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ABSTRACT ARTICLE HISTORY
The problem of estimating the ratio of means of two independent Received 2 June 2022
normal distributions is considered. Interval estimation method sim- Accepted 22 August 2022

ilar to Welch's approximate degrees of freedom solution for the KEYWORDS
Behrens—Fisher problem is proposed. The test and confidence inter- Coverage probability; exact
val (Cl) for the ratio of means are compared with the available Cls test; Fieller's theorem;
including the one based on the modified likelihood ratio test. Exten- fiducial test; precision

sive simulation studies indicate that the proposed method is accu-

rate even for very small samples and simpler than other available

likelihood-based tests and Cls. The methods are illustrated using an

example.

1. Introduction

In most applications, two populations are compared using the difference of the means or
the medians. Ratio of means is used to compare two populations of positive data. Finney [1]
has noted that the relative potency of a new drug to that of a standard one can be assessed
in terms of a ratio of means. Berger and Hsu [2] and Chow and Liu [3] have mentioned
similar applications of estimates of a ratio of means in bioequivalence study. Many arti-
cles on the ratio of means of normal distributions have appeared. Fieller’s [4] confidence
interval for the ratio of normal means (assuming that the variances are equal) is the most
popular and commonly used in applications [5]. Hwang [6] has proposed a resampling
approach to construct confidence intervals for the ratio of means. In a meta-analysis set-
ting, Friedrich et al. [7] described a method of combining the ratio of means from each of
several independent studies. Applications of estimates of the ratio of means in fluorescence
ratio imaging are noted in van Kempen and van Vliet [8]. Confidence estimation for other
related problems can be found in George and Kibria [9].

Although, importance and applications of inferential procedures for the ratio of normal
means are well understood, only limited results are available when the population variances
are unknown and arbitrary. In particular, we note that among solutions for testing or inter-
val estimating the difference between two normal means when the variances are arbitrary
(Behrens-Fisher problem), the Welch approximate degrees of freedom solution is accu-
rate and popular, and it is available in some scientific calculators such as the TI-84. Such
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a simple accurate solution is not available for estimating the ratio of two normal means.
Wu and Jiang [10] have proposed a modified likelihood ratio test (MLRT) which is highly
accurate and satisfactory even for small samples. However, the proposed MLRT is not sim-
ple and numerically involved to find a confidence interval for the ratio of means. Lee and
Lin [11] have proposed a fiducial CI which is conceptually simple and it can be estimated
by Monte Carlo simulation. Recently, Bonett and Price [12] have proposed a simple closed-
form CI based on the distribution of log-transformed sample means. However, the available
CIs were not evaluated extensively in terms of coverage probability and precision and no
comparison study was made.

In this article, we propose a method of computing ClIs for the ratio of normal means.
Our method is similar to the Welch approximate degrees of freedom solution for estimat-
ing the difference between two normal means. In Section 2, we first describe the methods
of finding CIs based on the MLRT and fiducial approach. Then we describe the Bonett and
Price confidence interval and our method of finding CIs. An algorithm for computing a CI
based on our method is also given. In Section 3, we carry out extensive simulation studies
by evaluating all interval estimation methods in terms of coverage probability and preci-
sion. Accuracy of the methods is also evaluated in terms of type I error rates. An illustrative
example based on real life data is given in Section 4. Some concluding remarks are given
in Section 5.

2. Confidence intervals for the ratio of means

Let (X;, S?) denote the (mean, variance) based on a sample of size n; from a normal distri-
bution with mean p; and variance 0%, N(u;,07),i = 1,2. When 0 = 0, a Cl for 6 can
be obtained based on the pivotal quantity given by

X, — 60X,
/1 02

where the pooled sample variance SIZ, = (mlS% + mZS%)/(ml + my),and m; = n; — 1. The
quantity T,(0) has the ¢ distribution with degrees of freedom (df) m = m; + m;,. A two-
sided 100 (1 — )% CI for 6 are formed by the roots of the equation |T,(0)| = tym;1—a/2
where t,,.; denotes the 100 g percentile of the ¢ distribution with df = m. The CI formed by
these roots is given by

T.(0) = (1)

7 % X 1 (2 _p2 S

X1 X, £+ tm;l_a/zsp Vl—z + o X2 — tm;l—a/zn_z
2 _ 2 $ . @
X2 - tm;l—a/ZE

The above exact CI is based on Fieller’s [4] results, and is commonly referred to as the
Fieller CI.

Remark 2.1: Applying the result that a* — b*> = (a — b)(a+ b) to the term within the
brackets under the radical sign in the above formula (2), we see that the above Cl is defined
and positive if the lower bound X, — tm;1—a/2Sp/ N2 for (1, is positive. By interchanging the
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subscripts 1 and 2 in the above formula, we find a CI for the ratio 6, /6; = 6. This CI for
07! is defined if the lower bound X; — tm;1—a/2Sp/m1 for 1 is positive. Thus, the above
Cl is defined and positive if both 100(1 — «/2)% lower bounds for 1+ and ., are positive.

In the following sections, we shall describe four different approaches of finding CIs for
the ratio of means when the variances are unknown and arbitrary.

2.1. Confidence intervals based on the MLRT

For a given data from the ith population, let (x;, s,-z) denote the (mean, variance) based on
the data. To describe the MLRT by Wu and Jiang [10], write the MLEs

nj
1
- ~2 -\2 .
—, 2 =X, and o7 = — (xii — xp)*, i=1,2.
/’L 1 }’ll' IZI: l] 1

The constrained MLEs when 6 is fixed are given by the recursive equations

~ nléa_cl n25€2 71192 ny
Mo =\ —— t+ = = t= ]
%16 92 O19 92

PORPCE ~ (3)
Gy =01 + (X1 — 07129)°
Gy =05 + (X2 — 1l29)”.
The LRT statistic is given by
_ &2 521"
r(0) =sgn@ —6) {mIn 2 +nyln 21 . (4)
o 0.
1 2

To write the MLRT statistic, define

0 — 00 O(lhg — ) | ( G705
u(®) = /mmn |: 2252 = =5

1920 01902 019920

—-1/2
mo?* (26} ny (267 /
Nz \z2 Ytz ! : )
%19 \ %0 920 \ %20

Finally, the MLRT statistic is expressed as

1 u(9)
*O)=r0)+ —In—= 6
r(0) r()+r(9)nr(9) (6)
and is approximately standard normally distributed with an error of O(n~%/2).
A CI for 6 can be obtained by inverting the MLRT. The lower and upper bounds of a
100(1 — )% CI are the roots of the equations

r(0) —z1—q2 =0 and r*(0) + z1—a/2 =0, (7)

respectively, where z, denotes the 100 p percentile of the standard normal distribution.
Using the endpoints of the CI in (10) as the starting value, a bisection method can be used
to find the roots of the above equations.
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2.2. Fiducial confidence intervals

To find a fiducial CI for the ratio of means, we first need to find fiducial distributions for
the parameters of a normal distribution. A fiducial distribution of a parameter is regarded
as the posterior distribution of the parameter without assuming a prior distribution [13].
Fiducial distributions for normal parameters can be readily obtained using Dawid and
Stone’s [14] functional model stochastic relation. Let (X, s*) be an observed value of (X, $?),

- 2
which is based on a sample of size n. Notice that X 4 uw+ZzZ % and 24 02%’”, where

Z ~ N(0,1) independently of x2, m = n—1, and X 2 Y means that X and Y are iden-
tically distributed. Solving the these “equations” for  and o2 and then replacing (X, $?)
with (%, s%), we obtain the fiducial quantities (FQs) for the parameters x and o2 as

(8)

where U? = X,Zn /m. That is, for a given (X, s2), the distribution of Q is called the fiducial
distribution of 1 and the distribution of s>/ U? is the fiducial distribution for o2

For the two-sample problem, let (;,s;) be an observed value of (X;, S;), i = 1, 2. Fur-
thermore, let’s; = s;/,/n; be an observed value ofg,- = Si//ni,i = 1,2. A FQ for the ratio
0 = w1/p2 can be obtained by substitution as

_ Zy~
Qu _n + 51

Qp = = - —, )
Qu, X+ [Z]—isz

where Z;’s are U;’s are mutually independent with Z; ~ N(0, 1) and miUi2 ~ X’%i distri-
bution. It should be noted that Lee and Lin [11] have obtained the same FQ Qg using
the generalized variable approach by Weerahandi [15], which is a special case of the fidu-
cial approach [16]. Krishnamoorthy and Mathew [17] have used this generalized variable
approach to find a CI for the ratio of log-normal means. For a given (x1, s1, X2,s2) the
distribution of Qp in (9) does not depend on any parameter and so its percentiles can
be estimated by Monte Carlo simulation. The lower and upper 100 « percentiles form a
100(1 — 2a)% fiducial CI for 6 (see Lee and Lin [11]).

The percentiles Qg can also be approximated using the modified normal-based approx-
imation given in Krishnamoorthy [18] as follows. Let Q,, = X; + %’l?l, and notice that
Zi/ Ui ~ t,, t distribution with degrees of freedom (df) m; = n; — 1,i = 1,2. S0 E(Qy,) =
Xi and Qu;1—a = Xi + tmz1—aSi is the 100 (1 — ) percentile of Q;, i = 1,2. Then, an
approximate 100 (1 — 2a)% fiducial CI for 6 is given by

D=

R I 1 O R L T | LA
EErw— . (10
2 my;l—a®2

where?? = s? /ni, i = 1,2. For example, using @ = 0.025 in the above expression, we find
an approximate 95% fiducial CI for 6. It can be shown, along the lines of Remark 1, the
above CI is positive if both 100(1 — «/2)% lower bounds for 11 and u, are positive.
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2.3. Confidence intervals based on log-transformation

Bonett and Price [12] have noted that the sampling distribution of In(X; /X) should con-

verge to normality faster than the sampling distribution of X; /X;. Using a delta method an
— — 2 2

estimate of the variance can be found as var((In(X;/X3)) = %12 + )% Using this variance
1 2

estimate, an approximate CI for 6 can be obtained as

exp {ln (X1/X2) £ tre1—aj2y/ @(ln()_ﬁ/)_{z))} , (11)

where the degrees of freedom
2

(8,8 S
f - _2+_2 _4+ 4 |’
Xl X2 lel szz

is a Satterthwaite approximate degrees of freedom.

2.4. Welch’s approximate degrees of freedom method

The Welch method to find a CI for the difference 1 — u is based on an approximate
distribution of var(X; — Xp) = S7 + S5. Let us find a CI for 6 based on the quantity

X; —0Xy
VSt + 6283

When the variances are unknown and arbitrary, it is not possible to find an exact distribu-
tion of T'(#), and so we approximate its distribution along the lines of Welch’s method
to find a CI for the difference between two means. In particular, we approximate the
distribution of

TO) = (12)

84028
5} +0%3

by the distribution of x f2 /f, where G = 6?/n;, i = 1,2, and f is determined so that the
variance of W is equal to var( sz /f) = 2/f. Noting that

~4 ~4
20 4 9pt %
var(W) = —2——5,
(&7 +6%57)

we estimate the variance by var(W), which is obtained by replacing (57,57) by (§2,§%).
Equating the var(W) to the variance of x f2 /f and solving the resulting equation for f, we
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find
0 —.
S =1®) = 1+94S4

Thus, W ~ x fz(g) /f (), and using the standard stochastic representation of the Student ¢
random variable, we see that

X, — 60X,
——— "~ )
S+ 6252

Remark 2.2: As in the Welch approximate degrees of freedom solution to the
Behrens-Fisher problem, we can show that the df f(0) satisfies min{m;, m,} < f(0) <
m) + my. To show this, we find the derivative f'(6) that can be expressed as

T®) = approximately. (13)

~a~, ~, ~, §2 §292
a5+ 507 (- - =)
§ Siet\?
CRE

wheregf = S%/nl and’gg = S%/nz.Notethatf’(G) =0atd =0* = [(:1—%1) /(ri—%z)]l/z,neg—
ative for 6 > 0* and is positive for 8 < 6*. Thus, f(0) attains the maximum at 6 = 6*
and f(0*) = m; + m;y. Furthermore, f(0) — m; when 6 — 0 and it approaches m; when
0 — oo.So min{m;, my} < f(0) < m; + my forall® > 0.

o) =

2.4.1. Confidence interval based on the approximate degrees of freedom f ©)
Letd = X, /X,. Using (13) with f(0) replaced by f (6), we can obtain the following 100 (1 —
)% confidence set as

{9 : _tf(é\);l—a/z =< T(@) = tf(é\);l—a/Z} >
where

(X358 + X7%3)°

0) 2 14
O =5 (14)
2 m 1my
It can be readily verified that the above confidence set is the interval
oD . 2 _1p2 ) L2 (%2 _1p2 2
XX+ tf(G);l—a/2\/S (XZ ztf(e) 1—a/252 ) +5 (Xl 25 @)1—a21 )
- (15)
X2 _ 42 SZ
2 f(6);1—oz/2 2

Along the lines of Remark 1, it can be shown that the above Clis a bona fide positive interval
ifX; — [ t@)s1—a /28 > 0fori = 1,2. Note that this quantity X; — [ tf(g) l— /28 islarger

than the 100 (1 — «/2)% lower confidence limit for u; based on the df f (9).
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Figure 1. P-valuesin (16) and (17) as a function of 6 when (n1, ny) = (20, 15), (X1, X2) = (6.079,1.932)
and (s?,53) = (1.035,0.4139); the right-tailed test produced 2.5% lower bound as 2.619 and the
left-tailed test produced 2.5% upper bound as 3.894.

2.4.2. A confidence interval based on f(0)

A CI for 6 can be obtained by inverting one-sided tests. Consider testing Hy : 6 = 6 vs.
H, : 6 > 6y. Thelower bound of the 100 (1 — )% CI is obtained by inverting a right-tailed
test or obtained as the value of 6 that satisfies the equation (see Figure 1)

)_Cl — 903_62 o

tfoy > ——| — 7 =0 (16)
NGRS

where (;,s?) is an observed value of (X;, ), i = 1, 2. Similarly, the corresponding upper
bound can be obtained as the value of 6 that satisfies the equation (see Figure 1)

PRia(0p) =P

)—Cl — 9())_C2 o
PLt,a(QO) =P tf(90) < — | — 5 =0. (17)
465

The lower and upper bounds form a 100 (1 — «)% CI for 6 and we refer to this CI as the
Welch CI. These confidence bounds can be found using the following algorithm.

Algorithm 2.1: (1) For a given (X1,5],X2,5,) and the confidence level 1 — o, find the
approximate CI (L, U) in (15).

(2) IfPp,o(L) <0,find§ > 0sothat Pg,o(L + §) > 0 and the root bracketing interval is
(L,L + 8); else find § > 0 so that Pg, o (L — 8) < 0 and the root bracketing interval is
(L — 8, L); see Figure 1.

(3) Using a bisection method with this root bracketing interval, find the lower bound as
the root of Equation (16).

(4) IfPr,o(U) > 0, find 8§ > 0 so that Pg, (U 4 §) < 0 and the root bracketing interval
is (U, U + 8); else it P1, 4 (U) < 0,find § > 0so that Pg, (U — 8) < 0. Then the root
bracketing interval is (U — §, U); see Figure 1.
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(5) Using the bracketing interval and a bisection method, find the upper bound as the
root of Equation (17).

The two roots found in the above algorithm are the endpoints of a 100 (1 — )% Welch
Clfor 6.

3. Coverage and comparison studies

To judge the accuracy of the CIs for the ratio of normal means when the variances are
unknown and arbitrary, we estimated the coverage probabilities and expected widths of the
Clsand type I error rates of the tests for some parameters and sample sizes. All Monte Carlo
estimates are based on 100,000 simulation runs. In situations where the ratio of means is
an appropriate measure of difference, the variable is usually positive. For a normal popu-
lation, the ratio of the mean to the standard deviation has to be on the order of three or
more, for the probability of a negative value is negligible. That is, in practical situations
where the ratio of means needs to be estimated, the mean w must be at least 30. This
has been noted by Johnson and Welch [19] in the problem of estimating the coefficient
of variation of a normal population. So in our simulation study, samples were generated
from a N (,ui,aiz) distribution with ©; > 30j, i = 1, 2. Furthermore, all interval estima-
tion methods are scale invariant, and so without loss of generality, we choose o; = 1.0 and
o, = .01,.05,.1,.3,.5,.8,.9,.95 and .99.

In Table 1, we reported type I error rates of the tests 1 = Bonnet and Price, 2 = fiducial
test, 3 = test based on f (), and 4 = Welch test for some small samples. The MLRT is not
included for comparison, because for some small samples the term under the square root
in (5) could be negative and we can’t compute its type I error rates accurately. The reported
type I error rates in Table 1 indicate that the fiducial test controls the type I error rates
within the nominal level, but could be conservative when the variances are not drastically
different. Bonett and Price’s test also controls the type I error rates, the error rates are
unbalanced with right-tail error rates larger than the corresponding left-tail error rates.
These results indicate that the Bonett and Price test is liberal for left-sided hypotheses and
conservative for right-sided hypotheses. Tests 3 and 4 control the type I error rates well and
the error rates are very close to the nominal level 0.05 for most cases, except when n; =
ny = 4. Even for this case, the type I error rates are in the range 0.043 —0.050. Both tests 3
and 4 show improved performance when n; = 4 and n, = 8. The Welch test performs like
an exact test in controlling type I error rates when n; = 4 and n, = 8.

As the type I error rates of the tests are not similar, we can’t make a fair comparison
of tests with respect to power. However, we compare them in terms of coverage probabil-
ity and precision. Note that a test based on a CI with higher precision is more powerful
than the one based on a CI with lower precision provided both CIs have coverage proba-
bilities close to the nominal level. In Table 2, we presented the coverage probabilities and
the expected widths of 95% ClIs based on the fiducial, MLRT and the Welch method. We
observe from the table values that the Welch CI and the CI based on the MLRT are prac-
tically the same in terms of coverage probability and expected width. The fiducial CIs are
in general conservative, and it is as good as the other two ClIs only when the population
variances are very different.
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Table 1. Left (L) and right-tail (R) type | error rates of the tests when o = 0.05.

(m,mp) = (4,4)

(11, u2) = (3,3) (1, u2) = (45,3)

o1 = 1 2 3 4 1 2 3 4

o L(R) L(R) L(R) L(R) L(R) L(R) L(R) L(R)
01 .035(.061) 050(.051) .050(.050) .051(.051) .041(.059) .050(.050) 050(.051) .050(.050)
05 .035(.062) 050(.050) .050(.050) .050(.051) .040(.060) .049(.048) 049(.051) .050(.051)
10 035(.064) 048(.048) .049(.052) .051(.051) .042(.059) .048(.046) 051(.052) 052(.051)
.30 .037(.061) .040(.040) .049(.053) .052(.052) .040(.054) .035(.035) .046(.049) .050(.049)
.50 .035(.054) .034(.034) .045(.049) .049(.048) .039(.046) .030(.031) .042(.046) .046(.046)
80 .037(.045) 030(.029) .043(.045) .044(.045) .044(.038) .029(.030) 045(.042) 046(.045)
90 .038(.042) 029(.029) .042(.044) .043(.045) .046(.037) .029(.030) 046(.043) 045(.045)
95 .038(.040) 028(.029) .042(.044) .045(.044) .048(.037) .030(.032) 046(.043) 045(.045)
99 .040(.039) 028(.028) .043(.042) .044(.044) .049(.034) .030(.033) 047(.042) 045(.046)

(m,n2) = (4,8)
(1, 12) = (3,3) (1, 2) = (6,3)
1 2 3 1 2 3 4

o2 L(R) L(R) L(R) L( ) L(R) L(R) L(R) L(R)
01 .035(.063) 050(.052) 049(.050) .050(.052) .043(.056) .050(.050) 050(.050) .050(.050)
05 .036(.062) 050(.050) 050(.050) .050(.050) .042(.057) .050(.049) 050(.051) .051(.050)
10 035(.062) 050(.049) .050(.051) .051(.050) .043(.058) .049(.047) 050(.052) 052(.050)
30 .037(.066) 047(.046) .050(.056) .051(.053) .046(.059) .041(.041) .051(.056) .054(.053)
50 .038(.064) 042(.043) .049(.057) .052(.053) .044(.052) .036(.035) .045(.052) .050(.049)
80 .038(.058) 037(.037) 046(.055) .051(.050) .047(.043) .034(.032) 046(.049) 048(.045)
90 .038(.054) 036(.035) 045(.054) .051(.050) .048(.042) .033(.033) 045(.048) 047(.047)
95 038(.054) 035(.036) 044(.054) .050(.051) .049(.040) .034(.034) 045(.048) 048(.047)
99 039(.052) 035(.036) .044(.053) .049(.050) .050(.038) .032(.035) 046(.046) 046(.048)

1 =Bonett and Price test; 2 = Fiducial test; 3 = Test based on f(H),' 4 = Welch test

In Table 3, we reported coverage probabilities, left- and right-tail non-coverage error
rates and the expected widths of the Bonett and Price CI, the CI based on the df f (0) and the
Welch CI. Confidence interval based on the MLRT is not included as it is very similar to the
Welch CI based on the df f(0). For simulation studies, we have considered the sample sizes
ranging from 5 to 60, and (w1, n2) = (3,3) and (9, 3). We first observe from the reported
values in Table 3 that the Bonett and Price CI is slightly conservative with unbalanced
tail error rates. Thus we can’t use the endpoints of the Bonnet and Price two-sided Cls as
one-sided lower or upper confidence limits. For example, if we use the right endpoint of
a 90% CI based on the Bonett and Price method as a 95% upper confidence limit, then it
could be conservative. This Bonnet and Price CI is expected to be shorter than the other
two CIs when the variances are not very much different. But in other cases, Bonnet and
Price CI is expected to be wider than the other two CIs. The Bonnet and Price CI can be
safely used when both sample sizes are 30 or more. The CI based on the df f (/) and the
Welch CI based on the df f(0) exhibit similar performances for all cases. Both perform like
an exact CI controlling coverage probabilities very close to the nominal level 0.95 while
maintaining balanced non-coverage tail error rates and having similar expected widths for
all cases. Since the approximate CI based on f (@) is in closed-form and straightforward to
compute, this CI can be recommended in applications.
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Table 2. Coverage probabilities and (expected widths) of 95% Cls for the ratio of means.

(n1,p2) = ¢(3,3)

o1 =1 Fiducial MLRT Welch Fiducial MLRT Welch Fiducial MLRT Welch
02 (nm,m) = (5,10) (m,np) = (10,10) (m, np) = (10,20)

01 .949(.464) .948(.463) .949(.464) 950(.464) .950(.463) .950(.464)  .950(.463) .949(.462) .950(.463)
05 .951(.466) .950(.463) .950(.464) 951(.465) .950(.463) .951(.464)  .950(.465) .950(.463) .950(.465)
10 .953(.472) .950(.466) .950(.466) 951(.467) .950(.464) .951(.465)  .951(.465) .950(.464) .951(.465)
.30 .963(.534) .949(.495) .950(.497) 955(.489) .949(.478) .949(.477)  .952(.475) .950(.470) .950(.470)
.50 .970(.652) .951(.583) .953(.584) 960(.531) .950(.506) .951(.507)  .955(.493) .950(.483) .949(.482)
80 .970(.984) .949(.893) .950(.886) 964(.630) .951(.589) .952(.591)  .957(.538) .949(.518) .949(.517)
90 .969(1.11) .950(1.01) .950(1.01) 963(.672) .950(.628) .951(.630)  .957(.557) .948(.534) .948(.533)
95 .968(1.50) .949(1.40) .949(1.40)  .964(.696) .949(.651) .951(.653)  .959(.567) .949(.542) .949(.542)
99 967(1.22) 947(1.11) .947(1.11)  .964(.718) .949(.672) .950(.674)  .960(.578) .950(.552) .951(.551)

(1, u2) = c(4.5,3)
01 950(.463) .949(.462) .950(.463)  .948(464) .948(.462) .948(.463)  .950(.463) .949(.461) .950(.463)
05 952(.468) .949(.464) .950(.465)  .951(.465) .950(.463) .950(.464)  .949(.465) .949(.463) .949(.464)
10 .955(.482) .950(.470) .950(.470)  .952(.470) .951(.466) .951(.466)  .952(.466) .950(.464) .951(.465)
30 .968(.603) .949(.541) .951(.545)  .959(.515) .950(.495) .950(.494)  .953(.487) .949(.479) .948(.477)
.50 .970(.807) .951(.722) .952(.717)  .964(.597) .951(.559) .952(.561)  .959(.526) .951(.508) .951(.507)
80 967(1.30) .948(1.21) .947(1.20)  .963(.772) .951(.723) .952(.725)  .962(.610) .952(.580) .952(.580)
90 964(1.47) .948(1.36) .946(1.36)  .962(.847) .949(.797) .950(.798)  .961(.645) .949(.613) .949(.614)
95 962(1.64) .947(1.53) .945(1.53)  .963(.884) .950(.834) .951(.835)  .961(.663) .950(.630) .951(.631)
99 961(2.01) .946(1.90) .943(1.91)  .962(.925) .950(.875) .951(.876)  .960(.683) .950(.648) .951(.650)
(1, p2) = ¢(9,3)

01 952(.465) .951(.463) .952(.464)  .950(.464) .950(.463) .950(.464)  .949(.464) .948(.463) .949(.464)
05 957(.482) .951(.470) .952(.470)  .954(.470) .951(.466) .951(.467) 950(.466) .949(.464) .949(.465)
10 964(.528) .950(.491) .952(.493)  .955(.487) .950(.477) .950(.476) 952(.474) .949(.470) .949(.469)
30 970(.877) .950(.790) .950(.782)  .964(.637) .950(.593) .951(.596) 958(.547) .949(.524) .949(.523)
.50 964(1.36) .949(1.28) .947(1.26)  .962(.864) .950(.814) .951(.816) 961(.667) .951(.633) .952(.634)
80 .958(2.43) .949(2.33) .946(2.34)  .959(1.29) .951(1.25) .951(1.24) 960(.901) .952(.865) .952(.867)
90 956(3.13) .947(3.01) .947(3.04)  .957(1.45) .950(1.41) .950(1.40) 958(.989) .950(.954) .951(.956)
95 .953(3.03) .945(2.90) .948(2.94)  .957(1.54) .951(1.50) .950(1.50) 957(1.03) .950(1.00) .950(1.00)
99 .952(3.84) .944(3.71) .946(3.76)  .955(1.63) .949(1.59) .949(1.59) 957(1.08) .950(1.04) .950(1.05)

4. Example

This example is taken from Wu and Jiang [10]. In a bioequivalence study of two formu-
lations of a drug product a standard 2 x 2 crossover experiment was conducted with 25
subjects to compare a new test formulation with a reference formulation. An objective of
the study is to estimate the pharmacokinetics parameters specifying the bioavailability of
each formulation, such as the area under the plasma concentration-time curve (AUC) and
the maximum plasma concentration (Cmax). Typically, 90% confidence intervals for the
ratio of the population means of the test and reference formulations for both AUC and
Cmax are used to assess the average bioequivalence of two formulations. For illustration
purpose, we shall use the Cmax data that fit a normal distribution [10]. The Cmax data are
reproduced here in Table 4.
The sample statistics are obtained as

n =12, x =3278, ss=7224, m=13, % =28.70 and s =36.49.

Confidence intervals for the ratio 6 of the means of the test formulation to the reference
formulation by various methods are given in Table 5. To test the hypotheses Hy : 6 = 1 vs.
H, : 6 # 1 using the Welch method, we computed the statistic T'(6p) as 1.3760, the degrees
of freedom as 19.72 and the p-value as 2[1 — P(t;972 > 1.3760)] = 0.1842. To apply the
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Table 3. Left-tail (L) and right-tail (R) non-coverage error rates, coverage probabilities (CP) and expected
widths (EW) of the 95% confidence intervals.

o =1 Bonett and Price Cl Cl based on f(@) Welch CI
02 L CcP R EW L CcP R EW L CcP R EW
(n,n2) = (5,5); (1, m2) = (3,3)
.01 033 951 016  .807 .025 949 025 777 .025 949 026 .778
.05 .034 951 .015 .806 .026 950 .024 776 .025 949 .025 775
.10 .034 949 .016 .807 .026 949 .026 J77 .026 949 .025 776
.30 034 949 017 804 028 947  .025 .780 026 947 027 781
.50 029 954 017 836 026 952 022 .825 .025 950 .025  .827
.80 .022 961 .017 962 .022 957 .021 1.00 .023 955 .022 1.04
.90 .020 962 .018 1.02 .022 958 .021 1.09 .022 956 .022 1.19
.95 020 962 018 1.05 .021 957 022 1.23 .023 955 .023 1.28
.99 .018 963 .019 1.09 .021 957 .023 1.39 .023 .954 .023 1.43
(m,n2) = (5,10); (1, 2) = (3,3)
.01 .033 952 .016 .809 .024 950 .025 778 .025 951 .024 .780
.05 034 950 .016 810 .025 950  .025 779 .025 950 .025 778
.10 .035 950 .016 .807 .026 949 .025 777 .026 949 .026 777
.30 .037 946 .017 .801 .030 945 .025 774 .026 947 .027 J72
.50 .037 946 .017 .804 .032 944 .024 .783 .028 944 .027 779
.80 .031 951 018  .835 029 948  .023 .828 027 947 026 826
.90 .029 954 .018 .853 .028 950 .022 .852 .026 948 .026 .852
.95 .028 953 .018 .866 .029 949 .022 .870 .025 950 .025 .868
99 027 955 019 877 028 950  .022 .885 026 949 025 886
(m,nz) = (10,10); (1, p2) = (3,3)
.01 .034 950 .016 468 .025 950 .025 463 .025 949 .026 464
.05 .033 951 .016 469 .024 950 .026 464 .025 950 .025 464
.10 034 951 015 470 .025 950  .024 465 .025 950 025 465
30 034 950 .016  .482 026 949 .024 478 026 949 025 477
.50 .031 951 .017 509 .026 949 .024 507 .026 949 .025 507
.80 .026 954 .020 582 .025 951 .023 .588 .024 951 .026 590
.90 023 956 .020 615 024 952 .023 627 024 951 025 630
.95 .023 955 .022 632 .024 951 .025 .647 .024 952 .025 652
.99 .022 955 .023 651 .024 951 .025 670 .025 .950 .025 676
(M, n2) = (5,20); (n1, 12) = (3,3)
.01 034 950 .015 .810 .025 950  .025 779 024 951 025 779
.05 .034 951 .015 810 .025 950 .025 779 .025 949 .026 776
.10 .033 952 .015 .807 .025 950 .025 777 .025 949 .026 778
.30 .036 948 .016 .806 .028 948 .024 J77 .027 946 .027 771
.50 038  .945 017 .802 031 944 025 776 026 945 029 769
.80 .037 946 .018 .804 .032 944 .024 .785 .029 943 .028 .780
.90 .036 946 .017 .808 .032 945 .023 792 .027 944 .029 .787
.95 034 947 019 811 031 945 024 .79 029 944 028 792
99 035 947 018 814 032 944 024 801 029 943 029 797
(m,nz) = (20,5); (n1, u2) = 3,3)
.01 .033 .950 .017 309 .025 950 .025 308 .025 951 .025 .308
.05 032 951 018 311 025 950  .024 309 .025 950 .025 309
.10 .031 .952 016 315 .025 950  .025 313 .025 950 025 314
.30 .027 954 .019 363 .024 952 .024 .363 .024 951 .025 365
.50 .024 952 .024 462 .023 950 .027 471 .026 949 .025 479
.80 .021 949 030 .682 024 946  .031 .766 027 945 028 813
.90 .020 947 .033 772 .024 945 .031 .887 .027 945 .029 949
.95 .018 948 .034 .820 .024 944 .033 938 .028 945 .028 1.10
.99 .018 947 .035 872 .024 944 .032 1.1 .028 943 .030 1.26
.01 033 950 .017 365 .025 950  .025 363 024 951 025 363
.05 .032 951 .017 365 .025 950 .025 363 .025 950 .026 363
.10 .033 951 .017 .366 .025 950 .025 364 .024 951 .025 364
.30 .032 950 .018 377 .025 949 .026 375 .025 949 .026 375
.50 030 952 019 400 .025 950  .025 400 026 948 .026 399
.80 .026 953 .022 459 .025 951 .025 462 .025 950 .025 462
.90 .025 953 .022 483 .025 950 .025 488 .026 951 .024 490
.95 .024 954 .022 497 .025 951 .024 503 .025 951 .025 504
99 023 953 023 510 .025 950  .025 518 .025 951 024 520

(continued).
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Table 3. Continued.

o =1 Bonett and Price Cl Cl based on f(@\) Welch CI
o] L CcpP R EW L CcpP R EW L CcP R EW
(n,n2) = (10,30); (1, m2) = (3,3)
.01 .034 951 .016 469 .025 951 .025 464 .025 950 .025 464
.05 034 950 .016  .469 .025 950  .025 464 .025 950 025 464
.10 .033 951 .016 469 .025 951 .025 464 .025 950 .025 463
.30 .034 950 .016 472 .026 949 .025 468 .026 .949 .025 466
.50 033 951 016 479 026 950 .024 475 026 948 026 475
.80 032 950 .018 499 027 948  .024 497 026 949 025 497
.90 .032 950 .018 510 .027 948 .024 .508 .025 949 .026 506
.95 .032 951 .018 514 .028 948 .024 512 .026 948 .026 512
99 030 951 019 519 027 948 .024 519 .025 948 026 518
(M, nz) = (30,10); (1, p2) = (3,3)
.01 .031 950 .018 248 .025 950 .025 247 .025 950 .025 247
.05 .031 950 .019 248 .025 950 .025 247 .026 949 .025 247
.10 .031 951 018 251 026 950 .024  .250 026 950 .025  .250
.30 .028 952 .020 278 .024 950 .025 278 .024 951 .024 278
.50 .025 952 .022 330 .024 951 .024 331 .025 .950 .025 333
.80 .021 951 .027 442 .024 949 .026 452 .025 951 .024 456
.90 019 952 028 486 024 950 .026  .502 .025 950  .025 507
95 .019 951 .030 .509 .024 949 .027 529 .025 948 .027 533
.99 .018 951 .031 532 .023 949 .028 556 .026 948 .025 564
(M, nz) = (20,60); (1, n2) = (3,3)
.01 032 950 .017 309 .025 950  .025 .308 .025 950 .025 308
.05 .031 951 .017 309 .025 951 .025 .308 .025 950 .025 308
.10 .032 951 .018 310 .025 950 .025 .308 .026 949 .026 308
.30 032 950 .018 313 .025 950  .025 312 026 949 026 312
.50 .031 951 018 320 .025 949 026 319 .025 951 025 318
.80 .031 951 .019 336 .026 950 .024 335 .025 950 .025 335
.90 .029 951 .019 343 .025 951 .024 342 .026 949 .025 342
.95 028 952 020 347 .025 950  .024 346 024 951 025 347
99 028 951 020 351 .025 950  .025 351 026 950 .025 351
(M, nz) = (60,20); (L1, w2) = (3,3)
.01 .029 950 .020 172 .025 950 172 .025 951 .024 172
.05 030 950  .021 172 .025 949 025 172 .025 950 025 172
.10 .029 951 .020 174 .025 950 .025 174 .025 949 .026 174
.30 .027 951 .021 193 .024 951 .025 .193 .024 950 .026 193
.50 .025 950 .024 228 .025 949 .026 228 .025 950 .025 228
.80 022 951 027 299 .025 950  .025 302 026 949 025 303
.90 .021 951 .028 327 .025 949 .025 331 .024 951 .025 332
.95 .020 952 .028 341 .025 951 .025 346 .026 948 .026 347
.99 .020 950 .030 355 .025 949 .027 361 .025 950 .025 362
.01 028 950 .022 782 .025 950  .025 779 .025 950 024 778
.05 .030 946 .024 777 .027 946 .026 774 .026 948 .026 775
.10 .030 947 .024 776 .027 946 .026 773 .027 946 .027 775
.30 .023 956 .022 940 .022 955 .022 945 .023 955 .022 948
.50 020 956  .024 1.29 022 955 023 1.33 024 953 .023 1.35
.80 .018 951 .031 2.01 .023 950 .027 2.31 .025 950 .025 243
.90 .018 949 .033 2.30 .024 948 .028 2.92 .025 949 .026 2.78
.95 .018 950 .033 244 .025 947 .028 3.10 .026 947 .027 3.18
99 017 949 034 260 024 946  .030 347 027 944 029 3.69
(M, nz) = (5,10); (n1, u2) = (9,3)
.01 .028 .950 .022 782 .025 950 .025 779 .026 949 .026 778
.05 028 949  .023 778 .025 949 026 .775 026 948 026 .775
.10 .031 946 .023 774 .028 946 .026 771 .029 944 .027 771
.30 .027 949 .024 814 .026 949 .025 814 .025 949 .025 812
.50 .022 .954 .024 957 .024 953 .024 964 .023 953 .024 .966
.80 019 955 027 1.29 023 953 .023 1.33 024 953 024 133
.90 017 954 .028 1.43 .023 953 .024 1.48 .025 951 .024 1.49
.95 .017 954 .029 1.49 .024 952 .024 1.56 .024 951 .025 1.57
.99 .017 953 .030 1.57 .023 951 .025 1.65 .024 952 .024 1.66

(continued).
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o =1 Bonett and Price Cl Cl based on f(@\) Welch CI
o] L CcpP R EW L CcpP R EW L CcP R EW
(n,n2) = (10,10); (1, u2) = (9,3)
.01 .028 950 .022 464 .025 950 .024 464 .025 950 .025 464
.05 028 949 022 467 .025 950  .025 467 .025 950  .025 467
.10 .028 949 .023 476 .026 949 .025 476 .025 949 .026 475
.30 .025 951 .024 594 .025 951 .025 .595 .025 951 .024 596
.50 .021 .952 027  .807 024 951 .025 814 024 951 025 816
.80 019 951 .030 1.20 024 951 .025 1.24 .025 949 026 1.24
.90 .018 951 .032 1.34 .025 949 .026 1.40 .026 948 .025 1.41
.95 .017 951 .032 1.42 .025 949 .026 1.49 .025 949 .026 1.50
99 017 950  .033 1.50 024 949 027 1.58 .025 950  .024 1.59
(M, ny) = (5,20); (n1, u2) = (9,3)
.01 .028 950 .022 782 .025 950 .025 779 .025 .950 .025 777
.05 .029 949 .023 .780 .026 949 .026 J77 .025 950 .025 776
.10 029 948  .023 776 026 947 026 773 026 948 026 773
.30 .031 944 .025 778 .029 944 .027 777 .029 942 .029 774
.50 .027 949 .024 .829 .028 948 .024 .830 .027 947 .027 .830
.80 .023 951 .026 994 .026 950 .024 1.00 .025 951 .024 1.00
.90 022 952 026 1.06 026 951 .024 1.07 .025 951 024 1.07
95 .020 953 .026 1.10 .024 952 .023 1.1 .024 952 .024 1.1
.99 .020 953 .026 1.14 .025 952 .023 1.15 .025 951 .024 1.16
(m,nz) = (20,5); (u1, u2) = (9,3)
.01 028 950 .022 308 026 950  .025 .308 .025 950  .025 309
.05 .026 951 .023 320 .024 951 .025 320 .025 950 .025 320
.10 .026 .950 .024 .360 .024 950 .026 .360 .024 951 .025 .360
.30 025 945 030 712 026 944 030 .720 028 944 028 724
.50 023 944 033 1.18 027 943 030 1.23 029 943 .028 1.24
.80 .019 946 .035 1.98 .025 946 .029 2.32 .027 945 .028 2.31
.90 .018 947 .035 2.28 .026 945 .028 2.86 .026 945 .028 2.83
.95 017 947 036 244 .025 945 030 3.23 026 947 027 321
99 016 948 036 260 .025 944 031 3.39 027 942 030 3.9
.01 .028 950 .023 363 .025 949 .026 363 .026 .950 .025 363
.05 .028 .950 .022 .366 .025 950 .025 .366 .025 950 .025 .366
.10 027 950  .023 374 .025 949 026 374 026 949 025 374
.30 025 949  .025 473 .025 949 026 473 .025 951 024 473
.50 .022 952 .026 639 .024 952 .024 642 .025 951 .024 643
.80 .020 .950 .030 943 .025 949 .026 959 .025 950 .026 961
.90 019 950  .031 1.05 .025 949 026 1.07 .025 950  .024 1.08
.95 018 951 031 1.10 .025 950  .026 1.13 .025 950  .025 1.13
.99 .018 950 .032 1.16 .025 949 .026 1.19 .026 950 .025 1.20
(n,n2) = (10,30); (1, u2) = (9,3)
.01 029 949 022 464 026 949 025 464 026 950 .025 464
.05 .028 950 .022 466 .025 950 .025 465 .025 950 .024 465
.10 .028 949 .023 468 .025 949 .026 467 .026 949 .025 468
.30 029 948  .023 .501 027 948  .025 .501 .025 949 025 501
.50 025 951 024 574 026 950 .024 575 .025 950 .025 575
.80 .023 951 .027 734 .025 950 .025 738 .025 951 .024 738
.90 .021 952 .027 .796 .025 951 .024 .803 .025 950 .025 .802
.95 020 951 029  .828 024 950 .026  .835 024 950 .026  .835
99 020 951 029 861 .025 950  .025 .870 .025 950 .025  .871
(M, nz) = (30,10); (1, 2) = (9,3)
.01 .026 951 .023 247 .024 951 .025 247 .026 949 .025 247
.05 026 951 023 254 .025 950  .025 254 .025 949 026 .254
.10 .027 950 .024 276 .025 949 .025 276 .024 951 .025 276
.30 .024 949 .027 470 .025 949 .026 472 .026 948 .026 473
.50 .022 949 .029 732 .026 948 .026 741 .025 949 .025 740
.80 018 950  .032 1.16 .025 949 026 1.20 026 948  .026 1.20
.90 017 950 .033 1.31 .025 950 .026 1.37 .025 949 .026 1.37
.95 .017 950 .033 1.39 .025 949 .026 1.46 .026 950 .025 1.46
.99 .016 951 .033 1.46 .025 950 .025 1.55 .025 949 .026 1.55

(continued).
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Table 3. Continued.

o =1 Bonett and Price Cl Cl based on f(@\) Welch CI
o0 L CcP R EW L CcpP R EW L CcP R EW
(n,nz) = (20,60); (1, n2) = (9,3)
.01 .027 950 .022 .308 .025 951 .025 .308 .025 950 .025 .308
.05 027 950  .023 309 .025 950  .025 309 .025 950 .025 309
.10 .028 949 .023 312 .026 949 .025 311 .025 950 .025 31
.30 .027 950 .023 341 .025 950 .025 341 .024 .950 .025 340
.50 025 951 025 .395 024 950  .025 .395 024 951 024 395
.80 023 951 026 508 .025 950  .025 .510 .025 949 025 510
.90 .023 949 .027 551 .026 949 .025 553 .025 950 .024 553
.95 .022 951 .027 574 .024 951 .025 576 .025 950 .025 576
99 022 951 027 .59 .025 950  .025 .599 .025 950  .025 599
(M, ny) = (60,20); (1, 2) = (9,3)

.01 .026 950 .024 172 .025 950 .025 172 .025 950 .025 172
.05 .026 949 .025 177 .024 949 .027 177 .025 950 .025 177
.10 026 950  .025 193 .025 950 .026 .193 .025 950 .025  .193
.30 .024 950 .026 322 .025 949 .026 322 .025 .950 .025 322
.50 .022 950 .028 491 .025 950 .025 494 .025 .950 .025 494
.80 .019 951 .030 .766 .025 950 .025 J77 .024 950 .026 777
.90 018 950 .032  .860 024 950 .026  .875 .025 950 025  .876
95 .018 949 .032 908 .025 949 .026 926 .026 949 .025 928
.99 .018 949 .033 957 .024 950 .026 978 .025 950 .025 .980

Table 4. Test and reference data.

Test (xq) 41.05 47.79 3573 28.48 27.30 22.82 38.62
25.99 29.38 36.27 40.59 19.38

Ref (x2) 18.25 37.99 24.09 36.47 24.60 29.25 28.27
32.77 25.79 32.50 3241 19.52 31.13

Table 5. Confidence intervals and p-values for testing the ratio of means.

Methods 90% Cls 95% Cls 99% Cls p-Values forHg : 6 # 1
MLRT (0.966, 1.34) (0.930, 1.38) (0.855, 1.48) 0.1834
Fiducial (0.959, 1.35) (0.921,1.40) (0.838,1.52) 0.2012
Bonett & Price (0.971,1.34) (0.938,1.39) (0.873,1.49) 0.1757
Approx. Cl (15) (0.966, 1.34) (0.932,1.39) (0.862, 1.49) 0.1850
Welch (0.966, 1.34) (0.930, 1.39) (0.857,1.48) 0.1842

MLRT, we computed the MLRT statistic as 1.3304 and the p-value as 2[1 — ®(1.3304)] =
0.1834. The results of the Welch method and those based on the MLRT are very similar.
The fiducial CIs are slightly wider than the other CIs and the p-value of the fiducial test
is a little larger than those of the other tests. These comparisons are in agreement with our
simulation results where we noticed that the fiducial approach is somewhat conservative.

5. Concluding remarks

The proposed Welch CI and the closed-form CI based on the df f (@) are simple and easy to
compute. On the basis of our numerical studies, we find that Algorithm 1, with the closed-
form CI based on the df f @) as starting values, always produced bona fide CIs for the ratio
of means. Our extensive simulation studies indicate that these two CIs control the coverage
probabilities very close to the nominal level with balanced non-coverage tail error rates
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even for small samples. These two CIs can be safely used in bioassay and bioequivalence
studies where the comparison of means is required.

Furthermore, the Welch CI and the closed-form CI based on the df f (§) are very similar
to the ClIs based on the MLRT even for some small sample sizes. Even though we encoun-
tered some computational issues as noted in Section 3, the inferential results based on the
MLRT are known to be very accurate even for small samples; see Wu and Jiang [10] and
the references therein.
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