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Multivariate Behrens-Fisher problem using means of
auxiliary variables

Jianqi Yua, Kalimuthu Krishnamoorthyb, and Bin Wanga

aCollege of Science, Guilin University of Technology, Guilin, Guangxi, China; bDepartment of
Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana, USA

ABSTRACT
The authors considered the problem of testing equality of two multi-
variate normal mean vectors when the covariance matrices are
unknown and arbitrary. Given auxiliary variables with known means,
the authors proposed a pivotal quantity which is similar to the
Hotelling T2 statistic and obtained a satisfying approximation to its
distribution. The authors also outlined hypothesis testing and confi-
dence estimation based on the approximate distribution. The merits
of the test were studied using Monte Carlo simulation. Monte Carlo
studies indicated that the test is very satisfactory even for moder-
ately small samples. At last, the authors illustrated the proposed
methods by an example.
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1. Introduction

In statistical practice, auxiliary variables are very common and they are usually highly
related to the study variables. For example, if the study variable is sleeping time, auxil-
iary variables can be age, blood pressure, gender, etc. Making full use of auxiliary varia-
bles can improve the accuracy of inference. For instance, we often use sample mean to
estimate population mean, but when auxiliary variables are available, there are other
estimators better than the sample mean. Cochran (1940) proposed the ratio estimation
of the population mean in Simple Random Sampling (SRSWOR), and pointed out that
the ratio estimation reached the best when study variables and auxiliary variables were
highly positively correlated and the regression line of the research variable and auxiliary
variable passes through the origin. The product estimation was first proposed by
Robson (1957) and rediscovered by Murthy (1964), which is suitable for the situation
where the study variables and auxiliary variables are highly negatively correlated. The
regression estimation proposed by Watson (1937) is suitable for the case that the regres-
sion line does not pass through the origin. These popular methods for estimation of the
population mean are actually using the known mean of an auxiliary variable. Later,
scholars proposed various methods using auxiliary variables to improve the estimation
of population mean in Simple Random Sampling (SRSWOR). For details, see Yan and
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Tian (2010), Khan et al. (2015), Kadilar (2016), etc. In this article, we consider the
Behrens-Fisher problem with auxiliary variables.
The Behrens-Fisher problem is to infer the difference between the means of two nor-

mal populations without assuming that the population variances are equal. It has been
solved well in both univariate and multivariate situations. Even though some exact
methods are available, they have disadvantages to some extent. For example, because
the precise method of Scheff�e (1943) involves the random pairing of observations from
two independent samples, the order of the observations affects the results. Therefore,
Scheff�e (1970) himself advises against using this exact method. Bennett (1950) proposed
an exact method for multivariate cases, similar to Scheff�e’s method for univariate cases.
Similarly, due to the same reasons as the univariate case, it is generally not recom-
mended to use this method in practical applications. Many authors have proposed
approximate solutions using the idea of Welch’s (1947) to approximate degrees of free-
dom, see James (1954), Yao (1965), and Johansen (1980).
Let x1, :::, xN be a random sample from a p-variate normal populations with mean

vector l and covariance matrix R1, i:e:, Npðl,R1Þ: Let y1, :::, yM be a random sample
from Npðb,R2Þ: It is assumed that R1 and R2 are unknown and arbitrary positive defin-
ite matrices. Let us consider the problem of testing

H0 : l ¼ b vs: Ha : l 6¼ b: (1)

It is easy to see that H0 : l ¼ b is equivalent to H0 : Al ¼ Ab for any non singular
matrix A. Hence, a practical solution should be non singular invariant. Some authors
have proposed approximate solutions, in which the solutions from James (1954), Yao
(1965), and Johansen (1980) are invariant whereas the one from Nel and Van der
Merwe (1986) is not. Krishnamoorthy and Yu (2004) proposed a modification to the
solution of Nel and van der Merwe so that the resulting test is affine invariant. We call
this test the modified Nel van der Merwe (MNV) test. Monte Carlo comparative study
in Krishnamoorthy and Yu (2004) showed that in terms of power and control type I
error rate, the MNV test is the best among all the invariant tests available so far. In this
article, we extend the MNV test to the case in presence of auxiliary variables with
known means.
To formulate the problem, let x and y be the study variables that we want to com-

pare, w and t be the auxiliary variables of x and y Meanwhile, let

w
x

� �
� Nqþp

cw
l

� �
,R ¼ R11 R12

R21 R22

� �� �

independently of

t
y

� �
� Nqþp

ct
b

� �
,D ¼ D11 D12

D21 D22

� �� �

where cw and ct are known constants.

Assume that there are N random samples on

�
w
x

�
and M random samples on

�
t
y

�
: That is, we have data matrices as shown below:
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w1, :::,wN t1, :::, tM
x1, :::, xN y1, :::, yM

(2)

where xi and yi’s are p� 1 vectors, while wi and ti’s are q� 1 vector. We consider test-
ing the hypotheses in (1).
The structure of this article is arranged as follows. In the following section, we pre-

sent the maximum likelihood estimators of the relevant parameters, and propose a stat-
istic for the test. In Sec. 3, we derive an approximation to the distribution of the
statistics and outline the procedure for the hypothesis testing. The merits of this test are
studied in Sec. 4 through Monte Carlo simulation whose results indicate that the test is
very satisfactory even for moderately small samples. The proposed methods are illus-
trated by an example in Sec. 5.

2. Maximum likelihood estimators of l, b

Firstly, we derive the maximum likelihood estimator of l: To finish this, let

D ¼ w1, ::: ,wN

x1, ::: , xN

� �
ðqþpÞ�N

(3)

Let �D ¼
� �w
�x

�
and S ¼

�
Sww Swx
Sxw Sxx

�
denote the sample mean vector and the sum of

squares and sum of products matrix respectively based on D.
Consider the density function of this data. We note that the density of w and x can

be written as the marginal density of w times the conditional density of x given w (we
indicate the density of normal distribution by nð�Þ here), that is

nðw, xjcw, l,RÞ ¼ nðwjcw,R11Þnðxjl2:1 þ B2:1w,R2:1Þ
where

B2:1 ¼ R21R
�1
11 , l2:1 ¼ l� B2:1cw,R2:1 ¼ R22 � B2:1R12 (4)

The likelihood function can be written as

Lðl,RÞ ¼
YN
i¼1

nðwijcw,R11Þ
YN
i¼1

nðxijl2:1 þ B2:1wi,R2:1Þ (5)

The maximum likelihood estimates of R11, l2:1,B2:1,R2:1 are those values that maxi-

mize (5). To maximize (5) with respect to R11, we maximize
QN

i¼1 nðwijcw,R11Þ: This
procedure gives us the usual maximum likelihood estimates of the parameters of a nor-
mal distribution based on N observations, namely,

R̂11 ¼ 1
N

XN
i¼1

ðwi � cwÞ0ðwi � cwÞ (6)

To maximize (5) with respect to l2:1,B2:1 and R2:1, we maximize the second term of
the right hand side of (5). This gives the usual estimates of regression parameters,
namely,
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B̂2:1 ¼ SxwS�1
ww, l̂2:1 ¼ �x � B̂2:1 �w, R̂2:1 ¼ ðSxx � B̂2:1SwxÞ=N (7)

It is easy to see that the maximum likelihood estimates of l,R12,R22 are obtained by

solving (4), where l2:1 ¼ l̂2:1,B2:1 ¼ B̂2:1 and R2:1 ¼ R̂2:1: Hence, we have

l̂ ¼ �x � B̂2:1ð�w � cwÞ, R̂2:1 ¼ ðSxx � B̂2:1SwxÞ=N with B̂2:1 ¼ SxwS
�1
ww (8)

Secondly, we derive the maximum likelihood estimator of b: let

�
�t
�y

�
and R ¼

�
Rtt Rty

Ryt Ryy

�
denote the sample mean vector and the sum of squares and sum of prod-

ucts matrix respectively based on the data E ¼
�
t1, ::: , tM
y1, ::: , yM

�
ðqþpÞ�M

:

Consider the density function of this data. We note that the density of t and y can be
written as the marginal density of t times the conditional density of y given t (we indi-
cate the density of normal distribution by nð�Þ here), that is

nðt, yjct , b,DÞ ¼ nðtjct,D11Þnðyjb2:1 þ C2:1t,D2:1Þ
where

C2:1 ¼ D21D
�1
11 , b2:1 ¼ b� C2:1ct,D2:1 ¼ D22 � C2:1D12 (9)

The likelihood function can be written as

Lðb,DÞ ¼
YM
i¼1

nðtijct ,D11Þ
YM
i¼1

nðyijb2:1 þ C2:1ti,D2:1Þ (10)

The maximum likelihood estimates of D11, b2:1,C2:1,D2:1 are those values that maxi-

mize (10). To maximize (10) with respect to D11, we maximize
QM

i¼1 nðtijct ,D11Þ: This
procedure gives us the usual maximum likelihood estimates of the parameters of a nor-
mal distribution based on M observations, namely,

D̂11 ¼ 1
M

XM
i¼1

ðti � ctÞ0ðti � ctÞ (11)

To maximize (10) with respect to b2:1,C2:1 and D2:1, we maximize the second term of the
right hand side of (10). This gives the usual estimates of regression parameters, namely,

Ĉ2:1 ¼ RytR�1
tt , b̂2:1 ¼ �y � Ĉ2:1�t, D̂2:1 ¼ ðRyy � Ĉ2:1RtyÞ=M (12)

It is easy to see that the maximum likelihood estimates of b,D12,D22 are obtained by

solving (9), where b2:1 ¼ b̂2:1,C2:1 ¼ Ĉ2:1 and D2:1 ¼ D̂2:1: Hence, we have

b̂ ¼ �y � Ĉ2:1ð�t � ctÞ, D̂2:1 ¼ ðRyy � Ĉ2:1RtyÞ=M with Ĉ2:1 ¼ RytR
�1
tt (13)

3. Hypothesis test and confidence region for l2b

In the Appendix, we derive the distribution of l̂ � b̂ and construct the quantity used
for the test
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Q ¼ ðl̂ � b̂ � ðl� bÞÞ0 Cx
~R2:1 þ Cy

~D2:1

h i�1
ðl̂ � b̂ � ðl� bÞÞ (14)

where ~R2:1, ~D are unbiased estimators of R2:1 and D2:1 respectively which are defined in
(A.2) of the Appendix, and

Cx ¼ 1
N
þ ð�w � cwÞ0S�1

wwð�w � cwÞ,Cy ¼ 1
M

þ ð�t � ctÞ0R�1
tt ð�t � ctÞ

Moreover, we derive the approximate distribution of Q in the Appendix:

Q � pf
f � pþ 1

Fðp, f � pþ 1Þ approximately (15)

where Fðp, f � pþ 1Þ is a F distribution with numerator degree p and denominators
degree ðf � pþ 1Þ:
Thus, for a given level a and an observed value Q0 of Q, the null hypothesis that l�

b ¼ 0 will be rejected whenever the p-value

P
pf

f � pþ 1
Fðp, f � pþ 1Þ > Q0jH0

� �
< a:

Furthermore, an approximate 1� a confidence set for l� b is the set of values of l�
b that satisfy

ðl̂ � b̂ � ðl� bÞÞ0 Cx
~R2:1 þ Cy

~D2:1

h i�1
ðl̂ � b̂ � ðl� bÞÞ � pf

f � pþ 1
F1�aðp, f � pþ 1Þ (16)

where F1�aðp, f � pþ 1Þ is the (1�a)th quantile of the Fðp, f � pþ 1Þ distribution.

4. Accuracy of the approximations

We have used an approximation to approximate the distribution of the sum of two
Wishart matrices with different scale matrices to derive the distribution of Q. So, to
understand the accuracy of the approximation, we use Monte Carlo simulation to esti-
mate the sizes of the test for the hypothesis in (1) when the nominal level is 0.05.
Each simulation is consisting of 100,000 runs. As pointed out by Yao (1965), there

exists a non singular matrix M such that R ¼ MKM0, D ¼ MðI� KÞM0 and Rþ D ¼
MM0, where K ¼ diagðk1, :::, kpÞ, 0 < k1 � ::: � kp < 1, and ki’s are the eigenvalues of

ðRþ DÞ�1
2RðRþ DÞ�1

2: Because the solutions are non singular invariant, without loss of
generality, we can assume R ¼ K and D ¼ I� K for comparison purpose. The sizes are

Table 1. Monte Carlo estimates of the sizes of the test; R ¼ diagðk1, k2Þ, D ¼ I
�Rðp, qÞ ¼ ð1, 1Þ; a ¼ 0:05:

(N, M)

ðk1, k2Þ (6, 12) (12, 13) (15, 19) (20, 29)

(0.1,0.1) 0.049 0.050 0.048 0.050
(0.2,0.5) 0.046 0.050 0.049 0.050
(0.2,0.7) 0.052 0.050 0.051 0.051
(0.1,0.9) 0.054 0.051 0.050 0.050
(0.5,0.5) 0.047 0.049 0.050 0.050
(0.9,0.9) 0.054 0.052 0.051 0.050
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computed for p ¼ q ¼ 1 and p ¼ q ¼ 2: The estimates of the sizes are presented in
Tables 1 and 2. It is clear from Tables 1 and 2 that the coverage probabilities are very
close to 0.95 for all the cases considered.

5. An illustrative example

We now illustrate the methods using the ‘Fishers Iris Data’ which represents measure-
ments of the sepal length and width, and petal length and width in centimeters of fifty
plants for each of three types of iris: Iris setosa, Iris versicolor and Iris virginica. The
data sets are posted in many websites, say, http://javeeh.net/sasintro/intro151.html. For
illustrative purposes, we use the data on setosa (x) and versicolor (y).
Assume that the population means of the sepal length and width of Iris setosa and

Iris versicolor are ð5:936, 2:770Þ and ð5:006, 3:428Þ respectively, which are means of all
the observations. Let l and b be means of the petal length and width of Iris setosa and
Iris versicolor respectively. Suppose that we want to test

H0 : l ¼ b vs: Ha : l 6¼ b

In this example, we sample randomly 20 observation from the Iris data. Then, we
have p ¼ q ¼ 2, N ¼ M ¼ 20: After careful calculation, we get f¼ 42.29, Q¼ 7.98. The

critical value pf
f�pþ1 F1�aðp, f � pþ 1Þ ¼ 6:60: Since Q is larger than the critical value, we

have sufficient evidence to reject H0 at 5% significance level.

Appendix

The following lemma is needed to find approximate distribution of Q in (14). In Lemma, we give
the modified version of the Nel van der Merwe (1986) Wishart approximation given in
Krishnamoorthy and Yu (2004).

Lemma. Let A1 � Wpðn1,D1Þ independently of A2 � Wpðn2,D2Þ. Then

A ¼ A1 þ A2 � Wp f ,
1
f
ðn1D1 þ n2D2Þ

� �
approximately,

where

f ¼ pþ p2

1
n1

tr ðA1A�1Þ2
� �

þ trðA1A�1Þ� �2n o
þ 1

n2
tr ðA2A�1Þ2
� �

þ trðA2A�1Þ� �2n o :

w

Table 2. Monte Carlo estimates of the sizes of the test; R ¼ diagðk1, k2, k3, k4Þ, D ¼ I�
R, ðp, qÞ ¼ ð2, 2Þ; a ¼ 0:05:

(N, M)

ðk1, k2, k3, k4Þ (6, 12) (12, 13) (15, 19) (20, 29)

(0.1,0.1,0.1,0.1) 0.048 0.051 0.050 0.051
(0.1,0.1,0.5,0.5) 0.056 0.049 0.049 0.049
(0.1,0.2,0.5,0.7) 0.060 0.048 0.049 0.049
(0.1,0.5,0.5,0.9) 0.065 0.049 0.051 0.050
(0.5,0.5,0.5,0.5) 0.056 0.047 0.049 0.050
(0.5,0.5,0.9,0.9) 0.076 0.051 0.051 0.050
(0.9,0.9,0.9,0.9) 0.076 0.051 0.051 0.050

6108 J. YU ET AL.

http://javeeh.net/sasintro/intro151.html


We consider conditional distribution of l̂ and b̂ at first. After some complicated calculation,
we have

l̂jðw1, :::,wNÞ � Npðl, ð1N þ ð�w � cwÞ0S�1
wwð�w � cwÞÞR2:1Þ ¼ Npðl,CxR2:1Þ

independent of

b̂jðt1, :::, tMÞ � Npðb, ð 1M þ ð�t � ctÞ0R�1
tt ð�t � ctÞÞD2:1Þ ¼ Npðb,CyD2:1Þ

Hence,

ðl̂ � b̂Þjðw1, :::,wN , t1, :::, tMÞ � N ðl� bÞ,CxR2:1 þ CyD2:1
� �

(A.1)

Meanwhile, we change the estimator of R2:1 and D2:1 in (8) and (13) into unbiased estimator
respectively as follows:

~R2:1 ¼ ðSxx � B̂2:1SxwÞ=ðN � q� 1Þ
~D2:1 ¼ ðRyy � Ĉ2:1RytÞ=ðM � q� 1Þ (A.2)

then

ðN � q� 1Þ~R2:1jðw1, :::,wNÞ � WpðN � q� 1,R2:1Þ
ðM � q� 1Þ~D2:1jðt1, :::, tMÞ � WpðM � q� 1,D2:1Þ

(A.3)

Moreover, ~R2:1 and l̂ are independent conditional on ðw1, :::,wNÞ, ~D2:1 and b̂ are independent
conditional on ðt1, :::, tMÞ:

Let L1 ¼ Cx
~R2:1, L2 ¼ Cy

~D2:1, L ¼ L1 þ L2, Using the lemma, we have

L ¼ ðCx
~R2:1 þ Cy

~D2:1Þjðw1, :::,wN , t1, :::, tMÞ � Wpðf , CxR2:1 þ CyD2:1
� �

=f Þapproximately,

where

f ¼ pþ p2

1
N�q�1 tr ðL1L�1Þ2

� �
þ trðL1L�1Þ� �2n o

þ 1
M�q�1 tr ðL2L�1Þ2

� �
þ trðL2L�1Þ� �2n o (A.4)

So, Q is a Hotelling Statistics conditionally

Qjðw1, :::,wN , t1, :::, tMÞ � T2ðp, f Þ ¼ pf
f � pþ 1

Fðp, f � pþ 1Þ

Since this conditional distribution is free of ðw1, :::,wN , t1, :::, tMÞ, we have

Q � pf
f � pþ 1

Fðp, f � pþ 1Þ (A.5)
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