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a b s t r a c t

The problem of estimating a ratio of percentiles of two independent location-scale dis-
tributions is considered. A fiducial approach is proposed and described in details for the
normal, lognormal, two-parameter exponential and Weibull distributions. For the normal
case, the fiducial confidence intervals (CIs) turn out to be exact when the variances are
equal. Procedures for constructing CIs for ratio of percentiles involving two-parameter
exponential distributions and Weibull distributions are given with computational details.
The fiducial methods can be readily extended to the case where the samples are type II
censored. The methods are illustrated using real-world data sets.

© 2023 Elsevier B.V. All rights reserved.

1. Introduction

In most applications, two populations are compared using the means or the medians. Also, ratio of means or percentiles
s used to compare two populations of positive data. Since the ratio of means or of percentiles is free of units of
easurements, a ratio can be used to combine related but different outcomes. Applications of a ratio of percentiles in

he wood industry have been noted in Huang and Johnson (2006). These authors have noted that it is common practice
o compare two different strength properties of lumber of the same dimension, grade and species. Wood technology
ngineers often make a comparison in terms of the ratio of two strength properties such as the mean bending strengths.
s the lumber standards are measured in terms of population fifth percentiles, the ratio of the fifth percentiles of the two
trength distributions is used to compare the strengths.
For a while, normal models are commonly postulated for lumber strength properties. However, as the lumber strength

ata are not in general normally distributed, nonparametric methods were also used to analyze the data. In some
ituations, however, a parametric estimate of lumber properties for reliability-based design is required. Based on empirical
vidence, many authors noted that a three-parameter Weibull model emerges as a serious candidate; see Aplin et al.
1986), Bodig (1977), and Pierce (1976). To use this parametric approach, one needs to develop procedures for finding
onfidence intervals for ratios of percentiles from two Weibull populations.
Huang and Johnson (2006) have proposed an exact method of finding CIs for the ratio of normal percentiles when the

ariances are equal. The proposed CIs are not in closed-form and an iterative method is required to find the CIs. Although
t is common to compare the same percentiles of two different distributions, in this article we propose methods that can
e used to find CIs for the ratio of different percentiles from two different distributions from the same family. Specifically,
e propose a fiducial method that can be used to find CIs for a ratio of percentiles of any two location-scale distributions.
urthermore, we provide closed-form approximate fiducial CIs for the normal and lognormal cases.
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The concepts of fiducial probability and fiducial inference were introduced by Fisher (1930, 1935). There are some
riticisms concerning the interpretation of fiducial distribution (Zabell, 1992; Efron, 1998). Efron (1998) has interpreted the
iducial distribution as the posterior distribution of a parameter without assuming a prior distribution. He has concluded
n Section 8 of his paper that ‘‘maybe Fishers’ biggest blunder will become a big hit in the 21st century!’’ Fiducial inference
ave made a resurgence under the label of generalized inference by Tsui and Weerahandi (1989) and Weerahandi (1993).
annig et al. (2006) have noted that the generalized variable procedures are a special case of fiducial inference procedures,
nd are asymptotically exact in many situations. For more details and applications of the fiducial/generalized inference, see
he books by Weerahandi (1995), Hannig et al. (2006), Hannig (2009) and Li and Hannig (2020). For the continuous case,
he fiducial approach has been used successfully to estimate or to test a function of parameters where ordinary pivotal
uantities are available for individual parameters (e.g., location-scale family, log-location-scale family and quantiles in
ne-way random model). Hannig et al. (2006) and Hannig (2009) have introduced the concept of generalized fiducial
nference which can be used to find inference for continuous as well as discrete models such as the binomial and Poisson.
ven though there are several methods of obtaining fiducial distributions for parameters, for location-scale or log-location-
cale family of distributions, Dawid and Stone’s (1982) approach is simple and easy to describe, and we use this approach
n the sequel to find fiducial distributions of parameters. The rest of the article is organized as follows. In the following
ection, we describe a method of finding fiducial distributions for the parameters of a location-scale family of distributions.
sing these fiducial distributions, we obtain fiducial quantities for a ratio of percentiles of two independent location-scale
istributions. In Section 3, we apply the fiducial method to find CIs for a ratio of normal percentiles. We show that the
iducial CIs are exact when the variances of the normal distributions are equal. We also provide a closed-form approximate
I for a ratio of two normal percentiles when the variances are unknown and arbitrary. Accuracy of the CIs are evaluated
n terms of coverage probability estimated by Monte Carlo simulation. Similar studies are carried out for the lognormal
ase (Section 4), two-parameter exponential distributions (Section 5) and for Weibull distributions (Section 6). For each
ase, an illustrative example is used to illustrate the methods. In Section 7, we provide some useful references to apply
he fiducial methods to logistic distributions, Laplace distributions and to type II censored case. Some concluding remarks
re given in Section 8.

. Fiducial inference

Let X1, . . . , Xn be a sample from a location-scale distribution with the probability density function (PDF) of the form

f (x|µ, σ ) =
1
σ
f
(
x − µ

σ

)
, −∞ < µ < ∞, σ > 0. (1)

Let µ̂ and σ̂ be equivariant estimators of µ and σ , respectively, based on X1, . . . , Xn. Then (µ̂ − µ)/σ and σ̂ /σ are
pivotal quantities (see Lawless (2003), Theorem E2). As a consequence,

µ̂ − µ

σ

d
= µ̂∗ and

σ̂

σ

d
= σ̂ ∗, (2)

where the notation ‘‘X d
= Y ’’ means X and Y are identically distributed and µ̂∗ and σ̂ ∗ are the equivariant estimators

based on a sample of size n from the location-scale distribution with µ = 0 and σ = 1.
Let qp(µ, σ ) denote the 100p percentile of the location-scale distribution with the pdf f (x|µ, σ ). It can be easily verified

that qp(µ, σ ) = µ + qp(0, 1)σ . Using this relation and the results in (2), it can be readily checked that
qp(µ, σ ) − µ̂

σ̂

d
=

qp(0, 1) − µ̂∗

σ̂ ∗
, (3)

and so
(
qp(µ, σ ) − µ̂

)
/σ̂ is a pivotal quantity. Therefore, percentiles of (qp(0, 1) − µ̂∗)/σ̂ ∗, which can be estimated by

Monte Carlo simulation or calculated numerically, can be used to find confidence intervals for qp(µ, σ ).
Fiducial Quantity
We can find the fiducial distributions of the parameters using Dawid and Stone’s (1982) functional model stochastic

relation. Let (µ̂0, σ̂0) be an observed value of (µ̂, σ̂ ). Solving the ‘‘equations’’ in (2) for µ and σ and then replacing (µ̂, σ̂ )
ith (µ̂0, σ̂0), we find the fiducial quantities as

Wµ = µ̂0 −
µ̂∗

σ̂ ∗
σ̂0 and Wσ =

σ̂0

σ̂ ∗
(4)

for µ and σ , respectively. For a given (µ̂0, σ̂0), the distributions of Wµ and Wσ are called fiducial distributions of µ and
, respectively. Thus, the fiducial distributions can be regarded as the posterior distributions of the parameters without
ssuming a prior distribution.
Fiducial distribution for a real-valued function h(µ, σ ) of parameters can be obtained by substitution. For example, a

fiducial distribution for qp(µ, σ ) = µ + qp(0, 1)σ is given by

qp(Wµ,Wσ ) = Wµ + qp(0, 1)Wσ = µ̂0 +
qp(0, 1) − µ̂∗

σ̂ ∗
σ̂0. (5)

The above fiducial quantity (FQ) qp(Wµ,Wσ ) can also be deduced from the classical pivotal quantity (3), and so the fiducial
inference based on the above fiducial quantity and the inference based on the pivotal quantity in (3) are the same. In other
words, the fiducial confidence interval for q (µ, σ ) is exact in the frequentist sense.
p

2
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2.1. Fiducial confidence intervals for the ratio of percentiles

Let Xi1, . . . , Xini be a sample from a location-scale distribution with pdf f (x|µi, σi), i = 1, 2. Assume that the samples
{X11, . . . , X1n1} and {X21, . . . , X2n2} are independent. Let (µ̂i, σ̂i) denote the equivariant estimator of (µi, σi) based on the
ith sample, i = 1, 2. Further, let (µ̂∗

i , σ̂
∗

i ) denote the equivariant estimator based on the sample X∗

i1, . . . , X
∗

ini
from the same

location-scale distribution with pdf f (x|0, 1), i = 1, 2. Then the fiducial quantity for the ratio R = qp1 (µ1, σ1)/qp2 (µ2, σ2)
of percentiles can be obtained from (5) as

WR =
qp1 (Wµ1 ,Wσ1 )
qp2 (Wµ2 ,Wσ2 )

=

µ̂10 +
qp1 (0,1)−µ̂∗

1
σ̂∗
1

σ̂10

µ̂20 +
qp2 (0,1)−µ̂∗

2
σ̂∗
2

σ̂20

, (6)

where (µ̂i0, σ̂i0) is an observed value of (µ̂i, σ̂i), i = 1, 2. For an observed value (µ̂10, σ̂10, µ̂20, σ̂20), let WR;α denote the
100α percentile of WR. Then (WR;α, WR;1−α) is a 100(1 − 2α)% CI for the ratio R. These percentiles can be estimated by
Monte Carlo simulation because the fiducial distribution of WR, when (µ̂10, σ̂10, µ̂20, σ̂20) is fixed, does not depend on any
parameter.

Approximate percentiles of WR can also be obtained using the following approximation to the percentiles of the ratio
of two independent positive random variables.

An Approximation for the Ratio of Percentiles of Independent Random Variables
Let X and Y be independent positive random variables with E(X) = µx and E(Y ) = µy. Let Xα denote the 100α

percentile of X , and define Yα similarly. An approximation to the 100α percentile of the ratio R = X/Y is given by

Rα ≃

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
µxµy−

{
(µxµy)2−

[
µ2
y−(µy−Y1−α )2

][
µ2
x−(µx−Xα )2

]} 1
2[

µ2
y−(µy−Y1−α )2

] , 0 < α ≤ .5,

µxµy+
{
(µxµy)2−

[
µ2
y−(µy−Y1−α )2

][
µ2
x−(µx−Xα )2

]} 1
2[

µ2
y−(µy−Y1−α )2

] , .5 < α < 1.

(7)

This approximation is given in Krishnamoorthy and Wang (2016) and is a generalization of the one by Li et al. (2010).
This approximation is referred to as the modified normal-based approximation and it can be used to find the percentiles
of WR in (6).

3. Normal distributions

In general, ratio is used as a measure of difference only when the parameters are positive. For example, CIs for the
ratio of variances and CIs for the ratio of Poisson means are constructed for inference purpose. Confidence intervals for
a ratio of normal percentiles may have meaningful interpretation only when normal models are postulated for positive
random variables. So we assume that the percentiles of both normal populations are positive.

For the normal case, the usual equivariant estimators are given by the sample mean µ̂i = X̄i and the sample variance
2
i = S2i , where the variance is defined with divisor mi = ni − 1 and ni is the size of the sample from the ith population.
et (x̄i, s2i ) be an observed value of (X̄i, S2i ). Let (µ̂

∗

i , σ̂
∗2
i ) = (X̄∗

i , S∗2
i ) = (mean, variance) based on a sample of size ni from

he standard normal distribution, N(0, 1). Let zp denote the 100p percentile of the standard normal distribution. Noting
hat the 100pi percentile of a N(µi, σ

2
i ) distribution is given by qpi (µi, σi) = µi + zpiσi and using (5), we find the FQ for

i+zpiσi as Wqpi (µi,σi) = x̄i+[(zpi −X̄∗

i )/S
∗

i ]si. Noting that X̄∗

i ∼ N(0, 1/ni) independently of miS∗2
i ∼ χ2

mi
, where mi = ni−1,

e can write

Wqp(µi,σi) = x̄i +
zpi

√
ni − Zi√

χ2
mi

/mi

si
√
ni

, i = 1, 2. (8)

where tm(δ) denotes the noncentral random variable with degrees of freedom (df) m and the noncentrality parameter δ.
If Z is a standard normal random variable, then Z and −Z are identically distributed. Furthermore, if Z is independent of
a chi-square random variable U2 with df = m, then (Z + δ)/(U/

√
m) follows a noncentral t distribution with df = m and

the noncentrality parameter δ, tm(δ) (for example, see Section 20.1 of Krishnamoorthy (2015)). Using this result, we can
write

Wqp(µi,σi) = x̄i + tmi (zpi
√
ni)

si
√
ni

, i = 1, 2. (9)

rishnamoorthy and Mathew (2009) have developed the similar fiducial quantity (9) using the generalized variable
pproach by Weerahandi (1993). The generalized variable approach is a special case of fiducial inference; see Hannig
2009).
3
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Table 1
The probability in (11) when µ = 3σ .
p .01 .05 .1 .25 .5 .75 .90 .95 .99
n 120 35 25 10 6 3 3 3 3
Prob (11) .993 .998 .999 .999 .999 .998 .9999 1 1

3.1. Confidence intervals when the variances are unknown and arbitrary

A FQ for RN = qp1 (µ1, σ1)/qp2 (µ2, σ2) = (µ1 + zp1σ1)/(µ2 + zp2σ2) can be obtained by using individual FQs in (9) as

QRN =

x̄1 + tm1 (zp1
√
n1)

s1√
n1

x̄2 + tm2 (zp2
√
n2)

s2√
n2

, (10)

here the random variables tm1 (zp1
√
n1) an tm2 (zp2

√
n2) are independent. For a given (x̄1, x̄2, s1, s2) and sample sizes, the

ollowing R code computes the 95% fiducial CI based on (10).

**********************************************************
1 = xb1 + rt(10^5,n1-1,qnorm(p1)*sqrt(n1))*s1/sqrt(n1)
2 = xb2 + rt(10^5,n2-1,qnorm(p2)*sqrt(n2))*s2/sqrt(n2)
uantile(M1/M2, c(.025, .975))
**********************************************************

emark 1. The CI based on the above fiducial quantity (10) is a bona fide positive CI only when both numerator and
he denominator in (10) are positive. As shown in Appendix A, these quantities are more likely to be positive under the
ssumption that all percentiles are positive. In the following Table 1, we provide minimum sample sizes so that the

P
(
x̄ +

Z + zp
√
n

U
s

√
n

> 0
)

≃ 1, (11)

here Z ∼ N(0, 1) independently of U2
∼ χ2

m/m, m = n − 1 and (x̄, s2) is an observed values of (mean, variance) based
n a sample of size n. For example, when p1 = p2 = 0.05, the numerator and the denominator of (10) are more likely to
e positive if both n1 and n2 are greater than or equal to 35.

emark 2. Alternatively, we can define the fiducial quantity for a ratio of percentiles as

Q+

RN
=

[
x̄1 + tm1 (zp1

√
n1)

s1√
n1

]
+[

x̄2 + tm2 (zp2
√
n2)

s2√
n2

]
+

, (12)

here [x]+ = x if x is positive, and is zero if x < 0. Such truncated FQ produces CIs which are very similar to those based
on QRN for all sample sizes parameter configurations considered in Table 6. However, for some cases the expected widths
of the CIs based on Q+

RN
are infinite or undefined because both numerator and denominator are zeros. For this reason, we

do not include this CI for coverage studies in Section 6.4.

An approximation
An approximation for the percentile of QRN in (10) can be obtained using the modified normal-based approximation in

(7). Malekzadeh and Mahmoudi (2020) have already provided such closed-form approximate CI for a ratio of percentiles
using the approximate percentiles of (10). However, this approximate CI is a bona fide positive CI only when both
numerator and the denominator of (10) are positive. For a given p, the minimum sample size required, so that the
numerator and denominator of (10) are positive with a high probability, is given in Table 1.

3.2. Confidence interval for a ratio of percentiles when σ 2
1 = σ 2

2

Let (X̄i, S2i ) denote the (mean, variance) based on a sample of ni observations from a N(µi, σ
2
i ) distribution, i = 1, 2.

Let (x̄i, s2i ) be an observed value of (X̄i, S2i ), i = 1, 2. Let us assume that the population percentiles µi + zpiσ are positive.
Consider testing H0 : RN = R0 vs. Ha : RN < R0, where R0 is a specified value of the ratio of percentiles. Note that,
under the assumption that the percentiles are positive, the above hypotheses can be written as

H0 : µ1 + zp1σ − R0(µ2 + zp2σ ) = 0 vs. Ha : µ1 + zp1σ − R0(µ2 + zp2σ ) < 0. (13)

When the variances are equal, the common unknown variance is estimated by the sample pooled variance S2p = [m1S21 +

m S2]/(m + m ), which has the σ 2χ2/f distribution, where f = m + m . Let s2 be an observed value of S2. Using the
2 2 1 2 f 1 2 p p

4
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pooled variance estimate, a fiducial quantity for D = (µ1 + zp1σ ) − R0(µ2 + zp2σ ) can be obtained from (9), and is given
by

QD =

(
x̄1 +

Z1 + zp1
√
n1

Uf

sp
√
n1

)
− R0

(
x̄2 +

Z2 + zp2
√
n2

Uf

sp
√
n2

)
, (14)

here Z1, Z2 and Uf are independent random variables with Zi ∼ N(0, 1) and fU2
f ∼ χ2

f distribution. The fiducial test
ejects H0 whenever the fiducial p-value P(QD < 0|x̄1, x̄2, sp) ≤ α. As shown in Appendix B, this fiducial test is exact in
he frequentist sense, and so the confidence limit obtained by inverting the fiducial test is also exact.

Let tm;q(δ) denote the qth quantile of tm(δ) and let

δ(R0) =
zp1 − R0zp2√

1
n1

+
R20
n2

. (15)

s shown in Appendix B, by solving the equation

(x̄1 − R0x̄2) + tf ;1−α(δ(R0))sp

√
1
n1

+
R2
0

n2
= 0 (16)

for R0, we find a 100(1 − α)% upper confidence limit for RN . Similarly, by considering a right-tailed test, we arrive at the
quation

(x̄1 − R0x̄2) + tf ;α(δ(R0))sp

√
1
n1

+
R2
0

n2
= 0, (17)

nd solving the equation for R0, we can find the 100(1 − α)% lower confidence limit.
As shown in Appendix B, the p-value for testing hypotheses in (13) has a uniform (0, 1) distribution and hence the test

described in Appendix B is exact. So the CI formed by (16) and (17) is obtained by inverting an exact test is also exact.

Remark 3. The exact CI given above is the same as the exact CI given in Huang and Johnson (2006). Using the frequentist
approach, Huang and Johnson have shown that the 100(1 − α)% upper confidence limit for the ratio of percentiles is the
alue of R0 for which the probability

P

⎛⎝tf (δ(R0)) >
R0x̄2 − x̄1

sp
√
1/n1 + R2

0/n2

⎞⎠ = α.

Note that the value R0 that satisfies the above equation also satisfies our Eq. (16).

Remark 4. When p1 = p2 = 0.5, the exact CI for the ratio of percentiles determined by (16) and (17) is the same as the
exact CI for the ratio of means based on Fieller’s (1954) results. That is, the CI for θ = µ1/µ2 based on the result that
X̄1 − θ X̄2)/

√
S2p (1/n1 + θ2/n2) ∼ tf .

A fiducial quantity when σ 2
1 = σ 2

2 can be obtained using the pooled variance s2p . Replacing si in (9) with sp and using
he result that (m1 + m2)S2p ∼ χ2

m1+m2
,

QREN =

x̄1 +
Z1+zp1

√
n1

Uf

sp
√
n1

x̄2 +
Z2+zp2

√
n2

Uf

sp
√
n2

, (18)

here s2p is the pooled variance, Uf and f are as defined in (14). This FQ is also valid when both sample sizes are greater
han or equal to the values of n in Table 1. Percentiles of QREN can be estimated using Monte Carlo simulation, and the
stimates can be used as initial values to find the roots of Eqs. (16) and (17).
To provide some numerical evidence to show that the CIs based on simulation of (18) and the exact ones formed by

16) and (17) are the same, we computed 95% CIs for ratio of normal percentiles using some simulated samples of sizes
n1, n2) and reported them in Table 2. The values of the means and variances along with some values of (p1, p2) are also
hown in the table. On the basis of numerical results in Table 2, we see that the CIs based on Monte Carlo estimates of
REN and the exact ones formed by the roots of (16) and (17) are practically the same for all the cases.

.3. Example

Modulus of rupture (MOR) is a measure of a specimen’s strength before rupture, and it is commonly used to determine
wood species’ overall strength. The data on the modulus of rupture (MOR) of Douglas fir specimens are presented in
5
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Table 2
Confidence intervals for the ratio of normal percentiles based on simulation of QREN and the exact ones formed by the
roots of (16) and (17).
(p1, p2) (n1, n2) x̄1 x̄2 s21 s22 Simulation of (18) Exact

with 105 runs

(.05, .05) (20, 10) 17.746 14.624 3.535 16.988 (1.080, 1.678) (1.080, 1.679)
(.15, .05) (20, 20) 18.458 14.868 7.833 10.009 (1.324, 1.908) (1.324, 1.908)
(.15, .15) (20, 20) 18.448 14.681 5.726 8.284 (1.163, 1.506) (1.164, 1.506)
(.75, .25) (20, 20) 18.338 15.594 2.628 6.934 (1.290, 1.563) (1.290, 1.563)
(.75, .25) (20, 10) 18.172 13.933 2.294 6.402 (1.391, 1.761) (1.391, 1.761)
(.75, .25) (30, 10) 18.375 16.618 2.646 14.234 (1.196, 1.512) (1.197, 1.511)
(.95, .05) (30, 10) 17.716 15.892 3.145 4.660 (1.455, 1.911) (1.455, 1.911)

Table 3
Modulus of rupture data.
Data 1: MOR (lb/in2) of 2 × 4in Grade 2, Green (30% moisture content)

5418.6 4795.9 7061.8 6307.9 6964.0 6674.1 8153.4 6843.5 7011.3 5817.3
6617.3 6136.7 7529.2 6357.9 7643.6 7311.8 6997.6 4533.1 5691.8 6245.9
6455.7 6082.7 5511.1 5976.8 4607.6 4414.5 5268.4 8145.4 4616.1 3508.1
5231.6 5851.4 4281.8 9213.0 6051.4 4050.5 5677.2 5531.8 4872.4 3677.3
4230.9 2524.8 4896.3 4161.0 4818.4 5325.4 5818.8 4787.2 5988.6 5530.9
6351.2 2764.8 4432.9 5325.4 5651.6 3917.7 4429.6 3938.0 5143.3 4044.5
5128.6 5681.0 4690.8 5894.0 2350.2 2822.7 5465.8 3770.9 3168.1 4994.6
2327.6 2642.7 4760.3 3022.1 4187.7 4420.0 3095.2 5289.3 3440.7 4533.1
3340.9 3207.7 5270.6 4274.4 3854.5 2748.2 4461.2 4892.6 5078.2 5278.7
1420.3 3015.2 4451.7 1931.2 3556.0 3396.4 6767.2 2566.1 1228.4 5883.6
2444.5 3747.0 3879.0 4392.0 2105.5 5161.1 4658.4

Data 2: MOR (lb/in2) of 2 × 6in select structural, Green (30% moisture content)

9579.3 6475.0 8374.9 9364.2 9265.1 10653.4 8051.2 9828.1 7930.1 8304.1
7896.3 8041.5 9024.7 7614.5 6720.6 8685.8 11077.9 9178.9 8375.9 10342.8
8793.8 6836.1 7774.3 6724.0 7887.9 5045.7 6556.9 6574.8 5576.5 7194.2
8018.8 7078.2 9015.2 8935.7 8388.6 7684.5 6800.9 8254.7 6700.2 7859.9
7271.5 7776.8 7962.0 7806.5 7418.5 6575.0 5495.9 7820.9 6122.8 5345.8
7762.6 5169.9 8267.5 4597.8 7445.3 6533.7 3911.9 6768.4 7865.4 9499.1
6598.4 5253.9 8643.2 7323.3 7099.8 6842.3 7853.9 6594.6 6724.0 3981.0
6835.0 7449.2 5477.9 7288.0 7803.5 5616.3 7137.9 8925.9 7182.6 5208.5
6244.2 6893.2 10100.9 5548.2 5783.9 4606.4 5679.9 7984.7 6014.0 6159.1
6922.1 5120.6 6067.5 4639.9 3680.3 5399.4 4917.3 5398.0 4173.1 7418.5

Table 2 of Huang and Johnson (2006). The normal QQ-plots suggest that data are normally distributed. The summary
statistics provided in their paper are based on n1 = 107 data points and n2 = 103 data points. However, we found that
he second data set given Table 2 of Huang and Johnson’s paper includes only 100 measurements, not 103. It appears that
he statistics x̄2 and s22 given in their paper are based on all 103 measurements. So, to avoid any confusion, we shall use
he data in Huang and Johnson’s paper (reproduced here in Table 3) to find 95% confidence intervals for the ratio of 5th
ercentiles and 95% CI for the ratio of means. The statistics based on the data in Table 3 are

(n1, x̄1, s21) = (107, 4840.3, 2354470), (n2, x̄2, s22) = (100, 7144.9, 2414487), and sp = 1543.8.

Assuming equal variance, the 95% fiducial CI (18) for the ratio of the 5th percentiles based on 106 simulation runs
is (0.420, 0.575). The exact one formed by the roots of Eqs. (16) and (17) is also (.420, .575). In this case, Huang and
Johnson computed the exact CI as (0.410, 0.583). The slight difference between their CI and our CI is due to fact that
Huang and Johnson used extra three measurements in the second sample which are not reported in their paper. If no
assumption is made on the variances, then the fiducial CI based on the FQ (10) with 105 simulation runs is (0.390, 0.618).
The approximate CI obtained using (7) is also (0.390, 0.618). All the CIs indicate that the 5th percentiles of MOR for 2 × 4
in Grade 2 wood is smaller than that for 2 × 6 in select structural wood.

We also computed 95% CI for the ratio of means by taking p1 = p2 = 0.5 in (33). Under the assumption of equal
variance, the exact one formed by the roots of Eqs. (16) and (17) is (0.628, 0.729). The 95% fiducial CI (18) is also (0.628,
0.729). When the variances are arbitrary, then the fiducial CI based on the fiducial quantity is also (0.628, 0.729).

4. Lognormal distributions

Recall that Y is said to have a lognormal distribution with parameters µ and σ 2, say, LN(µ, σ ) if X = ln Y follows
a normal distribution with mean µ and variance σ 2. This definition implies that exp(µ + zpσ ) is the 100p percentile of
a LN(µ, σ ) distribution. So the ratio of the 100p percentile of a LN(µ , σ ) distribution and the 100p percentile of a
1 1 1 2

6
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Table 4
TDDB data (in min) from furnaces A and B.
Furnace A Furnace B

33.4 47.5 56.1 65.1 37.4 58.8 66.0 77.2
35.8 48.5 56.4 67.0 45.3 59.0 66.2 81.0
39.8 48.8 56.7 67.3 48.6 59.3 67.6 84.0
41.1 49.6 59.7 68.0 49.1 60.3 68.8 85.7
41.8 50.6 60.4 68.3 50.4 61.4 69.8 86.2
42.2 50.7 60.7 74.1 51.0 62.1 70.4 90.2
45.5 51.5 61.3 74.7 51.7 63.0 71.0 93.9
46.0 51.7 61.8 80.6 55.9 63.3 71.9 97.4

LN(µ2, σ2) distribution is given by

R =
exp(µ1 + zp1σ1)
exp(µ2 + zp2σ2)

= exp[(µ1 + zp1σ1) − (µ2 + zp2σ2)]. (19)

4.1. Lognormal: Fiducial confidence intervals

We see from (19) that the problem of estimating the ratio of lognormal percentiles simplifies to estimating the
difference between two normal percentiles. In particular, let (x̄i, s2i ) be an observed value of the (mean, variance) based
on a log-transformed sample of size ni from a LN(µi, σi) distribution, i = 1, 2. Then, following (9), a FQ for the difference
between percentiles can be expressed as

WD =

(
x̄1 + tn1−1(zp1

√
n1)

s1
√
n1

)
−

(
x̄2 + tn2−1(zp2

√
n2)

s2
√
n2

)
, (20)

here the noncentral random variables tni−1(zpi
√
ni) are independent. For a given (x̄1, s1, x̄2, s2), the percentiles of WD can

e used to find a CI for the difference D = (µ1 + zp1σ1) − (µ2 + zp2σ2). The percentiles of WD can be estimated using
Monte Carlo simulation or by approximation as shown below.

Approximation to the Percentiles of WD
The mean of a noncentral random variable with df = m and the noncentrality parameter δ is given by E (tm(δ)) =

δΓ ((m − 1)/2)
√
m/2]/Γ (m/2). For writing convenience, let ti;α = tni−1;α(zpi

√
ni) and Mi = E(tni−1(zpi

√
ni)), i = 1, 2.

sing the modified normal-based approximation by Krishnamoorthy and Wang (2016), the lower 100α percentile of WD
s approximated by

WD;α ≃ x̄1 − x̄2 +

(
s1

√
n1

M1 −
s2

√
n2

M2

)
−

√
s21
n1

(
M1 − t1;α

)2
+

s22
n2

(
M2 − t2;1−α

)2 (21)

nd

WD;1−α ≃ x̄1 − x̄2 +

(
s1

√
n1

M1 −
s2

√
n2

M2

)
+

√
s21
n1

(
M1 − t1;1−α

)2
+

s22
n2

(
M2 − t2;α

)2
. (22)

he interval (WD;α,WD;1−α) is a 100(1 − 2α)% CI for the difference D = (µ1 + zp1σ1) − (µ2 + zp2σ2) and
exp(WD;α), exp(WD;1−α)

)
is a 100(1 − 2α)% CI for the ratio of lognormal percentiles in (19).

.2. Lognormal: Example

The data for this example were taken from Doganaksoy (2021) and were used to illustrate a statistical method of
omparing means of two lifetime distributions. The data are given in Doganaksoy (2021) and they are reproduced here
n Table 4. In reality, such data were collected from semiconductor manufacturing plants for the purpose of reliability
ssurance. For performance and reliability of semiconductor devices, integrity of gate oxide is crucial as it serves as a
ielectric layer between the gate and the substrate. To estimate oxide life, a time-dependent dielectric breakdown (TDDB)
est is used on special test structures during device development and manufacturing process. The results of the test are
seful to assess the time it takes for the oxide to break which in turn leading to the failure of the device. In order to save
ime, such testing is conducted under accelerated voltage and temperature.

Suppose an engineer wanted to compare the oxide TDDB distributions of devices built with two nominally identical
xidation furnaces, A and B, by comparing the 95th percentiles of the two life distributions. A simulated sample of n1 = 32
est specimens built using furnace A and a simulated sample of n2 = 32 specimens built using furnace B were obtained
nd presented in Table 4.
7
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To find a 95% CI for the ratio of 95th percentiles, we computed the following statistics based log-transformed data:
¯1 = 3.986, x̄2 = 4.171, s21 = .04796, s22 = .05093. Using simulation with 100,000 runs, we computed the 95%
fiducial CI as (0.703, 1.006). We computed various quantities to find the approximate fiducial CI as follows:

M1 = M2 = −9.530, t31;.025(−9.305) = −13.133, and t39;.975(−9.305) = −6.759.

ubstituting these values in (21) and (22), we find the 95% CI for (µ1 + z.05σ1) − (µ2 + z.05σ2) as (−0.3523, 0.0060). By
taking exponentiation, we find the 95% approximate fiducial CI as (0.703, 1.006), which is the same as the one based on
simulation. This CI indicates that the 95th percentile of lifetimes of gate oxide built using furnace B is greater than the
95th percentile of lifetimes of gate oxide built using furnace A.

To compare the medians of lognormal distributions, we take (p1, p2) = (0.5, 0.5), and find M1 = M2 = 0, t31;.025(0) =

−2.0395, t31;.975(0) = 2.0395. Using these values in (21) and (22), we find the 95% CI for µ1 − µ2 as (−0.29807,
−0.07206). By taking exponentiation, we find the 95% approximate fiducial CI as (0.742, 0.931). The 95% CI based on
simulation is also (0.742, 0.931). These CIs indicate that the median lifetime of gate oxide built using furnace B is greater
than the median lifetime of gate oxide built using furnace A.

5. Two-parameter exponential distributions

Let X1, . . . , Xn be a sample from a two-parameter exponential distribution with the probability density function

f (x|µ, σ ) =
1
σ

exp(−(x − µ)/σ ), x > µ, σ > 0. (23)

he MLEs of µ and σ are given by µ̂ = X(1) and σ̂ = X̄ − X(1), where X(1) is the smallest of the Xi’s. Let (µ̂∗, σ̂ ∗) denote
the MLEs based on a sample of n observations from the standard exponential distribution. It is known that µ̂∗

∼
1
2nχ

2
2

independently of σ̂ ∗
∼

1
2nχ

2
2n−2.

The 100p percentile of a two-parameter exponential distribution is given by qp(µ, σ ) = µ + qp(0, 1)σ , where
p(0, 1) = − ln(1 − p) is the 100p percentile of the standard exponential distribution. Let (µ̂0, σ̂0) be an observed value
f (µ̂, σ̂ ). Using (5), we write the FQ for qp(µ, σ ) as

µ̂0 +
2nqp(0, 1) − µ̂∗

σ̂ ∗
σ̂0 ∼ µ̂0 + fn,p(U, V )σ̂0, say, (24)

where fn,p(U, V ) =
2nqp(0,1)−U

V and U ∼ χ2
2 independently of V ∼ χ2

2n−2. Krishnamoorthy and Xia (2018) have provided an
xact method of computing the percentiles of fn;p(U, V ).

.1. Exponential: Fiducial confidence intervals

To express the FQ for the ratio of percentiles, let (µ̂i, σ̂i) be the MLEs based on a sample of size ni from a two-parameter
xponential distribution with parameters µi and σi, i = 1, 2. Let Ui ∼ χ2

2 independently of Vi ∼ χ2
2ni−2, i = 1, 2. The

andom variables U1, V1, U2 and V2 are all mutually independent. Then a FQ for the ratio of percentiles is given by

RE =
µ̂10 + fn1,p1 (U1, V1)σ̂10

µ̂20 + fn2,p2 (U2, V2)σ̂20
, (25)

or a given (µ̂10, σ̂10, µ̂20, σ̂10), the percentiles of RE can be estimated using Monte Carlo simulation, and the lower and
pper 100α percentiles form a 1 − 2α CI for the ratio of percentiles.
Approximation to the Percentiles of RE
Let X = µ̂10 + fn1,p1 (U1, V1)σ̂10 and Y = µ̂20 + fn2,p2 (U2, V2)σ̂20. Let

µx = E(X) = µ̂10 −
2n1 ln(1 − p1) + 2

2n1 − 4
σ̂10 and µy = E(Y ) = µ̂20 −

2n2 ln(1 − p2) + 2
2n2 − 4

σ̂20

ote that Xα = µ̂10 + fn1,p1;α(U1, V1)σ̂10 and Yα = µ̂20 + fn2,p2;α(U2, V2)σ̂20. Using these expressions in (7), the percentiles
f RE can be obtained. R code to compute the percentiles fni,pi;α(Ui, Vi) is given in a supplementary file. Let RE;α denote
he 100α percentile of RE . Then (RE;α, RE;1−α) is an approximate 1−2α CI for the ratio of percentiles of two independent
exponential distributions.

5.2. Exponential: Example

The rolling contact fatigue lives (measured in millions of revolutions) in samples of size 10 using specimens made from
each of five different types of steel are given in Table 8.2 of McCool (2012). For illustrative purpose we consider only the
data from Type A and Type C steel, referred here as Type 1 and Type 2, respectively. These data are reported in Table 5.
Using the data, we shall use the methods of this section to find CIs for the ratio of median fatigue lives and for the ratio
of 95th percentiles of fatigue lives of Type 1 and Type 2 steel.
8
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Table 5
Rolling contact fatigue data for two steel compositions 106 stress cycles.
Type 1: 3.46 5.22 5.69 6.54 9.16 9.40 10.19 10.71 12.58 13.41
Type 2: 3.03 5.53 5.60 9.30 9.92 12.51 12.95 15.21 16.04 16.84

The MLEs are â1 = 3.46, b̂1 = 5.176, â2 = 3.03 and b̂2 = 7.663. The 95% CI for the ratio of the medians
sing Monte Carlo simulation is (0.440, 1.61). To compute the approximate ones, we found µx = 7.298, µy = 8.712,
10,.5;.025(U1, V1) = f10,.5;.025(U2, V2) = 0.3033 and f10,.5;.975(U1, V1) = f10,.5;.975(U2, V2) = 1.5004. Substituting these
uantities in (7), we computed the 95% CI as (0.444, 1.60).
The 95% CI for the ratio of the 95 percentiles using Monte Carlo simulation is (0.314, 1.67). To compute the approximate

I, we found µx = 22.195, µy = 36.768, f10,.95;.025(U1, V1) = f10,.95;.025(U2, V2) = 1.827 and f10,.95;.975(U1, V1) =

10,.95;.975(U2, V2) = 7.052. Substituting these quantities in (7), we computed the 95% CI as (0.316, 1.66).

. Weibull distributions

The pdf of a Weibull distribution with shape parameter c and the scale parameter b is given by

f (x|b, c) =
c
b

( x
b

)c−1
exp

{
−

[ x
b

]c}
, x > 0, b > 0, c > 0.

Let X1, . . . , Xn be a sample from a Weibull distribution, and let Yi = ln(Xi), i = 1, . . . , n. The maximum likelihood estimate
(MLE) ĉ of c is the solution of the equation

1
ĉ

−

(
n∑

i=1

X ĉ
i Yi

)(
n∑

i=1

X ĉ
i

)−1

+
1
n

n∑
i=1

Yi = 0, (26)

nd the MLE of b is given by b̂ =
( 1
n

∑n
i=1 X

ĉ
i

)1/̂c
. See Cohen (1965) or Krishnamoorthy et al. (2009). In the Newton–

aphson iterative scheme, the estimator ĉ =
π

√
6Sy

, where S2y =
∑n

i=1(Yi − Ȳ )2/(n−1) can be used as a starting value. The
following R code can be used to compute the MLEs.

##################################################################
# package "survival" is needed; x = vector of sample data
model = survreg(Surv(x, rep(1, length(x)))~1, dist="weibull")
c.hat = 1/unname(model$scale); b.hat = exp(unname(model$coef))
##################################################################

6.1. Weibull: Fiducial quantities

Let (̂b0, ĉ0) be an observed value of (̂b, ĉ). Furthermore, let (̂b∗, ĉ∗) denote the MLEs based on a sample of size n
from a Weibull(1, 1) distribution. Using the result that the log-transformed sample from a Weibull distribution follows
a location-scale distribution, Krishnamoorthy et al. (2009) have developed the FQs for c and b, which are given by
Wc = ĉ0/̂c∗ and Wb = b̂0

(
1/̂b∗

)̂c∗ /̂c0
, respectively.

The pth quantile of a Weibull(b, c) distribution is given by qp(b, c) = b(− ln(1−p))
1
c . A fiducial quantity of qp(b, c) can

e obtained by substitution as qp(Wb,Wc). Letting

wp = ĉ∗
(
− ln(̂b∗) + ln(− ln(1 − p))

)
, (27)

e can express the FQ for qp(b, c) as

Wqp(b,c) = qp(Wb,Wc) = b̂0 exp(wp/̂c0). (28)

.2. Weibull: Fiducial confidence intervals

Let (̂bi, ĉi) denote the MLE of (bi, ci) based on a sample of size ni from a Weibull(bi, ci) distribution, i = 1, 2. Let (̂b∗

i , ĉ
∗

i )
e the MLEs based on a sample of size ni from a Weibull(1, 1) distribution, i = 1, 2. Recall that the pi quantile of the

Weibull(bi, ci) distribution is given qpi (bi, ci) = bi (− ln(1 − pi))1/ci . The fiducial quantity for the ratio qp1 (b1, c1)/qp2 (b2, c2)
is given by

RW =
qp1 (Wb1 ,Wc1 )
qp2 (Wb2 ,Wc2 )

=
b̂10 exp(wp1 /̂c10)
b̂20 exp(wp2 /̂c20)

, (29)

here w = ĉ∗
[
− ln(̂b∗) + ln(− ln(1 − p ))

]
and (̂b , ĉ ) is an observed value of (̂b , ĉ ), i = 1, 2.
pi i i i i0 i0 i i

9
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Fig. 1. Weibull probability plots of modus of rupture data in Table 3.

For given sample sizes and (̂b10, ĉ10, b̂20, ĉ20), the distribution of RW does not depend on any parameter and so its
ercentiles can be estimated using Monte Carlo simulation as shown in the following algorithm. The lower and upper
00α percentiles of RW form a 1 − 2α CI for the ratio qp1 (b1, c1)/qp2 (b2, c2).

Algorithm 1.

1. Compute the MLEs (̂bi0, ĉi0) based on a sample of size ni from a Weibull(bi, ci) distribution, i = 1, 2.
2. Generate independent samples X∗

11, . . . , X
∗

1n1
and X∗

21, . . . , X
∗

2n2
from a Weibull(1, 1) distribution.

3. Compute the MLEs (̂b∗

i , ĉ
∗

i ) based on the sample X∗

i1, . . . , Xin∗
i
, i = 1, 2.

4. Compute wpi = ĉ∗

i

[
− ln(̂b∗

i ) + ln(− ln(1 − pi))
]
, i = 1, 2

5. Compute RW =
b̂10 exp(wp1 /̂c10)
b̂20 exp(wp2 /̂c20)

6. Repeat steps 2–5 for a large number of times, say, 100,000
7. The lower and upper 100α percentiles of these 100,000 RW ’s form a 1 − 2α fiducial CI for the ratio of percentiles.

6.3. Weibull: Example

To illustrate the construction of CI for the ratio of percentiles of two Weibull distributions, we shall use the modus
of rupture data given in Table 2 of Huang and Johnson (2006). Recall that the data were used to illustrate the interval
estimation methods for the ratio of normal percentiles in Section 3.3. The probability plots of the data indicate that Weibull
distributions also fit the data well; see Fig. 1.

The MLEs are ĉ10 = 3.4888, b̂10 = 5378.6, ĉ20 = 5.1042, and b̂20 = 7763.7. The sample sizes are n1 = 107 and
2 = 100. Using Algorithm 1 with 100,000 runs, we estimated 95% CI for the ratio of the 5th percentile as (.433, .637).
ote that the CI based on normal models is (.390, .618); see Section 3.3. The CIs based on Weibull models is shifted to
he right of the normal-based CI.

We also computed 95% confidence interval for the ratio of medians as (0.618, 0.725). Recall that the one based on
normal models is (0.628, 0.729). These two CIs for the ratio of medians are in good agreement.

6.4. Coverage and precision studies

The fiducial CIs are not exact in the frequentist sense except for the normal case with variances are equal. In all other
cases, the fiducial CIs approximate. The fiducial CIs are also obtained using simulation or by approximations of percentiles
of fiducial quantities. To judge the accuracy of the fiducial CIs and approximate CIs for ratios of percentiles, we estimated
the coverage probabilities for some values of (p1, p2) and sample sizes. For the normal case, the coverage probabilities of
the fiducial CI in (10) are estimated as follows. We first generated 10,000 values of (x̄1, x̄2, s21, s

2
2), for each set of values,

e used simulation with 10,000 runs to estimate the CI. The proportion of the 10,000 CIs that include the true ratio of
he percentiles is a Monte Carlo estimate of the coverage probability. We used simulation with 100,000 runs to estimate
he coverage probabilities of the approximate fiducial CI based on (7). The coverage probabilities of fiducial CIs for the
ognormal, exponential and Weibull distributions are estimated similarly.

ormal Distributions
For the normal case, the estimated coverage probabilities and the expected widths of 95% CIs for (p1, p2) =
0.75, 0.75), (0.80, 0.90), (0.25, 0.15) and (0.05, 0.05) and (n1, n2) = (10, 10), (20, 20), (15, 20), (25, 30), (25, 20), (30,

10



K. Krishnamoorthy and S. Chakraberty Journal of Statistical Planning and Inference 229 (2024) 106089

s
c
p
i

L

f
e
a
i
t
b

E

v
p
p
c

W

i

Table 6
Coverage probabilities and expected widths of 95% CIs for the ratio of normal percentiles when the variances are unknown and arbitrary.
σ1 = 1; µ1 = 4;

µ2 = 4σ2 (p1, p2)

(.75, .75) (.80, .90) (.25, .15) (.05, .05)

(n1, n2) σ2 Siml. Apprx Siml. Apprx (n1, n2) Siml. Apprx Siml. Apprx

(10, 10) .05 .958(9.540) .959(9.532) .958(9.159) .956(9.107) (20, 20) .955(13.32) .955(13.16) .957(26.57) .951(23.71)
.10 .961(4.701) .959(4.766) .951(4.500) .956(4.554) .952(6.545) .953(6.583) .956(13.29) .951(14.56)
.30 .956(1.555) .959(1.589) .955(1.509) .956(1.518) .955(2.204) .953(2.197) .950(4.335) .951(4.504)
.50 .955(0.948) .959(0.953) .955(0.903) .956(0.911) .956(1.304) .954(1.320) .953(2.482) .951(2.510L)
.70 .958(0.679) .959(0.681) .954(0.650) .956(0.651) .954(0.958) .953(0.941) .953(1.817) .951(1.760)
.80 .961(0.600) .960(0.596) .954(0.557) .957(0.569) .952(0.845) .953(0.823) .958(1.671) .950(1.511)
.90 .960(0.534) .959(0.529) .960(0.506) .956(0.506) .949(0.718) .955(0.733) .955(1.441) .951(1.663)
1.0 .963(0.476) .960(0.476) .955(0.451) .956(0.455) .955(0.669) .954(0.658) .955(1.364) .950(1.287)

(15, 20) .05 .953(6.798) .955(6.875) .952(6.523) .954(6.565) (25, 30) .954(10.30) .953(10.25) .955(18.33) .950(18.02)
.10 .955(3.401) .956(3.438) .954(3.224) .954(3.282) .953(5.093) .953(5.130) .952(9.104) .951(9.024)
.30 .954(1.151) .956(1.146) .959(1.101) .954(1.094) .957(1.724) .953(1.709) .949(3.048) .952(3.008)
.50 .957(0.684) .956(0.688) .952(0.654) .954(0.656) .953(1.037) .953(1.027) .952(1.825) .952(1.807)
.70 .956(0.491) .956(0.491) .951(0.467) .954(0.469) .953(0.717) .954(0.732) .948(1.298) .952(1.291)
.80 .951(0.427) .955(0.430) .960(0.416) .954(0.410) .960(0.655) .953(0.641) .950(1.129) .952(1.127)
.90 .957(0.386) .956(0.382) .953(0.363) .954(0.365) .951(0.568) .952(0.569) .956(0.993) .952(1.004)
1.0 .953(0.339) .955(0.344) .956(0.327) .954(0.328) .953(0.502) .954(0.512) .951(0.913) .951(0.904)

(25, 20) .05 .951(5.846) .954(5.889) .949(5.585) .953(5.658) (30, 25) .951(10.94) .952(10.79) .949(19.81) .950(19.98)
.10 .943(2.898) .954(2.945) .956(2.848) .953(2.829) .955(5.590) .954(5.397) .946(10.01) .950(10.04)
.30 .957(0.975) .954(0.982) .956(0.949) .953(0.943) .947(1.769) .953(1.801) .955(3.360) .952(3.295)
.50 .948(0.584) .954(0.589) .945(0.563) .953(0.566) .951(1.046) .952(1.081) .958(1.998) .951(1.990)
.70 .947(0.413) .955(0.421) .953(0.406) .953(0.404) .951(0.770) .953(0.771) .942(1.400) .952(1.417)
.80 .955(0.368) .954(0.368) .953(0.349) .953(0.354) .955(0.680) .953(0.676) .952(1.235) .951(1.246)
.90 .950(0.323) .954(0.327) .951(0.312) .953(0.314) .955(0.608) .952(0.600) .951(1.080) .952(1.097)
1.0 .948(0.283) .955(0.294) .955(0.281) .953(0.283) .949(0.548) .952(0.541) .950(0.982) .951(1.005)

(25, 30) .05 .953(5.279) .954(5.276) .951(5.023) .952(5.045) (30, 40) .949(8.646) .953(8.755) .947(14.72) .951(14.82)
.10 .954(2.633) .953(2.637) .955(2.499) .952(2.522) .954(4.430) .951(4.386) .947(7.274) .952(7.419)
.30 .953(0.872) .953(0.879) .951(0.848) .952(0.841) .950(1.449) .953(1.460) .951(2.524) .951(2.475)
.50 .951(0.528) .954(0.527) .952(0.499) .953(0.504) .952(0.868) .952(0.875) .953(1.492) .951(1.483)
.70 .945(0.369) .954(0.377) .951(0.361) .952(0.360) .953(0.628) .953(0.626) .957(1.081) .951(1.061)
.80 .949(0.327) .954(0.330) .956(0.325) .953(0.315) .951(0.555) .952(0.547) .952(0.930) .950(0.928)
.90 .954(0.291) .954(0.293) .950(0.281) .952(0.280) .951(0.489) .952(0.487) .946(0.807) .951(0.824)
1.0 .953(0.261) .954(0.264) .957(0.255) .952(0.252) .953(0.436) .954(0.438) .949(0.754) .951(0.742)

25), (25, 30) and (30, 40) are reported in Table 6. The estimated values clearly indicate that the fiducial CIs based on
imulation and the approximation are very similar in terms of coverage probabilities and expected widths. For all cases
onsidered, the coverage probabilities are very close to or little larger than the nominal level 0.95. Specifically, the coverage
robabilities are very close to the nominal level 0.95 when both sample sizes are 20 or more. These findings suggest that,
n applications, the approximate fiducial CIs can be safely used and thereby simulation can be avoided.

ognormal Distributions
We estimated the coverage probabilities and expected widths of CIs for ratios of percentiles of lognormal distributions

or some values of (p1, p2) and sample sizes and reported them in Table 7. We used simulation with 100,000 runs to
stimate the coverage probabilities of the approximate fiducial CIs in (21) and (22). The estimated coverage probabilities
nd the expected widths clearly indicate that the fiducial CIs based on simulation and the approximation are very similar
n terms of coverage probabilities and expected widths. For all cases considered, the coverage probabilities are very close
o or little larger than the nominal level 0.95. Thus, the fiducial CIs or the approximate one formed by (21) and (22) can
e safely used even when sample sizes are small.

xponential Distributions
For the exponential case, the estimated coverage probabilities and expected widths are reported in Table 8. Parameter

alues for simulation studies were chosen by considering equivariant property of the confidence intervals. The coverage
robabilities and expected widths of the fiducial CI based on (25) and the approximate fiducial CI show that they are
ractically very similar. Both CIs control the coverage probabilities very close to the nominal level for most cases. The
overage probabilities are seldom fall around 0.96. In general, both CIs perform like an exact confidence interval.

eibull Distributions
Monte Carlo estimates of coverage probabilities of the CIs for ratio of percentiles of Weibull distributions are presented

n Table 9. We chose (n1, n2) = (5, 5), (15, 10), (15, 15), (20, 20), (30, 30), and (p1, p2) = (.05, .05), (.15, .05), (.5, .5),
(.90, .90), (.90, .05), (.25, .75). Examination of the coverage probabilities indicate that the fiducial CIs could be slightly
conservative for small sample sizes; see the results for (n , n ) = (5, 5). Even for small samples of size 5, the coverage
1 2
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Table 7
Coverage probabilities and expected widths of 95% CIs for the ratio of lognormal percentiles.
σ1 = 1 (p1, p2)

(.05, .05) (.15, .25) (.25, .25) (.75, .25) (.95, .95)

(n1, n2) σ2 Siml. Apprx Siml. Apprx Siml. Apprx Siml. Apprx Siml. Apprx

(5, 5) .05 .950(4.26) .951(4.18) .950(3.14) 0.950(3.17) .948(2.65) .951(2.72) .952(2.68) .950(2.71) .950(4.18) .951(4.17)
.10 .962(4.21) .953(4.21) .950(3.29) 0.952(3.19) .949(2.71) .953(2.73) .951(2.74) .950(2.72) .957(4.23) .953(4.21)
.30 .959(4.53) .956(4.50) .960(3.29) 0.957(3.34) .960(2.83) .960(2.90) .957(2.87) .957(2.86) .952(4.44) .955(4.52)
.50 .955(5.05) .955(4.96) .963(3.59) 0.961(3.59) .963(3.15) .965(3.16) .969(3.17) .962(3.10) .957(5.01) .956(4.95)
.70 .956(5.59) .956(5.50) .968(3.97) 0.963(3.89) .969(3.45) .968(3.48) .973(3.45) .964(3.41) .957(5.63) .954(5.51)
.80 .951(5.75) .955(5.80) .968(4.11) 0.964(4.07) .972(3.66) .968(3.66) .966(3.60) .964(3.58) .956(5.80) .955(5.80)
.90 .957(6.25) .955(6.11) .966(4.25) 0.965(4.25) .968(3.87) .968(3.86) .976(3.88) .965(3.76) .952(6.15) .955(6.11)

(10, 5) .05 .950(2.25) .952(2.29) .958(1.85) 0.951(1.80) .953(1.57) .951(1.58) .944(1.56) .951(1.58) .942(2.24) .951(2.29)
.10 .960(2.36) .954(2.34) .951(1.80) 0.953(1.82) .952(1.60) .953(1.60) .952(1.62) .951(1.60) .948(2.26) .953(2.34)
.30 .952(2.73) .955(2.72) .955(2.00) 0.958(2.02) .957(1.81) .960(1.81) .958(1.77) .957(1.79) .952(2.70) .955(2.72)
.50 .961(3.40) .954(3.29) .958(2.32) 0.963(2.34) .965(2.15) .964(2.16) .960(2.10) .960(2.13) .955(3.34) .954(3.29)
.70 .959(4.00) .952(3.93) .961(2.78) 0.962(2.73) .966(2.65) .965(2.56) .963(2.54) .962(2.52) .957(4.05) .953(3.93)
.80 .949(4.27) .954(4.28) .966(3.03) 0.962(2.94) .961(2.77) .963(2.78) .962(2.67) .961(2.74) .956(4.24) .953(4.27)
.90 .956(4.60) .953(4.63) .955(3.09) 0.962(3.15) .967(2.99) .963(3.01) .970(2.92) .962(2.96) .956(4.67) .954(4.62)

(10, 15) .05 .948(2.26) .951(2.28) .947(1.75) 0.950(1.79) .956(1.60) .951(1.57) .951(1.57) .951(1.57) .953(2.30) .950(2.28)
.10 .955(2.33) .952(2.28) .948(1.81) 0.951(1.79) .952(1.60) .950(1.57) .956(1.58) .950(1.57) .948(2.27) .951(2.28)
.30 .951(2.37) .952(2.35) .952(1.82) 0.952(1.83) .948(1.59) .953(1.62) .950(1.62) .951(1.61) .953(2.39) .952(2.35)
.50 .945(2.43) .952(2.47) .953(1.90) 0.952(1.91) .954(1.67) .954(1.70) .950(1.69) .952(1.69) .948(2.46) .952(2.47)
.70 .950(2.62) .951(2.64) .947(1.94) 0.953(2.01) .950(1.79) .957(1.81) .957(1.78) .955(1.80) .940(2.62) .951(2.64)
.80 .952(2.78) .952(2.74) .960(2.10) 0.956(2.08) .952(1.85) .957(1.88) .955(1.86) .955(1.87) .951(2.72) .952(2.74)
.90 .957(2.88) .953(2.84) .958(2.14) 0.955(2.14) .953(1.91) .958(1.95) .957(1.93) .956(1.93) .955(2.89) .952(2.84)

(20, 20) .05 .943(1.44) .951(1.46) .945(1.15) 0.950(1.16) .955(1.02) .951(1.03) .952(1.03) .951(1.03) .943(1.44) .950(1.46)
.10 .949(1.47) .951(1.47) .954(1.18) 0.951(1.17) .951(1.03) .949(1.03) .947(1.03) .951(1.03) .938(1.46) .950(1.47)
.30 .953(1.53) .952(1.53) .947(1.19) 0.952(1.21) .956(1.09) .952(1.08) .948(1.07) .951(1.08) .952(1.52) .952(1.53)
.50 .955(1.68) .951(1.65) .963(1.32) 0.954(1.28) .951(1.14) .954(1.16) .948(1.15) .951(1.16) .951(1.67) .952(1.65)
.70 .948(1.84) .952(1.81) .952(1.36) 0.953(1.38) .960(1.29) .955(1.27) .952(1.26) .954(1.26) .952(1.83) .950(1.81)
.80 .952(1.89) .953(1.90) .956(1.45) 0.952(1.44) .952(1.32) .955(1.33) .951(1.31) .953(1.33) .949(1.91) .951(1.90)
.90 .948(2.00) .951(2.00) .944(1.46) 0.954(1.51) .961(1.41) .955(1.40) .947(1.39) .953(1.39) .957(2.00) .951(2.00)

probabilities are very close to the nominal level 0.95 for some cases; see the coverage probabilities for (p1, p2) = (.05, .05)
and (.15, .05). Overall, we see that the fiducial CIs are very satisfactory when both sample sizes are 15 or more.

7. Some other continuous distributions

The fiducial method of finding CIs for the ratio of percentiles can be readily applied to other location-scale distributions
such as the Laplace (double exponential) and the logistic. The MLEs for the parameters of a Laplace distribution can
be found using the results of Childs and Balakrishnan (1997); also see Krishnamoorthy and Xie (2011). These MLEs
are location-scale equivariant and so a FQ for the ratio of percentiles can be readily obtained. The MLEs of a logistic
distribution cannot be expressed in closed-forms and they can be obtained only numerically. See Harter and Moore (1967)
and Krishnamoorthy and Xie (2011). Using these MLEs, we can readily find FQs for the parameters of a logistic distribution.

Using the fiducial approach, approximate CIs for the ratio of percentiles of two gamma distributions can also be
obtained. It is well-known that if Y has a gamma distribution with shape parameter a and the scale parameter b, then
X = Y 1/3 has an approximate normal distribution (Wilson and Hilferty, 1931). Using this result, Krishnamoorthy et al.
(2008) and Krishnamoorthy andWang (2016) have obtained approximate FQs for a and b using the FQs of the normal mean
and variance. Let (x̄i, s2i ) denote the (mean, variance) based on cube root transformed sample of size ni from gamma(ai, bi)
distribution, where ai the shape parameter and bi is the scale parameter, i = 1, 2. Then the FQ for the ratio of the 100p1
percentile of gamma(a1, b1) distribution and the 100p2 percentile of gamma(a2, b2) distribution is given by

QRG =

(
x̄1 +

Z1+zp1
√
n1

U1

s1√
n1

)3
(
x̄2 +

Z2+zp2
√
n2

U2

s2√
n2

)3 , (30)

here the random variables Z1, Z2, U1 and U2 are as defined in (10). For given (x̄1, s1, x̄2, s2), appropriate percentiles of QRG
form a CI. Alternatively, an approximate CI for a ratio of percentiles of two gamma distributions can be readily obtained
using the approximation in (7).

We have carried out some simulation studies to understand the properties of CIs based on the approximation in (7).
The estimated coverage probabilities of CIs for the ratio of 100p1 and 100p2 percentiles are reported in Table 10. Our
preliminary simulation studies (not reported here) indicated that the CIs for a ratio of gamma percentiles are unsatisfactory
12
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Table 8
Coverage probabilities and expected widths of 95% CIs for the ratio of exponential percentiles.
(µ1, µ2) = (1, 1); σ1 = 1

(p1, p2)

(.05, .05) (.25, .25) (.75, .25) (.75, .75) (.95, .75)

(n1, n2) σ2 Siml. Apprx Siml. Apprx Siml. Apprx Siml. Apprx Siml. Apprx

(10, 10) .05 .956(.447) .953(.447) .951(.588) .950(.584) .951(2.09) .951(2.09) .949(2.00) .951(1.99) .950(4.45) .951(4.38)
.10 .960(.454) .956(.452) .949(.579) .952(.581) .950(2.07) .951(2.07) .952(1.91) .951(1.90) .953(4.11) .953(4.13)
.30 .953(.500) .954(.496) .961(.581) .962(.583) .954(1.99) .953(2.00) .952(1.67) .952(1.65) .953(3.52) .951(3.49)
.50 .954(.585) .950(.570) .972(.600) .970(.604) .953(1.93) .956(1.96) .956(1.49) .951(1.48) .950(3.11) .951(3.07)
.70 .951(.674) .948(.668) .971(.629) .971(.634) .955(1.94) .958(1.95) .953(1.37) .951(1.35) .953(2.80) .950(2.75)
.90 .952(.803) .948(.804) .969(.655) .971(.665) .957(1.93) .961(1.95) .953(1.25) .950(1.23) .950(2.53) .950(2.50)
1.0 .955(.879) .946(.889) .967(.671) .971(.681) .964(1.95) .961(1.95) .954(1.20) .951(1.19) .951(2.45) .949(2.39)

(10, 15) .05 .951(.452) .951(.446) .950(.587) .950(.583) .951(2.07) .951(2.10) .951(2.00) .950(1.99) .950(4.35) .951(4.38)
.10 .950(.442) .953(.448) .952(.573) .950(.576) .949(2.07) .951(2.07) .949(1.90) .951(1.88) .951(4.16) .951(4.14)
.30 .957(.465) .955(.462) .953(.563) .955(.562) .952(1.99) .951(1.98) .956(1.60) .951(1.60) .946(3.42) .951(3.44)
.50 .954(.503) .952(.490) .961(.556) .960(.557) .950(1.92) .952(1.91) .953(1.42) .951(1.41) .952(3.00) .950(2.97)
.70 .958(.542) .951(.528) .965(.552) .966(.560) .953(1.84) .953(1.85) .951(1.28) .950(1.27) .951(2.66) .951(2.63)
.90 .951(.585) .949(.572) .969(.557) .969(.565) .954(1.79) .955(1.80) .952(1.16) .950(1.15) .953(2.39) .951(2.38)
1.0 .955(.617) .949(.598) .970(.562) .969(.567) .956(1.78) .956(1.78) .952(1.11) .951(1.10) .949(2.27) .950(2.26)

(15, 15) .05 .955(.279) .953(.281) .949(.402) .950(.407) .949(1.58) .951(1.58) .948(1.51) .951(1.50) .954(3.29) .951(3.30)
.10 .957(.285) .954(.283) .949(.401) .949(.403) .947(1.57) .950(1.56) .952(1.42) .951(1.43) .947(3.10) .949(3.11)
.30 .960(.311) .954(.305) .952(.398) .958(.404) .953(1.50) .952(1.50) .953(1.28) .951(1.25) .950(2.65) .950(2.64)
.50 .950(.346) .950(.340) .961(.411) .963(.416) .952(1.46) .952(1.46) .951(1.14) .951(1.13) .953(2.34) .950(2.32)
.70 .955(.392) .949(.384) .967(.429) .968(.432) .950(1.41) .955(1.43) .951(1.04) .949(1.03) .949(2.10) .950(2.08)
.90 .955(.450) .950(.436) .968(.441) .969(.448) .956(1.40) .957(1.41) .952(0.97) .950(0.95) .953(1.91) .950(1.89)
1.0 .949(.471) .948(.463) .966(.452) .968(.456) .956(1.40) .957(1.40) .950(0.92) .951(0.91) .951(1.83) .951(1.81)

(20, 20) .05 .951(.207) .951(.206) .954(.326) .950(.324) .950(1.33) .950(1.33) .953(1.26) .950(1.26) .950(2.73) .950(2.75)
.10 .955(.209) .953(.207) .948(.322) .950(.322) .950(1.31) .950(1.31) .954(1.21) .950(1.20) .953(2.61) .950(2.59)
.30 .952(.221) .953(.221) .953(.318) .955(.321) .953(1.25) .951(1.25) .946(1.05) .950(1.05) .953(2.22) .950(2.20)
.50 .949(.247) .951(.245) .961(.326) .960(.330) .954(1.21) .952(1.21) .948(.963) .950(.955) .952(1.95) .951(1.94)
.70 .952(.279) .951(.273) .957(.338) .963(.342) .953(1.18) .952(1.18) .950(.881) .949(.873) .951(1.74) .950(1.74)
.90 .955(.312) .949(.305) .962(.352) .964(.354) .948(1.15) .953(1.16) .956(.814) .949(.806) .954(1.60) .950(1.59)
1.0 .954(.329) .950(.322) .962(.358) .964(.360) .957(1.15) .954(1.15) .949(.783) .949(.774) .950(1.53) .949(1.52)

(30, 10) .05 .960(.140) .956(.140) .947(.244) .950(.245) .950(1.04) .949(1.04) .949(1.00) .951(1.01) .949(2.19) .950(2.17)
.10 .959(.151) .956(.150) .955(.250) .956(.250) .951(1.03) .952(1.03) .950(1.01) .950(.999) .951(2.10) .951(2.10)
.30 .953(.227) .949(.221) .963(.299) .966(.301) .954(1.03) .956(1.04) .955(1.00) .950(.994) .951(1.97) .949(1.95)
.50 .953(.325) .949(.318) .962(.361) .965(.365) .961(1.08) .961(1.08) .954(.978) .949(.965) .951(1.85) .949(1.83)
.70 .953(.443) .950(.437) .965(.425) .964(.428) .961(1.12) .964(1.14) .948(.933) .950(.922) .951(1.74) .949(1.71)
.90 .958(.577) .951(.585) .957(.480) .961(.486) .964(1.17) .966(1.20) .956(.889) .950(.875) .947(1.63) .950(1.61)
1.0 .957(.645) .951(.685) .958(.502) .958(.513) .963(1.21) .964(1.23) .953(.865) .951(.850) .950(1.57) .950(1.56)

for small values of (p1, p2). We reported the estimates of coverage probabilities for (p1, p2) = (0.50, 0.50), (0.75, 0.50),
(0.75, 0.75) and (0.95, 0.95) in Table 10. These results indicate that the approximate CIs are satisfactory for practical use
when both p1 and p2 are 0.5 or large.

8. Concluding remarks

In this article, we have proposed the fiducial approach to find CIs for a ratio of percentiles of two location-scale
distributions. The fiducial approach is not only conceptually simple, but also accurate even for small samples in some
cases. Since the fiducial approach is not necessarily exact in the frequentist sense, we carried out extensive simulation
studies to judge the accuracy of the CIs in terms of coverage probability and precision. Our simulation studies and other
theoretical comparisons showed that the fiducial CIs are exact for the normal case and they are very satisfactory for the
lognormal, two-parameter exponential and Weibull distributions.

Recall that we have used the classical pivotal quantities based on the MLEs to get fiducial quantities for the location
and scale parameters. The MLEs based on type II censored samples from a location-scale distribution are also equivariant,
and so pivotal quantities can be readily obtained using the MLEs (see Section 4.1.2.1 of Lawelss, 2003). Thus, pivotal
quantities and fiducial quantities are also valid if the samples are type II censored, and find CIs for the percentiles (see
Krishnamoorthy and Xu (2011)) and for the ratio of percentiles of two location-scale distributions when the samples are
type II censored. We are currently working on finding CIs for a ratio percentiles when the samples are type I or type II
censored and plan to publish the results elsewhere.
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Table 9
Coverage probabilities and expected widths of 95% CIs for the ratio of Weibull percentiles.
(b1, b2) = (1, 1)

(p1, p2) = (.05, .05)

(n1, n2); c1 = 2 (n1, n2); c1 = 5 (n1, n2); c1 = 7

c2 (10, 10) (20, 10) (10, 10) (20, 10) (10, 10) (20, 10)

3 .950(3.14) .951(2.86) .951(4.05) .950(3.71) .952(4.23) .952(4.67)
4 .954(1.72) .950(1.52) .954(2.11) .947(1.91) .944(2.18) .955(2.26)
5 .953(1.21) .949(1.04) .956(1.43) .951(1.20) .950(1.48) .955(1.45)
7 .954(.846) .953(.685) .954(.940) .956(.788) .950(.934) .947(.870)

10 .951(.658) .954(.509) .956(.695) .953(.545) .947(.660) .951(.566)
12 .953(.604) .953(.458) .956(.623) .953(.474) .949(.579) .954(.479)

(p1, p2) = (.50, .25)

(n1, n2); c1 = 2 (n1, n2); c1 = 5 (n1, n2); c1 = 7

c2 (10, 10) (20, 10) (10, 10) (20, 10) (10, 10) (30, 20)

3 .955(1.68) .953(1.48) .956(.342) .951(.285) .962(.254) .952(.131)
4 .958(1.25) .954(1.03) .955(.253) .951(.201) .962(.186) .951(.098)
5 .956(1.06) .953(.833) .953(.212) .953(.163) .959(.156) .952(.083)
7 .955(.903) .953( .663) .950(.177) .948(.130) .955(.129) .950(.069)

10 .952(.807) .952(.564) .946(.156) .945(.112) .955(.114) .950(.061)
12 .953(.775) .954(.535) .944(.150) .947(.106) .953(.109) .953(.059)

(p1, p2) = (.90, .90)

(n1, n2); c1 = 2 (n1, n2); c1 = 5 (n1, n2); c1 = 7

c2 (10, 10) (20, 20) (10, 10) (20, 20) (10, 10) (30, 20)

3 .966(.679) .955(.376) .954(.255) .959(.181) .957(.190) .949(.099)
4 .959(.682) .954(.375) .954(.257) .961(.173) .960(.192) .948(.102)
5 .960(.686) .955(.377) .952(.260) .961(.168) .958(.193) .950(.105)
7 .959(.699) .951(.380) .948(.265) .961(.164) .957(.196) .946(.108)

10 .956(.713) .947(.385) .949(.270) .958(.162) .955(.200) .949(.110)
12 .955(.720) .950(.389) .947(.273) .956(.161) .953(.202) .948(.112)

Table 10
Coverage probabilities 95% CIs for the ratio of gamma percentiles.

a1 = 0.5

a2 p1 = p2 = 0.50 p1 = 0.75, p2 = 0.50 p1 = 0.75, p2 = 0.75 p1 = 0.95, p2 = 0.95

(10, 10) (10, 20) (20, 20) (20, 30) (10, 10) (10, 20) (20, 20) (20, 30) (10, 10) (10, 20) (20, 20) (20, 30) (10, 10) (10, 20) (20, 20) (20, 30)

1 .960 .955 .953 .951 .951 .943 .945 .939 .944 .939 .939 .934 .939 .937 .934 .933
2 .955 .953 .948 .948 .946 .939 .944 .940 .942 .937 .939 .933 .939 .937 .934 .934
3 .953 .950 .947 .946 .942 .936 .945 .941 .941 .938 .938 .932 .940 .937 .934 .935
5 .950 .950 .946 .946 .940 .935 .944 .939 .937 .939 .938 .930 .940 .936 .933 .936
7 .950 .949 .945 .944 .938 .934 .946 .938 .937 .940 .939 .930 .941 .936 .937 .937
9 .949 .948 .945 .944 .937 .934 .943 .940 .936 .939 .940 .930 .938 .935 .937 .937

15 .947 .949 .944 .944 .936 .934 .945 .939 .934 .938 .938 .928 .939 .935 .934 .936

a1 = 2.0

1 .963 .961 .955 .955 .960 .957 .955 .954 .954 .954 .949 .949 .951 .949 .950 .949
2 .963 .958 .957 .956 .959 .956 .954 .953 .959 .955 .953 .952 .954 .951 .951 .951
3 .962 .957 .957 .955 .960 .955 .954 .953 .958 .955 .953 .953 .953 .952 .952 .952
5 .961 .955 .956 .955 .959 .953 .953 .953 .958 .953 .953 .952 .954 .950 .953 .953
7 .960 .954 .955 .954 .957 .953 .951 .951 .956 .952 .952 .952 .954 .951 .953 .953
9 .958 .953 .954 .952 .956 .951 .950 .950 .955 .952 .952 .951 .953 .951 .951 .952

15 .956 .952 .953 .951 .955 .950 .950 .950 .955 .952 .950 .951 .952 .951 .951 .952

Appendix A

Let (X̄, S2) denote the (mean, variance) based on a sample of size n from a N(µ, σ 2) distribution. Let (x̄, s2) be an
observed value of (X̄, S2). Let Z ∼ N(0, 1) independently of U ∼ χ2

m/m. To show that

x̄ +
Z + zp

√
n

U
s

√
n

> 0 for all x̄, s and p ∈ (0, 1), (31)

e need to show that
√
nX̄
S >

Z+zp
√
n

U with practical certainty. Note that
√
nX̄/S ∼ tm(

√
nµ/σ ). If a normal model is

ostulated for a positive random variable X , then it is reasonable to assume that µ − 3σ > 0 or µ/σ > 3. As a result, for
14
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w

s

T
f

I

e

(31) to hold, we should have

P
(
tm(µ

√
n/σ ) > −tm(zp

√
n)
)

> P
(
tm(3

√
n) > tm(−zp

√
n)
)

≃ 1.

Let Fm(δ) denote the CDF of a noncentral t random variable with df = m and the noncentrality parameter δ. Then, (31)
holds if

P
(
tm(3

√
n) > tm(−zp

√
n)
)

= 1 − ET
(
Fm
(
T |3

√
n
))

≃ 1, (32)

where T ∼ tm(−zp
√
n).

In Table 1, we give the minimum value of n for which the above probability is very close unity.

Appendix B

Recall that

QD =

(
x̄1 +

Z1 + zp1
√
n1

Uf

sp
√
n1

)
− R0

(
x̄2 +

Z2 + zp2
√
n2

Uf

sp
√
n2

)
,

here Uf ∼ χ2
f /f and f = m1 + m2. After rearranging the terms in QD, we can write the fiducial quantity as

QD = (x̄1 − R0x̄2) −
sp
Uf

[
(Z1 −

√
n1zp1 )

√
n1

− R0
Z2 − zp2

√
n2

√
n2

]
.

It is easy to verify that the term within the square brackets is distributed as (R0zp2 − zp1 ) + Z

√
1
n1

+
R20
n2
, where Z is the

tandard normal random variable. Using this result and the definition of the noncentral t distribution, we see that

QD
d
= (x̄1 − R0x̄2) + tf (δ(R0))sp

√
1
n1

+
R2
0

n2
, with δ(R0) =

zp1 − R0zp2√
1
n1

+
R20
n2

. (33)

o get (33), we used the result that tm(−δ) and −tm(δ) are identically distributed. Thus, we can express the fiducial p-value
or testing (13) as

P(QD > 0) = P

⎛⎜⎜⎝tf (δ(R0)) >
R0x̄2 − x̄1

sp

√
1
n1

+
R20
n2

⎞⎟⎟⎠ . (34)

t is not difficult to check that the random quantity

R0X̄2 − X̄1

Sp

√
1
n1

+
R20
n2

d
=

Z +
zp1−zp2R0√
1/n1+R20/n2

χ2
f /f

∼ tf (δ(R0)),

where Z ∼ N(0, 1) independently of χ2
f , and hence the p-value in (34) is a realization of the random p-value

P

⎛⎜⎜⎝tf (δ(R0)) >
R0X̄2 − X̄1

Sp

√
1
n1

+
R20
n2

⎞⎟⎟⎠ .

Using the probability integral transform, we see that the above p-value has the uniform (0, 1) distribution. So the test
that rejects H0 in (13) whenever the p-value in (34) is less than α is an exact level α test. Thus, the value of R0 for which

P

⎛⎜⎜⎝tf (δ(R0)) >
R0X̄2 − X̄1

Sp

√
1
n1

+
R20
n2

⎞⎟⎟⎠ = α

is a 100(1−α)% upper confidence limit for the ratio of normal percentiles. Note that the value R0 that satisfies the above
quation can also be obtained as the root of Eq. (16).
15
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Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jspi.2023.07.003.
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