992 .999 .968 .973 .966 .941
0.9 .890 .887 .871 .871 .943 .951 .943 .891 .996 .993 .974 .996 .999 .999 .999 .999 .998 .998 .997 .992
1.0 .965 .964 .953 .953 .986 .989 .986 .959 .999 .999 .995 .999 1.00 1.00 1.00 1.00 .999 1.00 .999 .999

n ¼ (4,4,4,4,4,4) n ¼ (8,4,5,11,7,6) n ¼ (10,4,4,14,4,4) n ¼ (5,4,7,10,4,14) n ¼ (5,4,15,4,8,4)

0.5 .057 .058 .057 .057 .051 .052 .051 .051 .055 .056 .056 .053 .053 .053 .052 .052 .054 .056 .055 .053
0.6 .190 .186 .188 .188 .330 .318 .302 .321 .311 .286 .270 .305 .435 .389 .353 .447 .335 .307 .289 .331
0.7 .544 .534 .532 .532 .858 .846 .813 .837 .817 .793 .749 .795 .941 .919 .871 .943 .852 .823 .786 .836
0.8 .850 .844 .834 .834 .991 .991 .982 .986 .984 .981 .964 .975 .999 .998 .992 .998 .990 .987 .975 .985
0.9 .970 .968 .960 .960 .999 .999 .999 .999 .999 .999 .997 .998 1.00 1.00 .999 1.00 .999 1.00 .998 .999
1.0 .995 .995 .992 .992 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00

1¼ Inverse Chi-square; 2¼ Fisher’s test; 3¼ Inverse normal; 4¼Weighted inverse normal.

Table 7. Vinyl chloride concentrations in monitoring wells.

Sample 1 1.3 0.4 0.1 2.5 0.6 1.2 0.9 0.2 0.8 5.3
1.8 0.6 1.1 2.3 0.2 0.1 3.2 1.0 8.0 2.0

Sample 2 5.1 2.4 0.5 6.8 1.2 0.5 0.9 0.4 0.4 2.7
0.5 2.0 2.9 4.0

1854 K. KRISHNAMOORTHY ET AL.



all the problems. However, the inverse v2 test can be used as an alternative test in place of the
Fisher test. The weighted inverse normal test may be preferable to the inverse normal test when
the sample sizes are unequal.

We also observe from illustrative examples that if any of the tests based on individual samples
rejects the null hypothesis then almost all combined tests also reject the null hypothesis.
Furthermore, we noted in Example 5.4 that no individual test rejects the null hypothesis at the
nominal level 0.05, but all except the Fisher test, reject the null hypothesis at the same level. The
results of these examples clearly indicate that the combined tests, which are based on information
from all independent sources or studies, are more powerful than the tests based on individ-
ual samples.
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