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Construction of simultaneous tolerance intervals for several
normal distributions

K. Krishnamoorthy and Saptarshi Chakraberty
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ABSTRACT
Methods for computing simultaneous tolerance limits and toler-
ance intervals (TIs) for several normal populations with a common
unknown variance are proposed. We propose numerical methods
that determine the confidence coefficient so that the simultaneous
TIs include at least specified proportions of the populations with the
intended confidence level. The methods are exact and as simple as
the existing ones. They are also applicable when sample sizes are
unequal and content levels of simultaneous TIs are unequal. Algo-
rithms andR functions areprovided to compute factors for construct-
ing simultaneous one-sided tolerance limits, tolerance intervals and
equal-tailed tolerance intervals. Themethods are illustrated using an
example with a real data set.
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1. Introduction

Among statistical intervals, confidence intervals (CIs) and prediction intervals are well
known and commonly used in applications. A confidence interval based on a sample is
constructed so that it would include a parameter of interest of the sampled population with
a specified confidence. A prediction interval is used to predict the future observation from
a population based on a currently available sample from the population. In some applica-
tions, one may want to find a sample interval that would include at least a proportion p
of the population with confidence 1 − α. Such an interval is referred to as the (p-content,
1 − α coverage) or simply (p, 1 − α) tolerance interval (TI). A one-sided (p, 1 − α) upper
tolerance limit (UTL) is simply a (1 − α) upper confidence limit for the 100pth percentile
of the population. A (p, 1 − α) lower tolerance limit (LTL) is a (1 − α) lower confidence
limit for the 100(1 − p) percentile of the population. Another type of two-sided TI (L,U),
referred to as the equal-tailed TI, is constructed so that nomore than proportion(1 − p)/2
of the population is less than L and no more than (1 − p)/2 of the population is greater
than U. For a good exposition of TIs and β-expectation TIs along with applications, see
the books by Guttman [1] and Krishnamoorthy and Mathew [2].

Exact methods for computing all types of TIs are available for normal distributions.
The methods for the normal case date back to 1940s (see [3–6] and Chapter 2 of the
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book by Krishnamoorthy and Mathew [2]). Following the approach for the normal case,
Krishnamoorthy and Xie [7] have provided a general approach for constructing TIs for a
symmetric location-scale family of distributions. Zou and Young [8] have applied boot-
strap calibration to improve the coverage probabilities of two-sided parametric TIs based
on one-sided TLs with Bonferroni adjustments. Hoang-Nguyen-Thuy and Krishnamoor-
thy [9] have proposed amethod of finding exact factors for computing two-sided tolerance
intervals based onmodified one-sided factors. Their approach is applicable to any symmet-
ric or asymmetric location-scale distribution. The R package by Young [10] or the StatCalc
software that accompanies the book [11] can be used to compute the factors for finding
tolerance intervals for the normal and other continuous/discrete distributions.

To define simultaneous TIs, let us suppose that there are l normal populations
with means μ1, . . . ,μl and a common variance σ 2, say, N(μ1, σ 2), . . . ,N(μl, σ 2). Let
Xi1, . . . ,Xini denote the sample drawn from the N(μi, σ 2) distribution, i = 1, . . . , l. Let
N = ∑l

i=1 ni. Define the sample mean, variance and the pooled variance as

X̄i = 1
ni

ni∑
j=1

Xij, S2i = 1
ni − 1

ni∑
j=1

(Xij − X̄i)
2, and S2c = 1

N − l

l∑
i=1

(ni − 1)S2i ,

respectively. On the basis of X̄i and S2c , we consider the problems of constructing

(i) simultaneous one-sided lower (upper) tolerance limits (TLs) of the form X̄i − kiSc
(X̄i + kiSc) so that

P
(
X̄i − kiSc < μi − zpiσ , i = 1, . . . , l

) = 1 − α,

and

P
(
X̄i + kiSc > μi + zpiσ , i = 1, . . . , l

) = 1 − α,

(ii) two-sided tolerance intervals of the form X̄i ± k′
iSc, so that

PX̄i,Sc
{
PXi

(
X̄i − k′

iSc ≤ Xi ≤ X̄i + k′
iSc
) ≥ pi, i = 1, . . . , l

} = 1 − α,

where Xi’s are independent random variables with Xi ∼ N(μi, σ 2), i = 1, . . . , l, and
(iii) two-sided equal-tailed TIs of the form X̄i ± kei Sc so that it would include the popu-

lation interval (μi − z 1+pi
2

σ , μi + z 1+pi
2

σ)), i = 1, . . . , l, with confidence 1 − α. That
is,

P
(
X̄i − kei Sc ≤ μi − z 1+pi

2
σ and μi + z 1+pi

2
σ ≤ X̄i + kei Sc, i = 1, . . . , l

)
= 1 − α.

For problems (i) and (ii), Mee [12] has proposed methods for computing the factors
when the sample sizes are equal. He also has suggested a method of finding approximate
factors when the sample sizes are unequal. Mee has noted that his approximate method
will give an actual confidence level of at least 94% (when 1 − α = .95 and p = .99) if the
degrees of freedom (df) ni − 1 ≥ 30 for all i and the ratio (largest ni)/(smallest ni) ≤ 2.

In this article, we propose methods for computing tolerance factors for the aforemen-
tioned three problems using the idea of Hoang-Nguyen-Thuy and Krishnamoorthy [9].
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Unlike the methods by Mee [12], our methods are applicable to find exact simultaneous
TIs with different content levels p1, . . . , pl based on unequal sample sizes. In addition,
we provide an exact method of computing equal-tailed TIs. In the following section, we
first describe a method for computing factors for simultaneous one-sided tolerance lim-
its and a method for computing factors for simultaneous two-side tolerance intervals.
In Section 2.3, we provide a method for computing simultaneous equal-tailed TIs. In
Section 3, we illustrate the methods using an example. Some concluding remarks are given
in Section 4.

2. Simultaneous tolerance intervals

In the following, we describe a method for computing factors to construct (p1, 1 −
α), . . . , (pl, 1 − α) simultaneous TIs for populations 1, . . . , l, respectively. The deriva-
tions of our methods for constructing one-sided TLs and two-sided TIs are similar to
the one in Mee [12], except that our methods are applicable when sample sizes are
unequal, and the methods are generalization of one-sample methods for finding factors
by Hoang-Thuy-Nguyen and Krishnamoorthy [9].

2.1. Simultaneous one-sided tolerance limits

Let zp denote the pth quantile of the standard normal distribution. One-sided upper
tolerance limits are constructed so that

X̄i + kiSc ≥ μi + zpiσ , i = 1, . . . , l,

with probability 1 − α. The ki’s are called factors, and they are to be determined such that

PX̄1,...,X̄l ,Sc(X̄i + kiSc ≥ μi + zpiσ , i = 1, . . . , l) = 1 − α. (1)

Letting Zi = √
ni(X̄i − μi)/σ , i = 1, . . . , l, and U2 = S2c/σ 2, we can express (1) as

PZ1,...,Zl ,U
(
Zi − √

nizpi ≥ −√
nikiU, i = 1, . . . , l

) = 1 − α.

Noticing that Zi and −Zi are identically distributed, we can rewrite the above equation as

EW

[ l∏
i=1

�

(√
ni
(

kiW√
N − l

− zpi

))]
= 1 − α, (2)

whereW2 = (N − l)U2 ∼ χ2
N−l distribution.

The factors ki’s should be different when the sample sizes are unequal. In this case, it is
difficult to solve Equation (2) for k1, . . . , kl. It is also possible that, for a given (n1, . . . , nl)
and p1, . . . , pl, several sets of k1, . . . , kl satisfy Equation (2). A unique way of determining
ki’s is to choose ki’s as a function of γ , where γ is to be determined so that (2) holds. A
choice, based on one-sample factors, is

ki;γ = 1√
ni
tni−1;γ (zpi

√
ni), i = 1, . . . , l,

where tm;q(δ) is the qth quantile of the noncentral t distribution with degrees of freedomm
and the noncentrality parameter δ. Note that, for a given (n1, . . . , nl), (p1, . . . , pl) and (1 −
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α), ki;γ is an increasing function of γ , as a result, the coverage probability is an increasing
function of γ . So the factors ki;γ determined above are unique. The value of γ is determined
to satisfy the coverage requirement that

f (γ ) = 1

2
N−l
2 	

(
N − l
2

) ∫ ∞

0

[ l∏
i=1

�

(√
ni
(
ki;γ

√
x√

N − l
− zpi

))]
e−x/2x

N−l
2 −1 dx = 1 − α. (3)

Let γ ∗ denote the value of γ that satisfies (3). Then ki;γ ∗ ’s are the tolerance factors for
computing (pi, 1 − α), i = 1, . . . , l, simultaneous TLs. The integral above can be evaluated
using the basic R function integrate() and the equation f (γ ) − (1 − α) = 0 can be
solved using the basic R function uniroot() with root bracketing interval (1 − α −
.4, 1 − α). An R function to compute the value γ ∗ and the factors is given in the appendix.

For the special case of n1 = · · · = nl = n and p1 = · · · = pl = p, it is reasonable to
require that k1 = · · · = kl = k∗, and this common tolerance factor k∗ is the solution of
the integral equation

1

2
N−l
2 	

(
N − l
2

) ∫ ∞

0

[
�

(√
n
(

k∗√x√
N − l

− zp
))]l

e−x/2x
N−l
2 −1 dx = 1 − α. (4)

The above equation follows from (3). Mee [12] has tabulated the values of k∗ satisfying (4)
for several values of n ranging from 2 to 1000, l = 2, 3, 4, 5, 6, 8, 10, p = 0.90, 0.95, 0.99 and
1 − α = 0.90, 0.95, 0.99. The R function given in the appendix can also be used to compute
the value of k∗ for equal/unequal sample sizes.

In Table 1, we report the values of γ so that tni−1;γ (zp
√
ni)/

√
ni are factors for con-

structing (.90, .95) simultaneous one-sided tolerance limits. The values of γ are given for
l = 2, . . . , 5 and some sample sizes. As an example, when (n1, n2, n3) = (12, 18, 16), the
value of γ is.9348 and the factors are

ki;γ = 1√
ni
tni−1;.9348(z.9

√
ni) with (k1;γ , k2;γ , k3;γ ) = (2.117, 1.908, 1.960). (5)

That is, X̄i − ki;γ Sc, i = 1, 2, 3, are (.90, .95) simultaneous lower tolerance limits and X̄i +
ki;γ Sc, i = 1, 2, 3, are (.90, .95) simultaneous upper tolerance limits. Suppose we need to
compute (.80, .95), (.90, .95) and (.95, .95) upper tolerance limits, then the value of γ is
.9378 and the factors are

ki;γ = 1√
ni
tni−1;.9378(zpi

√
ni) with (k1;γ , k2;γ , k3;γ ) = (1.532, 1.919, 2.454). (6)

Using the R function in the appendix, the factors in (5) can be computed as

> norm.simult.one.fac(c(12,18,16),rep(.90,3),.95)
> .9348 2.117 1.908 1.960
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Table 1. The values of γ so that tni−1;γ (zpi
√
ni)/

√
ni are factors for constructing (p1, .95), . . . , (pl , .95)

simultaneous one-sided tolerance limits for l normal populations.

p1 = · · · = pl = .90
l = 2 l = 3 l = 4 l = 5

(n1, n2) γ (n1, n2, n3) γ (n1, . . . , n4) γ (n1, . . . , n5) γ

(4, 4) .8169 (3, 3, 3) .7413 (8, 8, 8, 8) .8343 (6, 6, 6, 6, 6) .8061
(7, 4) .8442 (3, 5, 6) .8112 (8, 4, 3, 6) .8126 (6, 5, 3, 2, 8) .8090
(7, 9) .8556 (9, 8, 11) .8490 (9, 11, 4, 21) .8598 (9, 15, 13, 12, 21) .8655
(12, 20) .8762 (12, 18, 16) .8695 (9, 7, 3, 5) .8237 (9, 5, 33, 7, 18) .8684
(22, 20) .8815 (5, 19, 21) .8727 (15, 25, 7, 21) .8733 (13, 25, 12, 37, 48) .8881
(32, 40) .8899 (23, 45, 33) .8894 (18, 21, 17, 31) .8807 (20, 35, 45, 48, 50) .8986

(p1, . . . , pl)
(.8, .9) (.8, .9, .95) (.8, .85, .9, .95) (.8, .85, .85, .9, .95)

(n1, n2) γ (n1, n2, n3) γ (n1, . . . , n4) γ (n1, . . . , n5) γ

(4, 4) .9159 (3, 3, 3) .8765 (8, 8, 8, 8) .9246 (6, 6, 6, 6, 6) .9135
(7, 4) .9285 (3, 5, 6) .9020 (8, 4, 3, 6) .9144 (6, 5, 3, 2, 8) .9113
(7, 9) .9345 (9, 8, 11) .9281 (9, 11, 4, 21) .9351 (9, 15, 13, 12, 21) .9388
(12, 20) .9446 (12, 18, 16) .9378 (9, 7, 3, 5) .9236 (9, 5, 33, 7, 18) .9390
(22, 20) .9469 (5, 19, 21) .9335 (15, 25, 7, 21) .9429 (13, 25, 12, 37, 48) .9485
(32, 40) .9513 (23, 45, 33) .9477 (18, 21, 17, 31) .9457 (20, 35, 45, 48, 50) .9552

Similarly, the factors in (6) can be computed using the same R function as

> norm.simult.one.fac(c(12,18,16),c(.80,.90,.95),.95)
[1] 0.9378 1.532 1.920 2.454

2.2. Simultaneous two-sided tolerance intervals

To construct (p, 1 − α) simultaneous tolerance intervals for l normal populations with
common variance σ 2, we need to determine the tolerance factors k′

1, . . . , k
′
l so that

PX̄1,...,X̄l ,Sc
{
PXi(X̄i − k′

iSc ≤ Xi ≤ X̄i + k′
iSc | X̄i, Sc) ≥ pi, i = 1, . . . , l

} = 1 − α, (7)

whereX1, . . . ,Xl are independent random variables withXi ∼ N(μi, σ 2), i = 1, . . . , l. Fur-
thermore, X1, . . . ,Xl, X̄1, . . . , X̄l and Sc are mutually independent. Let Yi = (X̄i − μi)/σ ,
i = 1, . . . , l and U2 = S2c/σ 2 so that

Yi ∼ N(0, 1/ni) independently of U2 ∼ χ2
N−l

N − l
.

In terms of these variables, we can write (7) as

PY1,...,Yl ,U2
{
P(Yi − k′

iU ≤ Zi ≤ Yi + k′
iU |Yi,U2) ≥ pi, i = 1, . . . , l

} = 1 − α. (8)

Notice that, for a fixed Yi, �(Yi + k′
iU) − �(Yi − k′

iU) ≥ p if and only if kiU ≥ ri or
U2 ≥ r2i /k

′2
i , where ri is the solution of the equation �(Yi + ri) − �(Yi − ri) = pi (see

Section 1.2 of [2]). For a fixed Yi, it can be easily verified that ri = χ2
1;pi(Y

2
i ), i = 1, . . . , p.

Thus, we need to determine the factors k′
1, . . . , k

′
l such that

EY1,...,Yl

{
P

(
U2 >

χ2
1;pi(Y

2
i )

k′2
i

, i = 1, . . . , l

∣∣∣∣∣Y
)}

= 1 − α, (9)
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or equivalently,

EY1,...,Yl

{
P

(
U2 > max

1≤i≤l

{
χ2
1;pi(Y

2
i )

k′2
i

} ∣∣∣∣Y
)}

= 1 − α. (10)

As in the preceding section, we choose k′
i to be a function of γ given by

k′
i;γ = 1√

ni
tni−1;(1+γ )/2

(
z 1+pi

2

√
ni
)
, i = 1, . . . , l.

Thus, instead of determining k′
i’s that satisfy (10), we determine γ so that

EY1,...,Yl

{
P

(
U2 > max

1≤i≤l

{
χ2
1;pi(Y

2
i )

k′2
i;γ

}∣∣∣∣∣Y
)}

= 1 − α. (11)

As the left-hand side of (11) involves an l dimensional integral, the above equation is dif-
ficult to solve numerically. However, we can estimate the left-hand side (LHS) of (11) by
Monte Carlo simulation and determine the value of γ so that the LHS is equal to 1 − α. For
a given (n1, . . . , nl), (p1, . . . , pl) and 1 − α, the R function norm.simult.two.fac()
given in the appendix can be used to find the value of γ and the factors k′

i;γ , i = 1, . . . , l.
As shown in [12], for the special case of n1 = · · · = nl = n and p1 = · · · = pl, (11) can

be expressed as an integral as follows. For the case of equal sample size, we can assume that
k1 = · · · = kl = k and write (10) as

E|Y|(l)

{
P

[
U2 >

{
χ2
1;p(|Y|2

(l))

k′2

} ∣∣∣∣|Y|(l)
]}

= 1 − α, (12)

where |Y|(l) = max1≤i≤l |Zi/
√
n| and Zi’s are independent N(0, 1) random variables.

Using the probability density function of |Y|(l)
√
n, we can write expression (12) as

2l
∫ ∞

0
P

(
χ2
N−l ≥

(N − l)χ2
1,p(z

2/n)

k′2

)
[2�(z) − 1]l−1φ(z) dz = 1 − α. (13)

The value of k′ that satisfies the above equation can be obtained using numerical integration
and a root finding method. For more details on computation, see [12].

Mee [12] has tabulated the values of k′ satisfying (13) for several values of n ranging
from 2 to 1000, l = 2, 3, 4, 5, 6, 8, 10, p = .90,.95,.99 and 1 − α = 0.90, 0.95, 0.99. The R
function given in the appendix can also be used to compute the factors for the special case
of n1 = · · · = nl = n and p1 = · · · = pl = p. This R function is based on Algorithm ??.

Algorithm 1: For a given (n1, . . . , nl), (p1, . . . , pl) and 1 − α:

(1) If n1 = · · · = nl = n and p1 = · · · = pl = p, then let k′
γ = tn−1;(1+γ )/2(

√
nz(1+p)/2).

(2) Set the function

f (γ ) = 2l
∫ ∞

0
P

(
χ2
N−l ≥

(N − l)χ2
1,p(z

2/n)

k′2
γ

)
[2�(z) − 1]l−1φ(z) dz − (1 − α).



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 107

(3) Evaluate the integral numerically and solve the equation f (γ ) = 0 using a bisection
method with root bracketing interval (1 − α − .4, 1 − α).

(4) Let γ ∗ be the root of the equation obtained in the above step. Then k′
γ ∗ =

tn−1;(1+γ ∗)/2(
√
nz(1+p)/2) is the factor for constructing simultaneous TIs. If ni’s are

unequal or pi’s are unequal, then set zpi = �−1((1 + pi)/2), i = 1, . . . , l.
(5) Generate Yi ∼ N(0, 1/ni), i = 1, . . . , l.
(6) Set k′

i;γ = 1√
ni
tni−1;(1+γ )/2(z 1+pi

2

√
ni), i = 1, . . . , l.

(7) SetMx = max1≤i≤l{
χ2
1;pi

(Y2
i )

k′2
i;γ

}

(8) Compute Pj = P(χ2
N−l > (N − l)max1≤i≤l{

χ2
1;pi

(Y2
i )

k′2
i;γ

}|Y)

(9) Repeat Steps 6–9, several times, say, 10,000 times
(10) Set f (γ ) = mean of Pj’s −(1 − α)

(11) Solve the equation f (γ ) = 0 using a root bracketing method with bracketing interval
(1 − α − .4, 1 − α).

(12) Let γ ∗ be the root obtained in the preceding step.
(13) Then k′

i;γ ∗ = 1√
ni
tni−1;(1+γ ∗)/2(z 1+pi

2

√
ni), i = 1, . . . , l are the factors for computing

(p1, 1 − α), . . . , (pl, 1 − α) simultaneous TIs.

In Table 2, we present the values of γ so that tni−1;(1+γ )/2(z(1+p)/2
√
ni)/

√
ni are factors

for constructing (.90, .95) simultaneous TIs. The values of γ are given for l = 2, . . . , 5,
unequal pi’s and some sample sizes. As an example, to find (.90, .95) simultaneous TIs
when (n1, n2, n3) = (12, 18, 16), the value of γ is 0.7012 and the factors are

k′
i;γ = 1√

ni
tni−1; 1.70122

(z 1.9
2

√
ni) with (k′

1;γ , k
′
2;γ , k

′
3;γ ) = (2.277, 2.124, 2.163).

That is, X̄i ± k′
i;γ Sc, i = 1, 2, 3, are (.90, .95) simultaneous tolerance intervals. For the same

sample sizes, suppose we like to construct (.8, .95), (.9, .95) and (.95, .95) simultaneous TIs,
then the value of γ from Table 2 is 0.7039 and

k′
i;γ = 1√

ni
tni−1; 1.70392

(
z 1+pi

2

√
ni
)

with (k′
1;γ , k

′
2;γ , k

′
3;γ ) = (1.824, 2.124, 2.550).

2.3. Simultaneous equal-tailed tolerance intervals

The factors kei for constructing l simultaneous equal-tailed TIs of the form X̄i ± kei Sc are
determined so that

PX̄i,S

(
X̄i − kei Sc < μi − z 1+pi

2
σ and μi + z 1+pi

2
σ < X̄i + kei Sc, i = 1, . . . , l

)
= 1 − α.

(14)
That is, the intervals X̄i ± kei Sc are constructed so that they would include μi ± z(1+pi)/2σ ,
i = 1, . . . , l, with probability (1 − α). After standardizing X̄i and rearranging the terms, we
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Table 2. The values of γ so that tni−1;(1+γ )/2(z(1+pi)/2
√
ni)/

√
ni are factors for constructing

(p1, .95), . . . , (pl , .95) simultaneous tolerance intervals for l normal populations.

p1 = · · · = pl = .90
l = 2 l = 3 l = 4 l = 5

(n1, n2) γ (n1, n2, n3) γ (n1, . . . , n4) γ (n1, . . . , n5) γ

(4, 4) .7754 (3, 3, 3) .6844 (8, 8, 8, 8) .6926 (6, 6, 6, 6, 6) .6762
(7, 4) .8102 (3, 5, 6) .7410 (8, 4, 3, 6) .7146 (6, 5, 3, 2, 8) .7004
(7, 9) .7820 (9, 8, 11) .7219 (9, 11, 4, 21) .7191 (9, 15, 13, 12, 21) .6664
(12, 20) .7711 (12, 18, 16) .7012 (9, 7, 3, 5) .7137 (9, 5, 33, 7, 18) .7000
(22, 20) .7395 (5, 19, 21) .7211 (15, 25, 7, 21) .6785 (13, 25, 12, 37, 48) .6867
(32, 40) .7223 (23, 45, 33) .6758 (18, 21, 17, 31) .6617 (20, 35, 45, 48, 50) .5945

(p1, . . . , pl)
(.8, .9) (.8, .9, .95) (.8, .85, .9, .95) (.8, .85, .85, .9, .95)

(n1, n2) γ (n1, n2, n3) γ (n1, . . . , n4) γ (n1, . . . , n5) γ

(4, 4) .7738 (3, 3, 3) .6847 (8, 8, 8, 8) .6902 (6, 6, 6, 6, 6) .6757
(7, 4) .7906 (3, 5, 6) .7453 (8, 4, 3, 6) .7019 (6, 5, 3, 2, 8) .7078
(7, 9) .7796 (9, 8, 11) .7253 (9, 11, 4, 21) .7343 (9, 15, 13, 12, 21) .6726
(12, 20) .7703 (12, 18, 16) .7039 (9, 7, 3, 5) .6953 (9, 5, 33, 7, 18) .6882
(22, 20) .7179 (5, 19, 21) .7359 (15, 25, 7, 21) .6726 (13, 25, 12, 37, 48) .6589
(32, 40) .7160 (23, 45, 33) .6773 (18, 21, 17, 31) .6710 (20, 35, 45, 48, 50) .5972

see that (14) is equivalent to

PZ,S

(Zi/
√
ni + z 1+p

2

Sc/σ
< kei and

Zi/
√
ni − z 1+p

2

Sc/σ
≥ −kei , i = 1, . . . , l

)
= 1 − α, (15)

where Zi = √
ni(X̄i − μi)/σ ∼ N(0, 1). Let δi = √

niz 1+pi
2

and U2 = S2c/σ 2. In terms of
these quantities, we see that (15) can be expressed as

PZi,U
(
Zi < −δi + kei

√
niU and Zi > δi − kei

√
niU, i = 1, . . . , l

) = 1 − α. (16)

Notice that the inequalities in the above probability statement holds only if δi − kei
√
niU <

−δi + kei
√
niU or equivalently U2 >

δ2i
(kei )2ni

. Thus, (16) can be expressed as

EU
[
PZ
(

δi − kei
√
niU < Zi < −δi + kei

√
niU

∣∣∣∣U2 >
δ2i

(kei )2ni

)
, i = 1, . . . , l

]
= 1 − α.

(17)
Choosing

kei;γ = 1√
ni
tni−1; 1+γ

2

(
z 1+pi

2

√
ni
)
, i = 1, . . . , l,

and letting

G(δ,N, l) = max
1≤i≤l

{
δ2i

(kei;γ )2ni

}
,

we determine the value of γ so that

EU
[
PZ
(

δi − kei;γ
√
niU < Zi < −δi + kei;γ

√
niU

∣∣∣∣U2 > G(δ,N, l)
)
, i = 1, . . . , l

]
= 1 − α, (18)
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whereEU denotes the expectationwith respect to the distribution ofU. BecauseU2 ∼ χ2
N−l
N−l ,

it follows from (18) that γ is the solution of the integral equation

f (γ ) = 1

2
N−l
2 	

(
N − l
2

) ∫ ∞

(N−l)G(δ,N,l)

l∏
i=1

(
2�

(
−δi +

kei;γ
√
nix√

N − l

)
− 1

)
e−x/2x

N−l
2 −1 dx = 1 − α,

(19)
where �(x) denotes the standard normal distribution function. To get (19) from (18), we
have used the relation that �(x) = 1 − �(−x). The value of γ that satisfies f (γ ) − (1 −
α) = 0 can be found using a bisection method with root bracketing interval, say, (1 − α −
.4, 1 − α).

An R function (which uses the base R function integrate() to evaluate the integral
in (19) and the base R function uniroot() to find the root of f (γ ) − (1 − α) = 0) to
compute the factors satisfying (19) is given in the appendix. Using the R function, we have
computed the value of γ so that tni−1;(1+γ )/2(z(1+p)/2

√
ni)/

√
ni is a factor for computing

an equal-tailed TI for the ith population. The values of γ for l = 2, . . . , 5 and some sam-
ple sizes are reported in Table 3. As an example, suppose it is desired to find factors for
computing (.90, .95) equal-tailed TIs for three populations based on sample sizes n1 = 12,
n2 = 18 and n3 = 16. For this case, the value of gamma (see Table 3) is .8863 and the factors
are

kei;γ = 1√
ni
tni−1;(1+0.8863)/2(z.95

√
ni) with (ke1, k

e
2, k

e
3) = (2.683, 2.416, 2.483).

For a given (n1, . . . , nl) and (p, 1 − α), the R function in the appendix computes both the
value of γ and the factors. For the present case, we can compute the value of γ and the
factors as follows:

> norm.simult.eqt.fac(c(12,18,16),.90,.95)
[1] 0.8863 2.683 2.416 2.483

Similarly, to find factors for constructing (.80, .95), (.90, .95) and (.95, .95) simultaneous
equal-tailed TIs when (n1, n2, n3) = (12, 18, 16), we use the R function as

> norm.simult.eqt.fac(c(12,18,16),c(.80,.90,.95),.95)
[1] 0.8881 2.171 2.421 2.915

3. An example

This example and data are taken from Montgomery [13, Section 3.12]. A completely
randomized experiment was conducted to assess the effective life of insulating fluids.
The effective life (in hours) of four different insulating fluids at an accelerated load of
35 kV were recorded. To illustrate the construction of simultaneous TIs when the sam-
ple sizes are unequal, we randomly discarded twomeasurements from fluid type 1 and one
measurement from fluid type 3, and present the remaining measurements in Table 4.
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Table 3. The values of γ so that tni−1;(1+γ )/2(z(1+p)/2
√
ni)/

√
ni are factors for constructing

(p1, .95), . . . , (pl , .95) simultaneous equal-tailed TIs for l normal populations.

p1 = · · · = pl = .90
(n1, n2) γ (n1, n2, n3) γ (n1, . . . , n4) γ (n1, . . . , n5) γ

(4, 4) .8447 (3, 3, 3) .7561 (8, 8, 8, 8) .8418 (6, 6, 6, 6, 6) .8072
(7, 4) .8875 (3, 5, 6) .8398 (8, 4, 3, 6) .8381 (6, 5, 3, 2, 8) .8286
(7, 9) .8857 (9, 8, 11) .8663 (9, 11, 4, 21) .8833 (9, 15, 13, 12, 21) .8714
(12, 20) .9077 (12, 18, 16) .8863 (9, 7, 3, 5) .8454 (9, 5, 33, 7, 18) .8906
(22, 20) .9084 (5, 19, 21) .8989 (15, 25, 7, 21) .8879 (13, 25, 12, 37, 48) .8977
(32, 40) .9166 (23, 45, 33) .9064 (18, 21, 17, 31) .8905 (20, 35, 45, 48, 50) .9030

(p1, . . . , pl)
(.8, .9) (.8, .9, .95) (.8, .85, .9, .95) (.8, .85, .85, .9, .95)

(n1, n2) γ (n1, n2, n3) γ (n1, . . . , n4) γ (n1, . . . , n5) γ

(4, 4) .8545 (3, 3, 3) .7628 (8, 8, 8, 8) .8516 (6, 6, 6, 6, 6) .8212
(7, 4) .8967 (3, 5, 6) .8309 (8, 4, 3, 6) .8500 (6, 5, 3, 2, 8) .8324
(7, 9) .8926 (9, 8, 11) .8692 (9, 11, 4, 21) .8839 (9, 15, 13, 12, 21) .8764
(12, 20) .9135 (12, 18, 16) .8881 (9, 7, 3, 5) .8630 (9, 5, 33, 7, 18) .8950
(22, 20) .9166 (5, 19, 21) .8925 (15, 25, 7, 21) .8952 (13, 25, 12, 37, 48) .8990
(32, 40) .9241 (23, 45, 33) .9084 (18, 21, 17, 31) .8956 (20, 35, 45, 48, 50) .9094

Table 4. Life (in hours) at 35 kV load.

Fluid type

1 17.6 18.9 16.3 21.6
2 16.9 15.3 18.6 17.1 19.5 20.3
3 21.4 23.6 19.4 18.5 20.5
4 19.3 21.1 16.9 17.5 18.3 19.8

The summary statistics are

X̄1 = 18.60, X̄2 = 17.95, X̄3 = 20.68, X̄4 = 18.82 and Sc = 1.8807.

Noticing that (n1, n2, n3, n4) = (4, 6, 5, 6), the factors for constructing (.90, .95) simul-
taneous one-sided tolerance limits are computed using the R function in the appendix
as

> norm.simult.one.fac(c(4,6,5,6),c(.90,.90,.90,.90),.95)
[1] 0.9004 3.1924 2.4962 2.7456 2.4962

That is, the adjusted confidence level γ = 0.9004, and the factors are

ki;γ = 1√
ni
tni−1;0.9004(zpi

√
ni) = (3.1924, 2.4962, 2.7456, 2.4962), i = 1, . . . , 4.

The simultaneous lower tolerance limits X̄i − ki;0.9004Sc and the upper tolerance limits X̄i +
ki;0.9004Sc are reported in Table 5.

The set of lower tolerance limits means that at least 90% fluid type 1 insulation have a
minimum effective life of 12.60 h, at least 90% of fluid type 2 have a minimum effective life
of 13.26 hours, at least 90% of fluid type 3 have a minimum effective life of 15.52 h and at
least 90% of fluid type 4 have a minimum life of 14.12 h with confidence 95%.

The factors for computing (.90, .95) simultaneous TIs when (n1, n2, n3, n4) = (4, 6, 5, 6)
are obtained using the R function in the appendix as
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Table 5. Simultaneous (.90, .95) one-sided, two-sided and equal-tailed tolerance intervals for life hours
of insulating fluids.

Fluid type Lower TL Upper TL Two-sided TI Equal-tailed TI

1 12.60 24.60 (12.35, 24.85) (10.97, 26.23)
2 13.26 22.64 (12.81, 23.09) (12.03, 23.87)
3 15.52 25.84 (15.13, 26.22) (14.15, 27.21)
4 14.12 23.51 (13.68, 23.96) (12.90, 24.73)

> norm.simult.two.fac(10^5, c(4,6,5,6), c(.9,.9,.9,.9), .95)
[1] 0.6928 3.325 2.733 2.948 2.733

That is, the adjusted confidence level γ = 0.6928 and the factors are 3.325, 2.733, 2.948
and 2.733 for fluid types 1, 2, 3, and 4, respectively. The TIs X̄i ± k′

i;0.6928Sc are computed
and presented in Table 5. This means that, with confidence 95%, at least 90% of type 1
insulating fluid have life between 12.34 and 24.86 h, at least 90% of type 2 insulating fluid
have life between 81.95 and 95.13 h, at least 90% of type 3 insulating fluid have life between
15.13 and 26.22 h and at least 90% of type 4 insulating fluid have life between 13.67 and
23.96 h.

To compute (.90, .95) equal-tailed TIs, we calculated the required factors as

> norm.simult.eqt.fac(c(4,6,5,6),c(.90,.90,.90,.90),.95)
[1] 0.8123 4.0563 3.1464 3.4695 3.1464

The equal-tailed TIs (Lei,Uei) = X̄i ± kei;.8123Sc are computed and reported in Table 5.
The equal-tailed TIs can be interpreted as follows. We can conclude with 95% confidence
that no more than 5% of fluid type i fails within Lei hours and no more than 5% of fluid
type 1 lasts more than Uei hours, i = 1, . . . , 4..

4. Concluding remarks

Simultaneous statistical intervals such as simultaneous confidence intervals are often
constructed from one-sample interval by adjusting the confidence coefficients using the
Bonferroni approach or by Scheffé’s method. Mee [12] has developed exact numerical
methods of computing simultaneous one-sided tolerance limits and simultaneous two-
sided tolerance intervals. These simultaneous TIs are exact in the sense that the coverage
probabilities are equal to the nominal confidence level for all parameter values. These
methods, however, are applicable only when the content levels of the TIs are the same and
the sample sizes are the same. Using the idea of Hoang-Thuy-Ngan and Krishanmoorthy
(2020), we proposed exact numerical methods for computing (p1, 1 − α), . . . , (pl, 1 − α)

simultaneous one-sided tolerance limits, simultaneous TIs and also simultaneous equal-
tailed TIs. For given sample sizes, content levels and confidence coefficient, the factors
determined by our methods are unique. Our methods are applicable even when sample
sizes are unequal. To help practitioners to find tolerance factors, we provided R code in the
appendix which are simple to use.
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Appendix

R code to compute factors for simultaneous one-sided tolerance limits

# n = vector of sample sizes; p = vector of content levels
# cl = confidence level
norm.simult.one.fac = function(n, p, cl){

l = length(n); m = n-1; M = sum(m); zp = qnorm(p)
fn = function(gam){
k = qt(gam, m, zp*sqrt(n))/sqrt(n)
f = function(x){

prod = 1
for(j in 1:l){
prod = prod*pnorm(sqrt(n[j])*(k[j]*sqrt(x)/sqrt(M)-zp[j]))}
y = prod*dchisq(x, M)
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return(y)}
LowLim = 0; UppLim = 100*sqrt(2*M)
g = integrate(f, LowLim, UppLim)[[1]]-cl
return(g)

}
R = .9999; L = cl-.45
gams = uniroot(fn, c(L,R))[[1]]
print(c(gams,qt(gams, m, zp*sqrt(n))/sqrt(n)),4)

}
> norm.simult.one.fac(c(12,18,16),c(.90,.90,.90),.95)
[1] 0.9348 2.1171 1.9080 1.9606

R code to compute factors for simultaneous two-sided tolerance intervals

norm.simult.two.fac = function(nr, n, p, cl){
set.seed(129)
if(length(unique(n)) == 1 & length(unique(p)) == 1){
l = length(n); n = n[1]; p = p[1]
m = n-1; M = l*m; zp = qnorm((1+p)/2)
del = sqrt(n)*zp
fn = function(gam){
k = qt((1+gam)/2, m, del)/sqrt(n)
f = function(x){

y = 2*l*(2*pnorm(x)-1)^(l-1)*dnorm(x)

*(1-pchisq(M*qchisq(p,1,x^2/n)/k^2,M)) return(y)}
LowLim = 0; UppLim = 50;
g = integrate(f, LowLim, UppLim)[[1]]-cl
return(g)

}
}
else{
l = length(n); m = n-1; M = sum(m); zp = qnorm((1+p)/2)
y = matrix(rnorm(nr*l), nr, l); chik = y; chis = chik
del = zp*sqrt(n)
for(j in 1:l){
y[,j] = y[,j]^2/n[j]}

for(j in 1:nr){
chis[j,] = qchisq(p, 1, y[j,])}

fn = function(x){
k = qt((1+x)/2, m, del)/sqrt(n)
for(j in 1:l){

chik[,j] = chis[,j]/k[j]^2}
yx = apply(chik, 1, function(x) max(x))
ps = 1-pchisq(M*yx, M)
return(mean(ps)-cl)}

}
x0 = uniroot(fn, c(cl-.4,cl))[[1]]
print(c(x0, qt((1+x0)/2, m, del)/sqrt(n)))
}
norm.simult.two.fac(10^5, c(12,18,16), c(.8,.9,.95), .95)
[1] 0.7038 1.824 2.127 2.550

R code to compute factors for constructing simultaneous equal-tailed tolerance intervals
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norm.simult.eqt.fac = function(n, p, cl){
l = length(n); m = n-1; M = sum(m); zp = qnorm((1+p)/2)
del = sqrt(n)*zp
fn = function(gam){
k = qt((1+gam)/2, m, del)/sqrt(n)
f = function(x){

prod = 1
for(j in 1:l){
prod = prod*(2*pnorm(-del[j]+k[j]*sqrt(n[j]*x)/sqrt(M))-1)

}
y = prod*dchisq(x, M)
return(y)}

LowLim = M*max(del^2/k^2/n); Upplim = 50*sqrt(2*M);

g = integrate(f, LowLim, Upplim)[[1]]-cl
return(g)

}
gam = uniroot(fn, c(cl-.4,cl))[[1]]
return(c(gam,qt((1+gam)/2, m, del)/sqrt(n)))

}
> norm.simult.eqt.fac(c(12,18,16),c(.80,.90,.95),.95)
[1] 0.8881 2.171 2.420 2.915
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