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ABSTRACT
The problem of estimating the ratio of means of two independent
normal distributions is considered. Interval estimation method sim-
ilar to Welch’s approximate degrees of freedom solution for the
Behrens–Fisher problem is proposed. The test and confidence inter-
val (CI) for the ratio of means are compared with the available CIs
including the one based on the modified likelihood ratio test. Exten-
sive simulation studies indicate that the proposed method is accu-
rate even for very small samples and simpler than other available
likelihood-based tests and CIs. The methods are illustrated using an
example.
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1. Introduction

In most applications, two populations are compared using the difference of the means or
themedians. Ratio ofmeans is used to compare two populations of positive data. Finney [1]
has noted that the relative potency of a new drug to that of a standard one can be assessed
in terms of a ratio of means. Berger and Hsu [2] and Chow and Liu [3] have mentioned
similar applications of estimates of a ratio of means in bioequivalence study. Many arti-
cles on the ratio of means of normal distributions have appeared. Fieller’s [4] confidence
interval for the ratio of normal means (assuming that the variances are equal) is the most
popular and commonly used in applications [5]. Hwang [6] has proposed a resampling
approach to construct confidence intervals for the ratio of means. In a meta-analysis set-
ting, Friedrich et al. [7] described a method of combining the ratio of means from each of
several independent studies. Applications of estimates of the ratio of means in fluorescence
ratio imaging are noted in van Kempen and van Vliet [8]. Confidence estimation for other
related problems can be found in George and Kibria [9].

Although, importance and applications of inferential procedures for the ratio of normal
means arewell understood, only limited results are availablewhen the population variances
are unknown and arbitrary. In particular, we note that among solutions for testing or inter-
val estimating the difference between two normal means when the variances are arbitrary
(Behrens–Fisher problem), the Welch approximate degrees of freedom solution is accu-
rate and popular, and it is available in some scientific calculators such as the TI-84. Such
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a simple accurate solution is not available for estimating the ratio of two normal means.
Wu and Jiang [10] have proposed a modified likelihood ratio test (MLRT) which is highly
accurate and satisfactory even for small samples. However, the proposedMLRT is not sim-
ple and numerically involved to find a confidence interval for the ratio of means. Lee and
Lin [11] have proposed a fiducial CI which is conceptually simple and it can be estimated
byMonte Carlo simulation. Recently, Bonett and Price [12] have proposed a simple closed-
formCI based on the distribution of log-transformed samplemeans.However, the available
CIs were not evaluated extensively in terms of coverage probability and precision and no
comparison study was made.

In this article, we propose a method of computing CIs for the ratio of normal means.
Our method is similar to the Welch approximate degrees of freedom solution for estimat-
ing the difference between two normal means. In Section 2, we first describe the methods
of finding CIs based on theMLRT and fiducial approach. Then we describe the Bonett and
Price confidence interval and our method of finding CIs. An algorithm for computing a CI
based on our method is also given. In Section 3, we carry out extensive simulation studies
by evaluating all interval estimation methods in terms of coverage probability and preci-
sion. Accuracy of themethods is also evaluated in terms of type I error rates. An illustrative
example based on real life data is given in Section 4. Some concluding remarks are given
in Section 5.

2. Confidence intervals for the ratio of means

Let (X̄i, S2i ) denote the (mean, variance) based on a sample of size ni from a normal distri-
bution with mean μi and variance σ 2

i , N(μi, σ 2
i ), i = 1, 2. When σ 2

1 = σ 2
2 , a CI for θ can

be obtained based on the pivotal quantity given by

Te(θ) = X̄1 − θ X̄2

Sp
√

1
n1 + θ2

n2

, (1)

where the pooled sample variance S2p = (m1S21 + m2S22)/(m1 + m2), andmi = ni − 1. The
quantity Te(θ) has the t distribution with degrees of freedom (df) m = m1 + m2. A two-
sided 100 (1 − α)% CI for θ are formed by the roots of the equation |Te(θ)| = tm;1−α/2,
where tm;q denotes the 100 q percentile of the t distribution with df =m. The CI formed by
these roots is given by

X̄1X̄2 ± tm;1−α/2Sp

√
X̄2
1

n2 + 1
n1

(
X̄2
2 − t2m;1−α/2

S2p
n2

)
X̄2
2 − t2m;1−α/2

S2p
n2

. (2)

The above exact CI is based on Fieller’s [4] results, and is commonly referred to as the
Fieller CI.

Remark 2.1: Applying the result that a2 − b2 = (a − b)(a + b) to the term within the
brackets under the radical sign in the above formula (2), we see that the above CI is defined
and positive if the lower bound X̄2 − tm;1−α/2Sp/n2 forμ2 is positive. By interchanging the
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subscripts 1 and 2 in the above formula, we find a CI for the ratio θ2/θ1 = θ−1. This CI for
θ−1 is defined if the lower bound X̄1 − tm;1−α/2Sp/n1 for μ1 is positive. Thus, the above
CI is defined and positive if both 100(1 − α/2)% lower bounds for μ1 and μ2 are positive.

In the following sections, we shall describe four different approaches of finding CIs for
the ratio of means when the variances are unknown and arbitrary.

2.1. Confidence intervals based on theMLRT

For a given data from the ith population, let (x̄i, s2i ) denote the (mean, variance) based on
the data. To describe the MLRT by Wu and Jiang [10], write the MLEs

θ̂ = x̄1
x̄2
, μ̂2 = x̄2, and σ̂ 2

i = 1
ni

ni∑
i=1

(xij − x̄i)2, i = 1, 2.

The constrained MLEs when θ is fixed are given by the recursive equations

μ̂2θ =
(
n1θ x̄1
σ̂ 2
1θ

+ n2x̄2
σ̂ 2
2θ

)/(
n1θ2

σ̂ 2
1θ

+ n2
σ̂ 2
2θ

)
,

σ̂ 2
1θ = σ̂ 2

1 + (x̄1 − θμ̂2θ )
2,

σ̂ 2
2θ = σ̂ 2

2 + (x̄2 − μ̂2θ )
2.

(3)

The LRT statistic is given by

r(θ) = sgn(θ̂ − θ)

{
n1 ln

σ̂ 2
1θ

σ̂ 2
1

+ n2 ln
σ̂ 2
2θ

σ̂ 2
2

}1/2

. (4)

To write the MLRT statistic, define

u(θ) = √
n1n2

[
θ̂ μ̂2 − θμ̂2θ

σ̂ 2
1 σ̂ 2

2θ
+ θ(μ̂2θ − μ̂2)

σ̂ 2
1θ σ̂

2
2

](
σ̂ 3
1 σ̂ 3

2
σ̂ 2
1θ σ̂

2
2θ

)

×
{
n1θ2

σ̂ 2
1θ

(
2σ̂ 2

1
σ̂ 2
1θ

− 1

)
+ n2

σ̂ 2
2θ

(
2σ̂ 2

2
σ̂ 2
2θ

− 1

)}−1/2

. (5)

Finally, the MLRT statistic is expressed as

r∗(θ) = r(θ) + 1
r(θ)

ln
u(θ)

r(θ)
(6)

and is approximately standard normally distributed with an error of O(n−3/2).
A CI for θ can be obtained by inverting the MLRT. The lower and upper bounds of a

100(1 − α)% CI are the roots of the equations

r∗(θ) − z1−α/2 = 0 and r∗(θ) + z1−α/2 = 0, (7)

respectively, where zp denotes the 100 p percentile of the standard normal distribution.
Using the endpoints of the CI in (10) as the starting value, a bisection method can be used
to find the roots of the above equations.
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2.2. Fiducial confidence intervals

To find a fiducial CI for the ratio of means, we first need to find fiducial distributions for
the parameters of a normal distribution. A fiducial distribution of a parameter is regarded
as the posterior distribution of the parameter without assuming a prior distribution [13].
Fiducial distributions for normal parameters can be readily obtained using Dawid and
Stone’s [14] functionalmodel stochastic relation. Let (x̄, s2) be an observed value of (X̄, S2),
which is based on a sample of size n. Notice that X̄ d= μ + Z σ√

n and S2 d= σ 2 χ2
m
m , where

Z ∼ N(0, 1) independently of χ2
m, m = n−1, and X d= Y means that X and Y are iden-

tically distributed. Solving the these “equations” for μ and σ 2 and then replacing (X̄, S2)
with (x̄, s2), we obtain the fiducial quantities (FQs) for the parameters μ and σ 2 as

Qμ = x̄ + Z
U

s√
n

and Qσ 2 = s2

U2 , (8)

where U2 = χ2
m/m. That is, for a given (x̄, s2), the distribution of Qμ is called the fiducial

distribution of μ and the distribution of s2/U2 is the fiducial distribution for σ 2.
For the two-sample problem, let (x̄i, si) be an observed value of (X̄i, Si), i = 1, 2. Fur-

thermore, let s̃i = si/
√
ni be an observed value of S̃i = Si/

√
ni, i = 1, 2. A FQ for the ratio

θ = μ1/μ2 can be obtained by substitution as

Qθ = Qμ1

Qμ2

=
x̄1 + Z1

U1
s̃1

x̄2 + Z2
U2
s̃2
, (9)

where Zi’s are Ui’s are mutually independent with Zi ∼ N(0, 1) and miU2
i ∼ χ2

mi distri-
bution. It should be noted that Lee and Lin [11] have obtained the same FQ Qθ using
the generalized variable approach by Weerahandi [15], which is a special case of the fidu-
cial approach [16]. Krishnamoorthy and Mathew [17] have used this generalized variable
approach to find a CI for the ratio of log-normal means. For a given (x̄1, s1, x̄2, s2) the
distribution of Qθ in (9) does not depend on any parameter and so its percentiles can
be estimated by Monte Carlo simulation. The lower and upper 100α percentiles form a
100(1 − 2α)% fiducial CI for θ (see Lee and Lin [11]).

The percentilesQθ can also be approximated using the modified normal-based approx-
imation given in Krishnamoorthy [18] as follows. Let Qμi = x̄i + Zi

Uĩ
si, and notice that

Zi/Ui ∼ tmi , t distributionwith degrees of freedom (df)mi = ni − 1, i = 1, 2. SoE(Qμi) =
x̄i and Qμi,1−α = x̄i + tmi;1−α̃si is the 100 (1 − α) percentile of Qμi , i = 1, 2. Then, an
approximate 100 (1 − 2α)% fiducial CI for θ is given by

x̄1x̄2 ± {t2m2;1−α̃s
2
2
(
x̄21 − 1

2 t
2
m1;1−α̃s

2
1
)+ t2m1;1−α̃s

2
1
(
x̄22 − 1

2 t
2
m2;1−α̃s

2
2
)} 1

2[
x̄22 − t2m2;1−α̃s

2
2
] , (10)

where s̃2i = s2i /ni, i = 1, 2. For example, using α = 0.025 in the above expression, we find
an approximate 95% fiducial CI for θ . It can be shown, along the lines of Remark 1, the
above CI is positive if both 100(1 − α/2)% lower bounds for μ1 and μ2 are positive.
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2.3. Confidence intervals based on log-transformation

Bonett and Price [12] have noted that the sampling distribution of ln(X̄1/X̄2) should con-
verge to normality faster than the sampling distribution of X̄1/X̄2. Using a delta method an
estimate of the variance can be found as v̂ar((ln(X̄1/X̄2)) = S̃21

X̄2
1

+ S̃22
X̄2
2
. Using this variance

estimate, an approximate CI for θ can be obtained as

exp
{
ln
(
X̄1/X̄2

)± tf ∗;1−α/2

√
v̂ar(ln(X̄1/X̄2))

}
, (11)

where the degrees of freedom

f ∗ =
(
S̃21
X̄2
1

+ S̃22
X̄2
2

)2/[
S̃41

m1X̄4
1

+ S̃42
m2X̄4

2

]
,

is a Satterthwaite approximate degrees of freedom.

2.4. Welch’s approximate degrees of freedommethod

The Welch method to find a CI for the difference μ1 − μ2 is based on an approximate
distribution of v̂ar(X̄1 − X̄2) = S̃21 + S̃22. Let us find a CI for θ based on the quantity

T(θ) = X̄1 − θ X̄2√̃
S21 + θ 2̃S22

. (12)

When the variances are unknown and arbitrary, it is not possible to find an exact distribu-
tion of T(θ), and so we approximate its distribution along the lines of Welch’s method
to find a CI for the difference between two means. In particular, we approximate the
distribution of

W = S̃21 + θ 2̃S22
σ̃ 2
1 + θ2σ̃ 2

2

by the distribution of χ2
f /f , where σ̃ 2

i = σ 2
i /ni, i = 1, 2, and f is determined so that the

variance ofW is equal to var(χ2
f /f ) = 2/f . Noting that

var(W) =
2 σ̃ 4

1
m1

+ 2θ4 σ̃ 4
2

m2(
σ̃ 2
1 + θ2σ̃ 2

2
)2 ,

we estimate the variance by v̂ar(W), which is obtained by replacing (̃σ 2
1 , σ̃

2
2 ) by (̃S21, S̃

2
2).

Equating the v̂ar(W) to the variance of χ2
f /f and solving the resulting equation for f, we
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find

f = f (θ) =
(̃
S21 + θ 2̃S22

)2
S̃41
m1

+ θ4
S̃42
m2

.

Thus, W ∼ χ2
f (θ)

/f (θ), and using the standard stochastic representation of the Student t
random variable, we see that

T(θ) = X̄1 − θ X̄2√̃
S21 + θ 2̃S22

∼ tf (θ), approximately. (13)

Remark 2.2: As in the Welch approximate degrees of freedom solution to the
Behrens–Fisher problem, we can show that the df f (θ) satisfies min{m1,m2} < f (θ) ≤
m1 + m2. To show this, we find the derivative f ′(θ) that can be expressed as

f ′(θ) =
4̃S21̃S

2
2θ (̃S21 + S̃22θ

2)
(

S̃21
m1

− S̃22θ
2

m2

)
(

S̃41
m1

+ S̃42θ4
m2

)2 ,

where S̃21 = S21/n1 and S̃
2
2 = S22/n2.Note that f

′(θ) = 0 at θ = θ∗ = [( S̃21
m1

)
/

(
S̃22
m2

) ]1/2, neg-
ative for θ > θ∗ and is positive for θ < θ∗. Thus, f (θ) attains the maximum at θ = θ∗
and f (θ∗) = m1 + m2. Furthermore, f (θ) → m1 when θ → 0 and it approachesm2 when
θ → ∞. So min{m1,m2} ≤ f (θ) < m1 + m2 for all θ > 0.

2.4.1. Confidence interval based on the approximate degrees of freedom f(θ̂)

Let θ̂ = X̄1/X̄2. Using (13) with f (θ) replaced by f (θ̂), we can obtain the following 100 (1 −
α)% confidence set as {

θ : −tf (θ̂);1−α/2 ≤ T(θ) ≤ tf (θ̂);1−α/2

}
,

where

f (θ̂) =
(
X̄2
2 S̃

2
1 + X̄2

1 S̃
2
2
)2

X̄4
2
S̃41
m1

+ X̄4
1
S̃42
m2

. (14)

It can be readily verified that the above confidence set is the interval

X̄1X̄2 ± tf (θ̂);1−α/2

√̃
S21
(
X̄2
2 − 1

2 t
2
f (θ̂);1−α/2̃S

2
2

)
+ S̃22

(
X̄2
1 − 1

2 t
2
f (θ̂);1−α/2̃S

2
1

)
X̄2
2 − t2f (θ̂);1−α/2̃S

2
2

. (15)

Along the lines of Remark 1, it can be shown that the aboveCI is a bona fide positive interval
if X̄i − 1√

2
tf (θ̂);1−α/2̃Si > 0 for i = 1, 2.Note that this quantity X̄i − 1√

2
tf (θ̂);1−α/2̃Si is larger

than the 100 (1 − α/2)% lower confidence limit for μi based on the df f (θ̂).
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Figure 1. P-values in (16) and (17) as a function of θ when (n1, n2) = (20, 15), (x̄1, x̄2) = (6.079, 1.932)
and (s21, s

2
2) = (1.035, 0.4139); the right-tailed test produced 2.5% lower bound as 2.619 and the

left-tailed test produced 2.5% upper bound as 3.894.

2.4.2. A confidence interval based on f(θ)

A CI for θ can be obtained by inverting one-sided tests. Consider testing H0 : θ = θ0 vs.
Ha : θ > θ0. The lower bound of the 100 (1 − α)%CI is obtained by inverting a right-tailed
test or obtained as the value of θ0 that satisfies the equation (see Figure 1)

PRt ;α(θ0) = P

⎛⎝tf (θ0) >
x̄1 − θ0x̄2√̃
s21 + θ20 s̃

2
2

⎞⎠− α

2
= 0, (16)

where (x̄i, s2i ) is an observed value of (X̄i, S2i ), i = 1, 2. Similarly, the corresponding upper
bound can be obtained as the value of θ0 that satisfies the equation (see Figure 1)

PLt ,α(θ0) = P

⎛⎝tf (θ0) <
x̄1 − θ0x̄2√̃
s21 + θ20̃ s

2
2

⎞⎠− α

2
= 0. (17)

The lower and upper bounds form a 100 (1 − α)% CI for θ and we refer to this CI as the
Welch CI. These confidence bounds can be found using the following algorithm.

Algorithm 2.1: (1) For a given (x̄1,̃ s1, x̄2,̃ s2) and the confidence level 1 − α, find the
approximate CI (L,U) in (15).

(2) If PRt ,α(L) < 0, find δ > 0 so that PRt ,α(L + δ) > 0 and the root bracketing interval is
(L, L + δ); else find δ > 0 so that PRt ,α(L − δ) < 0 and the root bracketing interval is
(L − δ, L); see Figure 1.

(3) Using a bisection method with this root bracketing interval, find the lower bound as
the root of Equation (16).

(4) If PLt ,α(U) > 0, find δ > 0 so that PRt ,α(U + δ) < 0 and the root bracketing interval
is (U,U + δ); else if PLt ,α(U) < 0, find δ > 0 so that PRt ,α(U − δ) < 0. Then the root
bracketing interval is (U − δ,U); see Figure 1.
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(5) Using the bracketing interval and a bisection method, find the upper bound as the
root of Equation (17).

The two roots found in the above algorithm are the endpoints of a 100 (1 − α)%Welch
CI for θ .

3. Coverage and comparison studies

To judge the accuracy of the CIs for the ratio of normal means when the variances are
unknown and arbitrary, we estimated the coverage probabilities and expected widths of the
CIs and type I error rates of the tests for some parameters and sample sizes. AllMonte Carlo
estimates are based on 100,000 simulation runs. In situations where the ratio of means is
an appropriate measure of difference, the variable is usually positive. For a normal popu-
lation, the ratio of the mean to the standard deviation has to be on the order of three or
more, for the probability of a negative value is negligible. That is, in practical situations
where the ratio of means needs to be estimated, the mean μ must be at least 3σ . This
has been noted by Johnson and Welch [19] in the problem of estimating the coefficient
of variation of a normal population. So in our simulation study, samples were generated
from a N(μi, σ 2

i ) distribution with μi ≥ 3σi, i = 1, 2. Furthermore, all interval estima-
tion methods are scale invariant, and so without loss of generality, we choose σ1 = 1.0 and
σ2 = .01, .05, .1, .3, .5, .8, .9, .95 and .99.

In Table 1, we reported type I error rates of the tests 1 = Bonnet and Price, 2 = fiducial
test, 3 = test based on f (θ̂), and 4 = Welch test for some small samples. The MLRT is not
included for comparison, because for some small samples the term under the square root
in (5) could be negative and we can’t compute its type I error rates accurately. The reported
type I error rates in Table 1 indicate that the fiducial test controls the type I error rates
within the nominal level, but could be conservative when the variances are not drastically
different. Bonett and Price’s test also controls the type I error rates, the error rates are
unbalanced with right-tail error rates larger than the corresponding left-tail error rates.
These results indicate that the Bonett and Price test is liberal for left-sided hypotheses and
conservative for right-sided hypotheses. Tests 3 and 4 control the type I error rates well and
the error rates are very close to the nominal level 0.05 for most cases, except when n1 =
n2 = 4. Even for this case, the type I error rates are in the range 0.043 –0.050. Both tests 3
and 4 show improved performance when n1 = 4 and n2 = 8. TheWelch test performs like
an exact test in controlling type I error rates when n1 = 4 and n2 = 8.

As the type I error rates of the tests are not similar, we can’t make a fair comparison
of tests with respect to power. However, we compare them in terms of coverage probabil-
ity and precision. Note that a test based on a CI with higher precision is more powerful
than the one based on a CI with lower precision provided both CIs have coverage proba-
bilities close to the nominal level. In Table 2, we presented the coverage probabilities and
the expected widths of 95% CIs based on the fiducial, MLRT and the Welch method. We
observe from the table values that the Welch CI and the CI based on the MLRT are prac-
tically the same in terms of coverage probability and expected width. The fiducial CIs are
in general conservative, and it is as good as the other two CIs only when the population
variances are very different.
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Table 1. Left (L) and right-tail (R) type I error rates of the tests when α = 0.05.

(n1, n2) = (4, 4)

(μ1,μ2) = (3, 3) (μ1,μ2) = (4.5, 3)

σ1 = 1 1 2 3 4 1 2 3 4
σ2 L(R) L(R) L(R) L(R) L(R) L(R) L(R) L(R)

.01 .035(.061) .050(.051) .050(.050) .051(.051) .041(.059) .050(.050) .050(.051) .050(.050)

.05 .035(.062) .050(.050) .050(.050) .050(.051) .040(.060) .049(.048) .049(.051) .050(.051)

.10 .035(.064) .048(.048) .049(.052) .051(.051) .042(.059) .048(.046) .051(.052) .052(.051)

.30 .037(.061) .040(.040) .049(.053) .052(.052) .040(.054) .035(.035) .046(.049) .050(.049)

.50 .035(.054) .034(.034) .045(.049) .049(.048) .039(.046) .030(.031) .042(.046) .046(.046)

.80 .037(.045) .030(.029) .043(.045) .044(.045) .044(.038) .029(.030) .045(.042) .046(.045)

.90 .038(.042) .029(.029) .042(.044) .043(.045) .046(.037) .029(.030) .046(.043) .045(.045)

.95 .038(.040) .028(.029) .042(.044) .045(.044) .048(.037) .030(.032) .046(.043) .045(.045)

.99 .040(.039) .028(.028) .043(.042) .044(.044) .049(.034) .030(.033) .047(.042) .045(.046)

(n1, n2) = (4, 8)

(μ1,μ2) = (3, 3) (μ1,μ2) = (6, 3)

1 2 3 4 1 2 3 4
σ2 L(R) L(R) L(R) L(R) L(R) L(R) L(R) L(R)

.01 .035(.063) .050(.052) .049(.050) .050(.052) .043(.056) .050(.050) .050(.050) .050(.050)

.05 .036(.062) .050(.050) .050(.050) .050(.050) .042(.057) .050(.049) .050(.051) .051(.050)

.10 .035(.062) .050(.049) .050(.051) .051(.050) .043(.058) .049(.047) .050(.052) .052(.050)

.30 .037(.066) .047(.046) .050(.056) .051(.053) .046(.059) .041(.041) .051(.056) .054(.053)

.50 .038(.064) .042(.043) .049(.057) .052(.053) .044(.052) .036(.035) .045(.052) .050(.049)

.80 .038(.058) .037(.037) .046(.055) .051(.050) .047(.043) .034(.032) .046(.049) .048(.045)

.90 .038(.054) .036(.035) .045(.054) .051(.050) .048(.042) .033(.033) .045(.048) .047(.047)

.95 .038(.054) .035(.036) .044(.054) .050(.051) .049(.040) .034(.034) .045(.048) .048(.047)

.99 .039(.052) .035(.036) .044(.053) .049(.050) .050(.038) .032(.035) .046(.046) .046(.048)

1 = Bonett and Price test; 2 = Fiducial test; 3 = Test based on f (θ̂); 4 = Welch test

In Table 3, we reported coverage probabilities, left- and right-tail non-coverage error
rates and the expectedwidths of the Bonett and PriceCI, theCI based on the df f (θ̂ ) and the
WelchCI. Confidence interval based on theMLRT is not included as it is very similar to the
Welch CI based on the df f (θ). For simulation studies, we have considered the sample sizes
ranging from 5 to 60, and (μ1,μ2) = (3, 3) and (9, 3). We first observe from the reported
values in Table 3 that the Bonett and Price CI is slightly conservative with unbalanced
tail error rates. Thus we can’t use the endpoints of the Bonnet and Price two-sided CIs as
one-sided lower or upper confidence limits. For example, if we use the right endpoint of
a 90% CI based on the Bonett and Price method as a 95% upper confidence limit, then it
could be conservative. This Bonnet and Price CI is expected to be shorter than the other
two CIs when the variances are not very much different. But in other cases, Bonnet and
Price CI is expected to be wider than the other two CIs. The Bonnet and Price CI can be
safely used when both sample sizes are 30 or more. The CI based on the df f (θ̂) and the
Welch CI based on the df f (θ) exhibit similar performances for all cases. Both perform like
an exact CI controlling coverage probabilities very close to the nominal level 0.95 while
maintaining balanced non-coverage tail error rates and having similar expected widths for
all cases. Since the approximate CI based on f (θ̂) is in closed-form and straightforward to
compute, this CI can be recommended in applications.
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Table 2. Coverage probabilities and (expected widths) of 95% CIs for the ratio of means.

(μ1,μ2) = c(3, 3)

σ1 = 1 Fiducial MLRT Welch Fiducial MLRT Welch Fiducial MLRT Welch

σ2 (n1, n2) = (5, 10) (n1, n2) = (10, 10) (n1, n2) = (10, 20)

.01 .949(.464) .948(.463) .949(.464) .950(.464) .950(.463) .950(.464) .950(.463) .949(.462) .950(.463)

.05 .951(.466) .950(.463) .950(.464) .951(.465) .950(.463) .951(.464) .950(.465) .950(.463) .950(.465)

.10 .953(.472) .950(.466) .950(.466) .951(.467) .950(.464) .951(.465) .951(.465) .950(.464) .951(.465)

.30 .963(.534) .949(.495) .950(.497) .955(.489) .949(.478) .949(.477) .952(.475) .950(.470) .950(.470)

.50 .970(.652) .951(.583) .953(.584) .960(.531) .950(.506) .951(.507) .955(.493) .950(.483) .949(.482)

.80 .970(.984) .949(.893) .950(.886) .964(.630) .951(.589) .952(.591) .957(.538) .949(.518) .949(.517)

.90 .969(1.11) .950(1.01) .950(1.01) .963(.672) .950(.628) .951(.630) .957(.557) .948(.534) .948(.533)

.95 .968(1.50) .949(1.40) .949(1.40) .964(.696) .949(.651) .951(.653) .959(.567) .949(.542) .949(.542)

.99 .967(1.22) .947(1.11) .947(1.11) .964(.718) .949(.672) .950(.674) .960(.578) .950(.552) .951(.551)

(μ1,μ2) = c(4.5, 3)
.01 .950(.463) .949(.462) .950(.463) .948(.464) .948(.462) .948(.463) .950(.463) .949(.461) .950(.463)
.05 .952(.468) .949(.464) .950(.465) .951(.465) .950(.463) .950(.464) .949(.465) .949(.463) .949(.464)
.10 .955(.482) .950(.470) .950(.470) .952(.470) .951(.466) .951(.466) .952(.466) .950(.464) .951(.465)
.30 .968(.603) .949(.541) .951(.545) .959(.515) .950(.495) .950(.494) .953(.487) .949(.479) .948(.477)
.50 .970(.807) .951(.722) .952(.717) .964(.597) .951(.559) .952(.561) .959(.526) .951(.508) .951(.507)
.80 .967(1.30) .948(1.21) .947(1.20) .963(.772) .951(.723) .952(.725) .962(.610) .952(.580) .952(.580)
.90 .964(1.47) .948(1.36) .946(1.36) .962(.847) .949(.797) .950(.798) .961(.645) .949(.613) .949(.614)
.95 .962(1.64) .947(1.53) .945(1.53) .963(.884) .950(.834) .951(.835) .961(.663) .950(.630) .951(.631)
.99 .961(2.01) .946(1.90) .943(1.91) .962(.925) .950(.875) .951(.876) .960(.683) .950(.648) .951(.650)

(μ1,μ2) = c(9, 3)
.01 .952(.465) .951(.463) .952(.464) .950(.464) .950(.463) .950(.464) .949(.464) .948(.463) .949(.464)
.05 .957(.482) .951(.470) .952(.470) .954(.470) .951(.466) .951(.467) .950(.466) .949(.464) .949(.465)
.10 .964(.528) .950(.491) .952(.493) .955(.487) .950(.477) .950(.476) .952(.474) .949(.470) .949(.469)
.30 .970(.877) .950(.790) .950(.782) .964(.637) .950(.593) .951(.596) .958(.547) .949(.524) .949(.523)
.50 .964(1.36) .949(1.28) .947(1.26) .962(.864) .950(.814) .951(.816) .961(.667) .951(.633) .952(.634)
.80 .958(2.43) .949(2.33) .946(2.34) .959(1.29) .951(1.25) .951(1.24) .960(.901) .952(.865) .952(.867)
.90 .956(3.13) .947(3.01) .947(3.04) .957(1.45) .950(1.41) .950(1.40) .958(.989) .950(.954) .951(.956)
.95 .953(3.03) .945(2.90) .948(2.94) .957(1.54) .951(1.50) .950(1.50) .957(1.03) .950(1.00) .950(1.00)
.99 .952(3.84) .944(3.71) .946(3.76) .955(1.63) .949(1.59) .949(1.59) .957(1.08) .950(1.04) .950(1.05)

4. Example

This example is taken from Wu and Jiang [10]. In a bioequivalence study of two formu-
lations of a drug product a standard 2 × 2 crossover experiment was conducted with 25
subjects to compare a new test formulation with a reference formulation. An objective of
the study is to estimate the pharmacokinetics parameters specifying the bioavailability of
each formulation, such as the area under the plasma concentration–time curve (AUC) and
the maximum plasma concentration (Cmax). Typically, 90% confidence intervals for the
ratio of the population means of the test and reference formulations for both AUC and
Cmax are used to assess the average bioequivalence of two formulations. For illustration
purpose, we shall use the Cmax data that fit a normal distribution [10]. The Cmax data are
reproduced here in Table 4.

The sample statistics are obtained as

n1 = 12, x̄1 = 32.78, s21 = 72.24, n2 = 13, x̄2 = 28.70 and s22 = 36.49.

Confidence intervals for the ratio θ of the means of the test formulation to the reference
formulation by various methods are given in Table 5. To test the hypothesesH0 : θ = 1 vs.
Ha : θ 
= 1 using theWelchmethod, we computed the statistic T(θ0) as 1.3760, the degrees
of freedom as 19.72 and the p-value as 2[1 − P(t19.72 > 1.3760)] = 0.1842. To apply the
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Table 3. Left-tail (L) and right-tail (R) non-coverage error rates, coverage probabilities (CP) and expected
widths (EW) of the 95% confidence intervals.

σ1 = 1 Bonett and Price CI CI based on f (θ̂ ) Welch CI

σ2 L CP R EW L CP R EW L CP R EW

(n1, n2) = (5, 5); (μ1,μ2) = (3, 3)
.01 .033 .951 .016 .807 .025 .949 .025 .777 .025 .949 .026 .778
.05 .034 .951 .015 .806 .026 .950 .024 .776 .025 .949 .025 .775
.10 .034 .949 .016 .807 .026 .949 .026 .777 .026 .949 .025 .776
.30 .034 .949 .017 .804 .028 .947 .025 .780 .026 .947 .027 .781
.50 .029 .954 .017 .836 .026 .952 .022 .825 .025 .950 .025 .827
.80 .022 .961 .017 .962 .022 .957 .021 1.00 .023 .955 .022 1.04
.90 .020 .962 .018 1.02 .022 .958 .021 1.09 .022 .956 .022 1.19
.95 .020 .962 .018 1.05 .021 .957 .022 1.23 .023 .955 .023 1.28
.99 .018 .963 .019 1.09 .021 .957 .023 1.39 .023 .954 .023 1.43

(n1, n2) = (5, 10); (μ1,μ2) = (3, 3)
.01 .033 .952 .016 .809 .024 .950 .025 .778 .025 .951 .024 .780
.05 .034 .950 .016 .810 .025 .950 .025 .779 .025 .950 .025 .778
.10 .035 .950 .016 .807 .026 .949 .025 .777 .026 .949 .026 .777
.30 .037 .946 .017 .801 .030 .945 .025 .774 .026 .947 .027 .772
.50 .037 .946 .017 .804 .032 .944 .024 .783 .028 .944 .027 .779
.80 .031 .951 .018 .835 .029 .948 .023 .828 .027 .947 .026 .826
.90 .029 .954 .018 .853 .028 .950 .022 .852 .026 .948 .026 .852
.95 .028 .953 .018 .866 .029 .949 .022 .870 .025 .950 .025 .868
.99 .027 .955 .019 .877 .028 .950 .022 .885 .026 .949 .025 .886

(n1, n2) = (10, 10); (μ1,μ2) = (3, 3)
.01 .034 .950 .016 .468 .025 .950 .025 .463 .025 .949 .026 .464
.05 .033 .951 .016 .469 .024 .950 .026 .464 .025 .950 .025 .464
.10 .034 .951 .015 .470 .025 .950 .024 .465 .025 .950 .025 .465
.30 .034 .950 .016 .482 .026 .949 .024 .478 .026 .949 .025 .477
.50 .031 .951 .017 .509 .026 .949 .024 .507 .026 .949 .025 .507
.80 .026 .954 .020 .582 .025 .951 .023 .588 .024 .951 .026 .590
.90 .023 .956 .020 .615 .024 .952 .023 .627 .024 .951 .025 .630
.95 .023 .955 .022 .632 .024 .951 .025 .647 .024 .952 .025 .652
.99 .022 .955 .023 .651 .024 .951 .025 .670 .025 .950 .025 .676

(n1, n2) = (5, 20); (μ1,μ2) = (3, 3)
.01 .034 .950 .015 .810 .025 .950 .025 .779 .024 .951 .025 .779
.05 .034 .951 .015 .810 .025 .950 .025 .779 .025 .949 .026 .776
.10 .033 .952 .015 .807 .025 .950 .025 .777 .025 .949 .026 .778
.30 .036 .948 .016 .806 .028 .948 .024 .777 .027 .946 .027 .771
.50 .038 .945 .017 .802 .031 .944 .025 .776 .026 .945 .029 .769
.80 .037 .946 .018 .804 .032 .944 .024 .785 .029 .943 .028 .780
.90 .036 .946 .017 .808 .032 .945 .023 .792 .027 .944 .029 .787
.95 .034 .947 .019 .811 .031 .945 .024 .796 .029 .944 .028 .792
.99 .035 .947 .018 .814 .032 .944 .024 .801 .029 .943 .029 .797

(n1, n2) = (20, 5); (μ1,μ2) = (3, 3)
.01 .033 .950 .017 .309 .025 .950 .025 .308 .025 .951 .025 .308
.05 .032 .951 .018 .311 .025 .950 .024 .309 .025 .950 .025 .309
.10 .031 .952 .016 .315 .025 .950 .025 .313 .025 .950 .025 .314
.30 .027 .954 .019 .363 .024 .952 .024 .363 .024 .951 .025 .365
.50 .024 .952 .024 .462 .023 .950 .027 .471 .026 .949 .025 .479
.80 .021 .949 .030 .682 .024 .946 .031 .766 .027 .945 .028 .813
.90 .020 .947 .033 .772 .024 .945 .031 .887 .027 .945 .029 .949
.95 .018 .948 .034 .820 .024 .944 .033 .938 .028 .945 .028 1.10
.99 .018 .947 .035 .872 .024 .944 .032 1.11 .028 .943 .030 1.26
.01 .033 .950 .017 .365 .025 .950 .025 .363 .024 .951 .025 .363
.05 .032 .951 .017 .365 .025 .950 .025 .363 .025 .950 .026 .363
.10 .033 .951 .017 .366 .025 .950 .025 .364 .024 .951 .025 .364
.30 .032 .950 .018 .377 .025 .949 .026 .375 .025 .949 .026 .375
.50 .030 .952 .019 .400 .025 .950 .025 .400 .026 .948 .026 .399
.80 .026 .953 .022 .459 .025 .951 .025 .462 .025 .950 .025 .462
.90 .025 .953 .022 .483 .025 .950 .025 .488 .026 .951 .024 .490
.95 .024 .954 .022 .497 .025 .951 .024 .503 .025 .951 .025 .504
.99 .023 .953 .023 .510 .025 .950 .025 .518 .025 .951 .024 .520

(continued).
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Table 3. Continued.

σ1 = 1 Bonett and Price CI CI based on f (θ̂ ) Welch CI

σ2 L CP R EW L CP R EW L CP R EW

(n1, n2) = (10, 30); (μ1,μ2) = (3, 3)
.01 .034 .951 .016 .469 .025 .951 .025 .464 .025 .950 .025 .464
.05 .034 .950 .016 .469 .025 .950 .025 .464 .025 .950 .025 .464
.10 .033 .951 .016 .469 .025 .951 .025 .464 .025 .950 .025 .463
.30 .034 .950 .016 .472 .026 .949 .025 .468 .026 .949 .025 .466
.50 .033 .951 .016 .479 .026 .950 .024 .475 .026 .948 .026 .475
.80 .032 .950 .018 .499 .027 .948 .024 .497 .026 .949 .025 .497
.90 .032 .950 .018 .510 .027 .948 .024 .508 .025 .949 .026 .506
.95 .032 .951 .018 .514 .028 .948 .024 .512 .026 .948 .026 .512
.99 .030 .951 .019 .519 .027 .948 .024 .519 .025 .948 .026 .518

(n1, n2) = (30, 10); (μ1,μ2) = (3, 3)
.01 .031 .950 .018 .248 .025 .950 .025 .247 .025 .950 .025 .247
.05 .031 .950 .019 .248 .025 .950 .025 .247 .026 .949 .025 .247
.10 .031 .951 .018 .251 .026 .950 .024 .250 .026 .950 .025 .250
.30 .028 .952 .020 .278 .024 .950 .025 .278 .024 .951 .024 .278
.50 .025 .952 .022 .330 .024 .951 .024 .331 .025 .950 .025 .333
.80 .021 .951 .027 .442 .024 .949 .026 .452 .025 .951 .024 .456
.90 .019 .952 .028 .486 .024 .950 .026 .502 .025 .950 .025 .507
.95 .019 .951 .030 .509 .024 .949 .027 .529 .025 .948 .027 .533
.99 .018 .951 .031 .532 .023 .949 .028 .556 .026 .948 .025 .564

(n1, n2) = (20, 60); (μ1,μ2) = (3, 3)
.01 .032 .950 .017 .309 .025 .950 .025 .308 .025 .950 .025 .308
.05 .031 .951 .017 .309 .025 .951 .025 .308 .025 .950 .025 .308
.10 .032 .951 .018 .310 .025 .950 .025 .308 .026 .949 .026 .308
.30 .032 .950 .018 .313 .025 .950 .025 .312 .026 .949 .026 .312
.50 .031 .951 .018 .320 .025 .949 .026 .319 .025 .951 .025 .318
.80 .031 .951 .019 .336 .026 .950 .024 .335 .025 .950 .025 .335
.90 .029 .951 .019 .343 .025 .951 .024 .342 .026 .949 .025 .342
.95 .028 .952 .020 .347 .025 .950 .024 .346 .024 .951 .025 .347
.99 .028 .951 .020 .351 .025 .950 .025 .351 .026 .950 .025 .351

(n1, n2) = (60, 20); (μ1,μ2) = (3, 3)
.01 .029 .950 .020 .172 .025 .950 .025 .172 .025 .951 .024 .172
.05 .030 .950 .021 .172 .025 .949 .025 .172 .025 .950 .025 .172
.10 .029 .951 .020 .174 .025 .950 .025 .174 .025 .949 .026 .174
.30 .027 .951 .021 .193 .024 .951 .025 .193 .024 .950 .026 .193
.50 .025 .950 .024 .228 .025 .949 .026 .228 .025 .950 .025 .228
.80 .022 .951 .027 .299 .025 .950 .025 .302 .026 .949 .025 .303
.90 .021 .951 .028 .327 .025 .949 .025 .331 .024 .951 .025 .332
.95 .020 .952 .028 .341 .025 .951 .025 .346 .026 .948 .026 .347
.99 .020 .950 .030 .355 .025 .949 .027 .361 .025 .950 .025 .362
.01 .028 .950 .022 .782 .025 .950 .025 .779 .025 .950 .024 .778
.05 .030 .946 .024 .777 .027 .946 .026 .774 .026 .948 .026 .775
.10 .030 .947 .024 .776 .027 .946 .026 .773 .027 .946 .027 .775
.30 .023 .956 .022 .940 .022 .955 .022 .945 .023 .955 .022 .948
.50 .020 .956 .024 1.29 .022 .955 .023 1.33 .024 .953 .023 1.35
.80 .018 .951 .031 2.01 .023 .950 .027 2.31 .025 .950 .025 2.43
.90 .018 .949 .033 2.30 .024 .948 .028 2.92 .025 .949 .026 2.78
.95 .018 .950 .033 2.44 .025 .947 .028 3.10 .026 .947 .027 3.18
.99 .017 .949 .034 2.60 .024 .946 .030 3.47 .027 .944 .029 3.69

(n1, n2) = (5, 10); (μ1,μ2) = (9, 3)
.01 .028 .950 .022 .782 .025 .950 .025 .779 .026 .949 .026 .778
.05 .028 .949 .023 .778 .025 .949 .026 .775 .026 .948 .026 .775
.10 .031 .946 .023 .774 .028 .946 .026 .771 .029 .944 .027 .771
.30 .027 .949 .024 .814 .026 .949 .025 .814 .025 .949 .025 .812
.50 .022 .954 .024 .957 .024 .953 .024 .964 .023 .953 .024 .966
.80 .019 .955 .027 1.29 .023 .953 .023 1.33 .024 .953 .024 1.33
.90 .017 .954 .028 1.43 .023 .953 .024 1.48 .025 .951 .024 1.49
.95 .017 .954 .029 1.49 .024 .952 .024 1.56 .024 .951 .025 1.57
.99 .017 .953 .030 1.57 .023 .951 .025 1.65 .024 .952 .024 1.66

(continued).
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Table 3. Continued.

σ1 = 1 Bonett and Price CI CI based on f (θ̂ ) Welch CI

σ2 L CP R EW L CP R EW L CP R EW

(n1, n2) = (10, 10); (μ1,μ2) = (9, 3)
.01 .028 .950 .022 .464 .025 .950 .024 .464 .025 .950 .025 .464
.05 .028 .949 .022 .467 .025 .950 .025 .467 .025 .950 .025 .467
.10 .028 .949 .023 .476 .026 .949 .025 .476 .025 .949 .026 .475
.30 .025 .951 .024 .594 .025 .951 .025 .595 .025 .951 .024 .596
.50 .021 .952 .027 .807 .024 .951 .025 .814 .024 .951 .025 .816
.80 .019 .951 .030 1.20 .024 .951 .025 1.24 .025 .949 .026 1.24
.90 .018 .951 .032 1.34 .025 .949 .026 1.40 .026 .948 .025 1.41
.95 .017 .951 .032 1.42 .025 .949 .026 1.49 .025 .949 .026 1.50
.99 .017 .950 .033 1.50 .024 .949 .027 1.58 .025 .950 .024 1.59

(n1, n2) = (5, 20); (μ1,μ2) = (9, 3)
.01 .028 .950 .022 .782 .025 .950 .025 .779 .025 .950 .025 .777
.05 .029 .949 .023 .780 .026 .949 .026 .777 .025 .950 .025 .776
.10 .029 .948 .023 .776 .026 .947 .026 .773 .026 .948 .026 .773
.30 .031 .944 .025 .778 .029 .944 .027 .777 .029 .942 .029 .774
.50 .027 .949 .024 .829 .028 .948 .024 .830 .027 .947 .027 .830
.80 .023 .951 .026 .994 .026 .950 .024 1.00 .025 .951 .024 1.00
.90 .022 .952 .026 1.06 .026 .951 .024 1.07 .025 .951 .024 1.07
.95 .020 .953 .026 1.10 .024 .952 .023 1.11 .024 .952 .024 1.11
.99 .020 .953 .026 1.14 .025 .952 .023 1.15 .025 .951 .024 1.16

(n1, n2) = (20, 5); (μ1,μ2) = (9, 3)
.01 .028 .950 .022 .308 .026 .950 .025 .308 .025 .950 .025 .309
.05 .026 .951 .023 .320 .024 .951 .025 .320 .025 .950 .025 .320
.10 .026 .950 .024 .360 .024 .950 .026 .360 .024 .951 .025 .360
.30 .025 .945 .030 .712 .026 .944 .030 .720 .028 .944 .028 .724
.50 .023 .944 .033 1.18 .027 .943 .030 1.23 .029 .943 .028 1.24
.80 .019 .946 .035 1.98 .025 .946 .029 2.32 .027 .945 .028 2.31
.90 .018 .947 .035 2.28 .026 .945 .028 2.86 .026 .945 .028 2.83
.95 .017 .947 .036 2.44 .025 .945 .030 3.23 .026 .947 .027 3.21
.99 .016 .948 .036 2.60 .025 .944 .031 3.39 .027 .942 .030 3.19
.01 .028 .950 .023 .363 .025 .949 .026 .363 .026 .950 .025 .363
.05 .028 .950 .022 .366 .025 .950 .025 .366 .025 .950 .025 .366
.10 .027 .950 .023 .374 .025 .949 .026 .374 .026 .949 .025 .374
.30 .025 .949 .025 .473 .025 .949 .026 .473 .025 .951 .024 .473
.50 .022 .952 .026 .639 .024 .952 .024 .642 .025 .951 .024 .643
.80 .020 .950 .030 .943 .025 .949 .026 .959 .025 .950 .026 .961
.90 .019 .950 .031 1.05 .025 .949 .026 1.07 .025 .950 .024 1.08
.95 .018 .951 .031 1.10 .025 .950 .026 1.13 .025 .950 .025 1.13
.99 .018 .950 .032 1.16 .025 .949 .026 1.19 .026 .950 .025 1.20

(n1, n2) = (10, 30); (μ1,μ2) = (9, 3)
.01 .029 .949 .022 .464 .026 .949 .025 .464 .026 .950 .025 .464
.05 .028 .950 .022 .466 .025 .950 .025 .465 .025 .950 .024 .465
.10 .028 .949 .023 .468 .025 .949 .026 .467 .026 .949 .025 .468
.30 .029 .948 .023 .501 .027 .948 .025 .501 .025 .949 .025 .501
.50 .025 .951 .024 .574 .026 .950 .024 .575 .025 .950 .025 .575
.80 .023 .951 .027 .734 .025 .950 .025 .738 .025 .951 .024 .738
.90 .021 .952 .027 .796 .025 .951 .024 .803 .025 .950 .025 .802
.95 .020 .951 .029 .828 .024 .950 .026 .835 .024 .950 .026 .835
.99 .020 .951 .029 .861 .025 .950 .025 .870 .025 .950 .025 .871

(n1, n2) = (30, 10); (μ1,μ2) = (9, 3)
.01 .026 .951 .023 .247 .024 .951 .025 .247 .026 .949 .025 .247
.05 .026 .951 .023 .254 .025 .950 .025 .254 .025 .949 .026 .254
.10 .027 .950 .024 .276 .025 .949 .025 .276 .024 .951 .025 .276
.30 .024 .949 .027 .470 .025 .949 .026 .472 .026 .948 .026 .473
.50 .022 .949 .029 .732 .026 .948 .026 .741 .025 .949 .025 .740
.80 .018 .950 .032 1.16 .025 .949 .026 1.20 .026 .948 .026 1.20
.90 .017 .950 .033 1.31 .025 .950 .026 1.37 .025 .949 .026 1.37
.95 .017 .950 .033 1.39 .025 .949 .026 1.46 .026 .950 .025 1.46
.99 .016 .951 .033 1.46 .025 .950 .025 1.55 .025 .949 .026 1.55

(continued).



14 K. KRISHNAMOORTHY ET AL.

Table 3. Continued.

σ1 = 1 Bonett and Price CI CI based on f (θ̂ ) Welch CI

σ2 L CP R EW L CP R EW L CP R EW

(n1, n2) = (20, 60); (μ1,μ2) = (9, 3)
.01 .027 .950 .022 .308 .025 .951 .025 .308 .025 .950 .025 .308
.05 .027 .950 .023 .309 .025 .950 .025 .309 .025 .950 .025 .309
.10 .028 .949 .023 .312 .026 .949 .025 .311 .025 .950 .025 .311
.30 .027 .950 .023 .341 .025 .950 .025 .341 .024 .950 .025 .340
.50 .025 .951 .025 .395 .024 .950 .025 .395 .024 .951 .024 .395
.80 .023 .951 .026 .508 .025 .950 .025 .510 .025 .949 .025 .510
.90 .023 .949 .027 .551 .026 .949 .025 .553 .025 .950 .024 .553
.95 .022 .951 .027 .574 .024 .951 .025 .576 .025 .950 .025 .576
.99 .022 .951 .027 .596 .025 .950 .025 .599 .025 .950 .025 .599

(n1, n2) = (60, 20); (μ1,μ2) = (9, 3)
.01 .026 .950 .024 .172 .025 .950 .025 .172 .025 .950 .025 .172
.05 .026 .949 .025 .177 .024 .949 .027 .177 .025 .950 .025 .177
.10 .026 .950 .025 .193 .025 .950 .026 .193 .025 .950 .025 .193
.30 .024 .950 .026 .322 .025 .949 .026 .322 .025 .950 .025 .322
.50 .022 .950 .028 .491 .025 .950 .025 .494 .025 .950 .025 .494
.80 .019 .951 .030 .766 .025 .950 .025 .777 .024 .950 .026 .777
.90 .018 .950 .032 .860 .024 .950 .026 .875 .025 .950 .025 .876
.95 .018 .949 .032 .908 .025 .949 .026 .926 .026 .949 .025 .928
.99 .018 .949 .033 .957 .024 .950 .026 .978 .025 .950 .025 .980

Table 4. Test and reference data.

Test (x1) 41.05 47.79 35.73 28.48 27.30 22.82 38.62
25.99 29.38 36.27 40.59 19.38

Ref (x2) 18.25 37.99 24.09 36.47 24.60 29.25 28.27
32.77 25.79 32.50 32.41 19.52 31.13

Table 5. Confidence intervals and p-values for testing the ratio of means.

Methods 90% CIs 95% CIs 99% CIs p-Values for Ha : θ 
= 1

MLRT (0.966, 1.34) (0.930, 1.38) (0.855, 1.48) 0.1834
Fiducial (0.959, 1.35) (0.921, 1.40) (0.838, 1.52) 0.2012
Bonett & Price (0.971, 1.34) (0.938, 1.39) (0.873, 1.49) 0.1757
Approx. CI (15) (0.966, 1.34) (0.932, 1.39) (0.862, 1.49) 0.1850
Welch (0.966, 1.34) (0.930, 1.39) (0.857, 1.48) 0.1842

MLRT, we computed the MLRT statistic as 1.3304 and the p-value as 2[1 − �(1.3304)] =
0.1834. The results of the Welch method and those based on the MLRT are very similar.

The fiducial CIs are slightly wider than the other CIs and the p-value of the fiducial test
is a little larger than those of the other tests. These comparisons are in agreement with our
simulation results where we noticed that the fiducial approach is somewhat conservative.

5. Concluding remarks

The proposedWelch CI and the closed-formCI based on the df f (θ̂) are simple and easy to
compute. On the basis of our numerical studies, we find that Algorithm 1, with the closed-
form CI based on the df f (θ̂) as starting values, always produced bona fide CIs for the ratio
of means. Our extensive simulation studies indicate that these two CIs control the coverage
probabilities very close to the nominal level with balanced non-coverage tail error rates



JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 15

even for small samples. These two CIs can be safely used in bioassay and bioequivalence
studies where the comparison of means is required.

Furthermore, theWelch CI and the closed-formCI based on the df f (θ̂) are very similar
to the CIs based on the MLRT even for some small sample sizes. Even though we encoun-
tered some computational issues as noted in Section 3, the inferential results based on the
MLRT are known to be very accurate even for small samples; see Wu and Jiang [10] and
the references therein.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Finney DJ. Statistical methods in biological assay. 3rd ed. Oxford: Oxford University Press;
1978.

[2] Berger RL, Hsu JC. Bioequivalence trials, intersection-union tests, and equivalence confidence
sets. Stat Sci. 1996;11:283–315.

[3] Chow SC, Liu JP.Design and analysis of bioavailability and bioequivalence studies. 3rd ed. Boca
Raton (FL): Chapman and Hall/CRC; 2009.

[4] Fieller EC. Some problems in interval estimation. J R Stat Soc Ser B. 1954;16:175–185.
[5] HauschkeD, KieserM,Diletti E, et al. Sample size determination for proving equivalence based

on the ratio of two means for normally distributed data. Stat Med. 1999;18:93–105.
[6] Hwang JT. Fieller’s problems and resampling techniques. Stat Sin. 1995;5:161–171.
[7] Friedrich JO, Adhikari NK, Beyene J. The ratio of means method as an alternative to mean

differences for analyzing continuous outcome variables in meta-analysis: a simulation study.
BMCMed Res Methodol. 2008;8:32.

[8] van Kempen GMP, van Vliet LJ. Mean and variance of ratio estimators used in fluorescence
ratio imaging. Cytometry. 2000;39:300–305.

[9] George F, Kibria BMG. Confidence intervals for signal to noise ratio of a Poisson distribution.
Am J Biostat. 2011;2:44–55.

[10] Wu J, JiangG. Small sample likelihood inference for the ratio ofmeans. Comput Stat Data Anal.
2001;38:181–190.

[11] Lee JC, Lin SH. Generalized confidence intervals for the ratio of means of two normal
populations. J Stat Plan Inference. 2004;123:49–60.

[12] Bonett DG, Price RM. Confidence intervals for ratios of means and medians. J Educ Behav
Stat. 2020;XX:1–21.

[13] Efron B. R. A. Fisher in the 21st century. Stat Sci. 1998;13:95–122.
[14] Dawid AP, Stone M. The functional-model basis of fiducial inference. Ann Stat. 1982;10:

1054–1074.
[15] Weerahandi S. Generalized confidence intervals. J Am Stat Assoc. 1993;88:899–905.
[16] Hannig J. On generalized fiducial inference. Stat Sin. 2009;19:491–544.
[17] Krishnamoorthy K, Mathew T. Inferences on the means of lognormal distributions using gen-

eralized p-values and generalized confidence intervals. J Stat Plan Inference. 2003;115:103–121.
[18] Krishnamoorthy K.Modified normal-based approximation for the percentiles of a linear com-

bination of independent random variables with applications. Commun Stat-Simul Comput.
2016;45:2428–2444.

[19] Johnson NL, Welch BL. Application of the noncentral t-distribution. Biometrika. 1940;31:
362–389.


	1. Introduction
	2. Confidence intervals for the ratio of means
	2.1. Confidence intervals based on the MLRT
	2.2. Fiducial confidence intervals
	2.3. Confidence intervals based on log-transformation
	2.4. Welch's approximate degrees of freedom method
	2.4.1. Confidence interval based on the approximate degrees of freedom f("0362)
	2.4.2. A confidence interval based on f()


	3. Coverage and comparison studies
	4. Example
	5. Concluding remarks
	Disclosure statement
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


