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Abstract
The problem of constructing statistical intervals for two-parameter Maxwell distri-
bution is considered. An appropriate method of finding the maximum likelihood
estimators (MLEs) is proposed. Constructions of confidence intervals, prediction inter-
vals and one-sided tolerance limits based on suitable pivotal quantities are described.
Pivotal quantities based on the MLEs, moment estimators and the modified MLEs are
proposed and compared the statistical intervals based on them in terms of expected
widths. Comparison studies indicate that the statistical intervals based on the MLEs
offer little improvements over other interval estimates when sample sizes are small,
and all intervals are practically the same even for moderate sample sizes. R functions
to compute various intervals are provided and the methods are illustrated using two
examples involving real data sets.

Keywords Equivariant estimator · Gamma distribution · Location-scale family ·
Modified MLEs · Pivotal approach · Precision

1 Introduction

The Maxwell distribution, also known as the Maxwell–Boltzmann distribution, was
first introduced by Maxwell [13] which describes the distribution of speeds of
molecules in thermal equilibrium. In particular, this distribution is used to model
the velocities among gas molecules. The probability density function (PDF) of the
distribution is given by

f (ν) = 4πν2
( m

2πkT

)3/2
exp

(
−mν2

2kT

)
, ν > 0, (1)

where m is the molecular weight in kg/mol, T is the absolute temperature in Kelvin,
k is the Boltzmann constant and v denotes the speed of the molecule. After reparam-
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eterizing
√
2kT /m = σ and then adding a location parameter μ, we obtain the PDF

of the two-parameter Maxwell distribution as

f (x |μ, σ) = 4

σ�(1/2)

(
x − μ

σ

)2

exp

{
−

(
x − μ

σ

)2
}

, x > μ, σ > 0. (2)

Let Ga,b denote the gamma random variable with the shape parameter a > 0 and the
scale parameter b > 0. Let us denote the distribution of Ga,b by gamma(a, b). The
cumulative distribution function (CDF) is given by

F(x |μ, σ) = 1

�(3/2)

∫ (x−μ)2/σ 2

0
t3/2−1e−t dt = P

(
G3/2,1 ≤ (x − μ)2

σ 2

)
. (3)

It is clear from the above CDF that the two-parameter Maxwell random variable has
the following stochastic representation:

X
d= μ + √

G3/2,1 σ. (4)

The Maxwell distribution (1) plays an important role in statistical mechanics. This
distribution is getting popular as one of the lifetime distributions. It appears that Tyagi
and Bhattacharya [18, 19] have first used the model (2) in lifetime data analysis. Many
authors considered the distribution in the form (2) with μ = 0 and addressed the
problems of point estimation using the frequentist as well as the Bayesian approach.
See the papers by Dey et al. [4], Arslan et al. [1] and the references therein.

In two-parameter Maxwell distribution, the location parameter (also known as the
threshold parameter) represents the earliest time a failuremay occur, and better suitable
to model lifetime data. The threshold parameter locates the distribution along the
time scale and has the same units of time or distance. The two-parameter Maxwell
distributionfitsmany lifetime data better than other lifetime distributions. For example,
Arslan et al. [1] have shown that the breaking strength of carbon fibers in Nicolas and
Padgett [14] fit a Maxwell distribution better than some other lifetime distributions.
In Example 1 of this paper, we find that a Maxwell distribution fits lifetimes of drills
given in Chen et al. [3]. Dey at al. [4] have shown that a Maxwell distribution well
fits the maximum flood level data; see Example 2. Our investigation showed that the
alkalinity concentration data (Gibbons [6], p. 261) collected from groundwater fit
a Maxwell distribution. Aryal et al. [2] and Krishnamoorthy et al. [10] have used a
gamma distribution to analyse the alkalinity concentration data. The data that represent
the number of million revolutions before failure for ball bearings in Thoman et al. [15]
also fit a Maxwell distribution well. The data were analysed by Thoman et al. [15] and
Krishnamoorthy et al. [11] using Weibull distributions.

Even though Maxwell distributions seem to be applicable to model data from vari-
ous practical situations, only limited results are available on inference based on them.
Most of the results are point estimation based on the classical approach and Bayesian
approach. Dey et al. [4] and Arslan et al. [1] have considered the problem of estimat-
ing the parameters of Maxwell distributions. Dey et al. [4] have derived the maximum
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likelihood estimates (MLEs), moment estimates (MEs), and the least square estimate.
Arslan et al. [1] have obtained the same and proposed modified MLEs that can be
expressed in closed-form. However, statistical intervals such as the confidence inter-
vals (CIs), prediction intervals (PIs) or tolerance intervals are not available forMaxwell
distributions. These interval estimates aremore important than point estimates and they
are routinely used in applications.

In this article, we first review some available point estimates and note that the
method proposed to find the MLEs is inaccurate, because it ignores the constraint
that μ < x . This means that, for a given sample, the MLE of μ produced by the
existing method could be greater than x(1), the smallest order statistic for the sample.
We propose a method to find the MLE subject to the constraint that μ < x(1). We
also describe the modified MLEs by Arslan et al. [1] and the moment estimates. In
Sect. 3, we provide pivotal quantities to find CIs for themean of aMaxwell distribution
and to find CIs for quantiles or equivalently, one-sided tolerance limits. In Sect. 4, we
compare the CIs based on theMLEs,modifiedMLEs (MMLEs) andmoment estimates
in terms of precision. Construction of one-sided tolerance limits and estimation of
survival probability are given in Sect. 5, and the prediction intervals for the mean
of a future sample are given in Sect. 6. For each problem, we compare the statistical
intervals based on theMLEs,MEs andMMLEswith respect to precision. In Sect. 7, we
outline numericalmethods for computing tolerance intervals and equal-tailed tolerance
intervals. The methods are illustrated using two examples in Sect. 8. Some concluding
remarks are given inSect. 9. R code to compute various statistical intervals are provided
in the appendix.

2 Point Estimators

Let X = X1, . . . , Xn be a sample from aMaxwell(μ, σ ) distribution. In the following
sections, we shall describe the moment estimators (MEs), derive the maximum like-
lihood estimators (MLEs) and present the modified maximum likelihood estimates
(MMLEs).

2.1 Moment Estimators

The moment estimators are obtained by equating the sample moments with the cor-
responding population moments. Let X be a random variable with Maxwell(μ, σ )

distribution. Using the stochastic representation (4), we find

E(X) = μ + 2√
π

σ and Var(X) = 3π − 8

2π
σ 2. (5)

Equating the above mean and variance to the sample mean X̄ and variance
S2 = 1

n−1

∑n
i=1(Xi − X̄)2, respectively, and solving the equations for the param-

eters, we find the moment estimators as
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μ̂M = X̄ − 2√
π

σ̂M and σ̂M =
√

2π

3π − 8
S. (6)

2.2 Maximum Likelihood Estimators

The likelihood function (LF), given the sample x = x1, . . . , xn , can be written as

L(μ, σ |x) =
[

4

�(1/2)

]n 1

σ 3n

n∏
i=1

(xi − μ)2

exp

{
− 1

σ 2

n∑
i=1

(xi − μ)2

}
I (x(1) > μ), (7)

where x(1) is the smallest order statistics for the sample and I (.) is the indicator
function. The log-likelihood function, without the indicator function, is given by

ln L(μ, σ |x) = C − 3n ln σ + 2
n∑

i=1

ln(xi − μ) − 1

σ 2

n∑
i=1

(xi − μ)2,

where C is a constant term independent of the parameters. The partial derivative
∂ ln L
∂μ

= 0 gives

n(x̄ − μ) − σ 2
n∑

i=1

(xi − μ)−1 = 0 (8)

and the partial derivative ∂ ln L
∂σ

= 0 yields σ 2 = 2
3n

∑n
i=1(xi − μ)2. Substituting this

expression for σ 2 in (8) and simplifying, we get

n(x̄ − μ) − 2

3

(
σ̂ 2
x + (x̄ − μ)2

) n∑
i=1

(xi − μ)−1 = 0, (9)

where σ̂ 2
x = 1

n

∑n
i=1(xi − x̄)2.

Since the parameter space depends on the sample space (see the PDF (1) and the LF
(7)), the MLE of μ should be less than or equal to x(1). To find the MLE of μ with the
constraint μ < x(1), we follow the idea of Krishnamoorthy et al. (2019) who derived
the MLEs for a two-parameter Rayleigh distribution. That is, we search for the value
of μ that satisfies Eq. (9) in the root bracketing interval (x(1) − t̂, x(1)), where

t̂ = σ̂M

√
G−1

(
1 − 10−3/n|3/2),

G−1(x |a) is the quantile function a gamma(a, 1) distribution and σ̂M is the moment
estimate of σ in (6). As shown in the “Appendix A”, this interval includes μ with high
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probability. Furthermore, our extensive simulation studies in the sequel indicate that
the MLE of μ always lies in the interval. Notice that the MLE μ̂ of μ obtained using
the bisection method satisfies the requirement that μ̂ < x(1).

Remark 1 Dey et al. [4] have derived likelihood equations and noted that they can be
solved using some iterative methods. Later, in the example section, they have used
a graphic method to compute the MLEs approximately. Arslan et al. [1] proposed a
bivariate N-R method to find the MLEs. It should be noted that both papers ignored
the fact that the sample space depends on the parameter space; that is μ < x(1). Our
approach here simplifies to finding the root of a single Eq. (9) and does not require the
calculation of Hessian matrix. On the basis of our simulation studies, we found that
for no more than 1.5% of simulated samples, the N-R method in Arslan et al. [1] has
produced the MLE μ̂ that is greater than x(1). As an example, consider the following
data that are generated from Maxwell(2, 1) distribution.

2.99,3.28,3.29,2.21,3.21,2.69,2.76,3.21,2.95, 2.80
3.27,3.03,3.23,3.28,3.08,3.15,3.28,3.64,3.31,3.57

For the above data, x(1) = 2.21. TheMLEs based on our bisection root findingmethod,
subject to the constraint μ < x(1), are μ̂ = 2.085 and σ̂ = 0.877; the MLEs based
on the N-R method by Arslan et al. [1] are μ̂ = 2.574 and σ̂ = 0.508. Note that this
estimate μ̂ = 2.574 is larger than x(1), and so it is not a valid MLE.

2.3 ModifiedMLEs

Arslan et al. [1] have also derived approximate closed-form expressions for the MLEs
using the modified maximum likelihood (MML) approach by Tiku [16, 17]. To write
these modified maximum likelihood estimates (MMLEs), let x(i) denote the i th order
statistic for a sample x1, . . . , xn from a Maxwell(μ, σ ) distribution, and let

ti = F−1
(

i

n + 1

)
, i = 1, . . . , n,

where F−1 is the quantile function of the standardMaxwell distribution. TheMMLEs
can be expressed as

μ̂mml = x̄w − �

m
σ̂mml and σ̂mml = 1

2
√
n(n − 1)

(
−B +

√
B2 + 4nC

)
(10)

where

x̄w = 1

m

n∑
i=1

δi x(i), m =
n∑

i=1

δi , δi = βi + 1, βi = t−2
i , � =

n∑
i=1

αi , αi = 2t−2
i ,

B = 2
n∑

i=1

αi
(
x(i) − x̄w

)
and C = 2

n∑
i=1

δi
(
x(i) − x̄w

)2
.
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As this approximate method does not utilize the constraint that μ < x(1), there is no
guarantee that this method produces valid MLEs; that is, μ̂ < x(1). For the data in
Remark 1, the approximate MLEs are μ̂ = 2.231 and σ̂ = .789. Note that μ̂ is greater
than x(1) = 2.21 and the exact MLEs μ̂ = 2.085 and σ̂ = 0.877.

Remark 2 The least square estimates (LSEs) of μ and σ are obtained by minimizing
the function

∑n
i=1

(
F(x(i)|μ, σ) − i/(n + 1)

)2, where F(x |μ, σ) is the CDF of the
Maxwell(μ, σ ) distribution, with respect to μ and σ . The LSEs can not be expressed
in closed-forms and they have to be obtained only numerically. Simulation studies by
Arslan et al. [1] indicated that the LSEs are worse than the MLEs and other estimates
in terms of bias and the MSE, and so we will not consider the LSEs for constructing
various statistical intervals in this paper.

3 Pivotal Quantities

Let μ̂e and σ̂e be equivariant estimators based on a sample of size n from a
Maxwell(μ, σ ) distribution. Since Maxwell distributions are location-scale distribu-
tions, the MLEs are equivariant (see Theorem E1 in Lawless [12]), and (μ̂e − μ)/σ

and σ̂e/σ are pivotal quantities. That is, the distributions of these quantities remain
the same for all values of parameters, and hence their distributions can be found
empirically assuming that μ = 0 and σ = 1. In other words,

μ̂e − μ

σ

d= μ̂∗
e and

σ̂e

σ

d= σ̂ ∗
e , (11)

where μ̂∗
e and σ̂ ∗

e are the MLEs based on a sample of size n from the Maxwell(0, 1)
distribution. That is, μ̂∗ is the root of the Eq. (9) with respect to μ and σ̂ ∗ =
2
3n

∑n
i=1(xi − μ̂∗)2 and the samples x1, . . . , xn are from the Maxwell(0, 1) distribu-

tion. Furthermore, the notation “X
d=Y ”means that X andY are identically distributed.

Toobtain a pivotal quantity for themeanor for a percentile of aMaxwell distribution,
we note that these quantities are of the form μ + cσ , where c is a known constant. A
pivotal quantity for μ + cσ can be obtained as

μ + cσ − μ̂e

σ̂e

d= c − μ̂∗
e

σ̂ ∗
e

. (12)

Let l and u denote the lower and upper 100α percentiles of (c − μ̂∗
e)/σ̂

∗
e . Then,

(μ̂e + lσ̂e, μ̂e + uσ̂e) (13)

is a 100(1 − 2α)% CI for μ + cσ . Note that the percentiles of (c − μ̂∗
e)/σ̂

∗
e can be

estimated using simulated samples from the standard Maxwell distribution.
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Table 1 Coverage probabilities and (expected widths) of 95% confidence intervals for the mean

μ = 0
n = 5 n = 10

σ MLE ME MMLE MLE ME MMLE

.5 .950 (0.57) .951 (0.57) .949 (0.57) .952 (0.33) .951 (0.34) .950 (0.33)

1 .949 (1.14) .949 (1.15) .950 (1.14) .951 (0.67) .951 (0.68) .951 (0.67)

2 .951 (2.27) .949 (2.29) .949 (2.27) .949 (1.34) .949 (1.35) .947 (1.34)

4 .949 (4.53) .948 (4.58) .948 (4.54) .951 (2.67) .949 (2.70) .950 (2.68)

5 .950 (5.66) .949 (5.72) .949 (5.68) .950 (3.34) .951 (3.38) .950 (3.34)

8 .950 (9.06) .949 (9.16) .948 (9.09) .949 (5.35) .949 (5.41) .950 (5.35)

10 .949 (11.3) .952 (11.4) .951 (11.3) .950 (6.69) .950 (6.76) .952 (6.69)

n = 20 n = 30

σ MLE ME MMLE MLE ME MMLE

.5 .950 (0.22) .948 (0.22) .950 (0.22) .951 (0.18) .948 (0.18) .951 (0.18)

1 .950 (0.44) .948 (0.44) .950 (0.44) .950 (0.35) .952 (0.36) .949 (0.35)

2 .950 (0.88) .949 (0.89) .948 (0.88) .950 (0.70) .951 (0.71) .952 (0.71)

4 .950 (1.76) .950 (1.78) .950 (1.76) .949 (1.41) .950 (1.43) .949 (1.41)

5 .951 (2.19) .949 (2.22) .950 (2.20) .950 (1.76) .950 (1.78) .950 (1.76)

8 .949 (3.51) .951 (3.55) .949 (3.51) .950 (2.81) .949 (2.85) .949 (2.82)

10 .950 (4.39) .949 (4.44) .950 (4.40) .949 (3.52) .948 (3.56) .950 (3.52)

4 Confidence Intervals for theMean

The mean of the Maxwell(μ, σ ) distribution is given by μ + cσ with c = 2/
√

π ;
see Eq. (5). Let μ̂e and σ̂e be equivariant estimators based on a sample of size n
from a Maxwell(μ, σ ) distribution. Let lm and um denote the lower and upper 100α
percentiles of the pivotal quantity in (12) with c = 2/

√
π . Then,

(μ̂e + lm σ̂e, μ̂e + um σ̂e) (14)

is a 100(1 − 2α)% CI for the mean.
Precision Studies

It can be readily verified that the MEs, MLEs and the modified MLEs are equivari-
ant, and so the pivotal quantities on the basis of these estimators can be used to find
exact CIs for the mean.

The CIs based on equivariant estimators are exact except for the simulation error
in obtaining the percentage points. However, to judge the accuracy of our simulation
studies, we have estimated the coverage probabilities and expected widths of different
CIs using simulation consisting of 100,000 runs, and reported them in Table 1. Since
the coverage probability and expected width do not depend on the location parameter,
without loss of generality, we chose μ = 0 in our simulation study. As expected, the
coverage probabilities are practically same as the nominal level 0.95 for all the cases.
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Table 2 Percentiles for
computing 90%, 95% and 99%
CIs for the mean based on the
MLEs

n 5% 95% 2.5% 97.5% .5% 99.5%

4 0.542 1.92 0.342 2.21 − 0.315 3.19

5 0.671 1.73 0.539 1.93 0.168 2.50

6 0.740 1.63 0.641 1.79 0.375 2.20

7 0.786 1.57 0.700 1.69 0.488 2.00

8 0.818 1.52 0.745 1.62 0.565 1.88

9 0.844 1.48 0.781 1.58 0.628 1.80

10 0.861 1.45 0.802 1.54 0.670 1.74

11 0.876 1.43 0.821 1.51 0.702 1.69

12 0.887 1.41 0.838 1.48 0.727 1.64

13 0.901 1.40 0.855 1.47 0.753 1.61

14 0.911 1.39 0.867 1.45 0.775 1.59

15 0.919 1.37 0.878 1.43 0.791 1.56

16 0.928 1.36 0.887 1.42 0.800 1.54

17 0.934 1.35 0.895 1.41 0.811 1.52

18 0.940 1.35 0.902 1.39 0.823 1.50

19 0.946 1.34 0.909 1.39 0.834 1.49

20 0.951 1.33 0.918 1.38 0.848 1.48

25 0.972 1.30 0.942 1.34 0.881 1.42

30 0.986 1.29 0.959 1.32 0.903 1.40

35 0.996 1.27 0.971 1.30 0.923 1.37

40 1.006 1.26 0.983 1.29 0.937 1.35

45 1.013 1.25 0.992 1.28 0.947 1.34

50 1.020 1.25 0.999 1.27 0.960 1.32

60 1.029 1.23 1.010 1.26 0.974 1.30

70 1.036 1.23 1.019 1.25 0.986 1.29

80 1.043 1.22 1.027 1.24 0.995 1.28

90 1.047 1.21 1.032 1.23 1.002 1.27

100 1.052 1.21 1.038 1.23 1.009 1.26

The expectedwidths in Table 1 indicate that these three CIs have similar precisions and
only minute differences exist among the expected widths. The MLE-CIs are slightly
better than those based on the MEs and they are very similar to MMLE confidence
intervals.

The percentiles needed to find 90%, 95% and 99% MLE-CIs were computed for n
ranging from 4 to 100, and reported in Table 2. To estimate the percentiles, we used
simulation consisting of 100,000 runs. If percentiles are desired for values of n and
confidence coefficients that are not reported, they can be obtained using the R function
perc.ci.mean() given in “Appendix B”.
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5 One-Sided Tolerance Limits and Survival Probability

One-sided tolerance limits (TLs) are one-sided confidence limits for appropriate quan-
tiles. Specifically, a 100γ% upper confidence limit for the upper pth quantile is called
(p, γ ) upper TL and a 100γ% lower confidence limit for the lower p quantiles is
called (p, γ ) lower TL. The pth quantile of a Maxwell(μ, σ ) distribution is μ + cσ
with

c = qp(0, 1) =
√
G−1(p|3/2), (15)

where G−1(p|a) denote the quantile function of a gamma(a, 1) distribution. Hence,
we can use the percentiles of (c− μ̂∗

e)/σ
∗
e in (12) with c = qp(0, 1) to find confidence

limits for μ+qp(0, 1)σ . LetWp = (qp(0, 1)− μ̂∗
e)/σ

∗
e and letWp,q denote the 100q

percentile of Wp. Then

μ̂e + Wp,γ σ̂e (16)

is a (p, γ ) upper tolerance limit for the Maxwell distribution. In the above, μ̂e and σ̂e
are some equivariant estimators based on a sample of size n from aMaxwell(μ, σ ) dis-
tribution.A (p, γ ) lower tolerance limit can be obtained similarly as μ̂e+W1−p,1−γ σ̂e.
Precision Studies

Note that the tolerance limits based on any equivariant estimators are exact in the
sense that the coverage probabilities are always equal to the nominal level. However,
tolerance limits based on different estimators could be different, and so it is of interest
to find the method that produces better tolerance limits. In the case of upper tolerance
limits, equivariant estimators that produce upper TL with smaller expected values are
preferable, and for the case of LTL the equivariant estimators that produce larger LTL
are preferable. We evaluated expected values of upper TL based on MLEs, MEs and
MMLEs and presented them in Table 3. Since the upper TLs are based on equivariant
estimators, without loss of generality, we can takeμ = 0 for comparing the upper TLs
with respect to expected values. The reported expected widths clearly indicate that the
expected widths of upper TLs based on the MLEs and MMLEs are the same while the
expected widths of the upper TLs based on the MEs are slightly larger than those of
the other upper TLs. Recall that smaller upper TLs are better.

We computed the factors for computing (p, γ ) one-sided tolerance limits for p =
.80, .90, .95, .99, γ = .95 and values of n ranging from 4 to 100, and reported them
in Table 4. We used 100,000 simulation runs to estimate the percentiles of Wp and
W1−p. Factors for values of (n, p, γ ) that are not reported in Table 4, can be obtained
using the R function fac.os.TLs() in “Appendix B”.
Survival Probability
For a lifetime random variable, the survival probability is defined as

τ = P(X > t |μ, σ) = 1 − G
(
(t − μ)2/σ 2|3/2

)
,

123



45 Page 10 of 28 Journal of Statistical Theory and Practice (2022) 16 :45

Ta
bl
e
3

E
xp

ec
te
d
va
lu
es

of
(.
90

,.
95

)
up

pe
r
to
le
ra
nc
e
lim

its

n
=

5
n

=
10

n
=

15
n

=
20

n
=

30

σ
M
L
E

M
E

M
M
L
E

M
L
E

M
E

M
M
L
E

M
L
E

M
E

M
M
L
E

M
L
E

M
E

M
M
L
E

M
L
E

M
E

M
M
L
E

.5
1.
43

1.
43

1.
43

1.
17

1.
18

1.
17

1.
10

1.
10

1.
10

1.
06

1.
06

1.
06

1.
02

1.
02

1.
02

1
2.
85

2.
86

2.
85

2.
35

2.
36

2.
35

2.
19

2.
20

2.
19

2.
12

2.
13

2.
12

2.
04

2.
05

2.
04

2
5.
71

5.
73

5.
71

4.
70

4.
72

4.
70

4.
38

4.
40

4.
38

4.
23

4.
25

4.
24

4.
08

4.
09

4.
08

4
11

.4
2

11
.4
7

11
.4
3

9.
40

9.
44

9.
40

8.
77

8.
81

8.
77

8.
47

8.
50

8.
47

8.
15

8.
18

8.
15

5
14

.2
7

14
.3
3

14
.2
8

11
.7
4

11
.7
9

11
.7
4

10
.9
6

11
.0
1

10
.9
6

10
.5
9

10
.6
3

10
.5
9

10
.2
0

10
.2
3

10
.2
0

8
22

.8
3

22
.9
3

22
.8
4

18
.7
9

18
.8
7

18
.7
9

17
.5
4

17
.6
2

17
.5
4

16
.9
5

17
.0
1

16
.9
5

16
.3
0

16
.3
6

16
.3
1

10
28

.4
9

28
.6
1

28
.5
0

23
.4
8

23
.5
8

23
.4
9

21
.9
2

22
. 0
3

21
.9
2

21
.1
8

21
.2
7

21
.1
9

20
.3
8

20
.4
5

20
.3
8

123



Journal of Statistical Theory and Practice (2022) 16 :45 Page 11 of 28 45

Table 4 (p, .95) one-sided tolerance limits based on the MLEs

Lower tolerance factor Upper tolerance factor
p

n .80 .90 .95 .99 .80 .90 .95 .99

4 − 0.418 − 0.908 − 1.311 − 1.855 3.05 3.84 4.52 5.85

5 − 0.119 − 0.481 − 0.772 − 1.230 2.64 3.24 3.77 4.84

6 0.040 − 0.268 − 0.524 − 0.895 2.42 2.94 3.40 4.31

7 0.156 − 0.147 − 0.359 − 0.691 2.27 2.76 3.16 4.00

8 0.228 − 0.041 − 0.252 − 0.579 2.19 2.63 3.02 3.77

9 0.282 0.020 − 0.179 − 0.482 2.12 2.53 2.90 3.62

10 0.322 0.069 − 0.116 − 0.404 2.06 2.46 2.81 3.49

11 0.353 0.109 − 0.071 − 0.346 2.02 2.40 2.75 3.41

12 0.378 0.141 − 0.034 − 0.303 1.99 2.36 2.69 3.33

13 0.399 0.169 − 0.005 − 0.266 1.96 2.33 2.64 3.27

14 0.418 0.192 0.022 − 0.228 1.93 2.29 2.60 3.21

15 0.431 0.212 0.048 − 0.208 1.92 2.26 2.57 3.17

16 0.445 0.226 0.064 − 0.181 1.89 2.24 2.54 3.13

17 0.457 0.241 0.082 − 0.160 1.88 2.21 2.51 3.09

18 0.469 0.255 0.100 − 0.142 1.87 2.20 2.49 3.05

19 0.479 0.267 0.109 − 0.125 1.85 2.18 2.47 3.03

20 0.485 0.278 0.124 − 0.111 1.84 2.17 2.45 3.01

25 0.518 0.319 0.171 − 0.054 1.79 2.11 2.38 2.91

30 0.541 0.344 0.199 − 0.017 1.76 2.07 2.33 2.85

35 0.557 0.365 0.222 0.011 1.74 2.04 2.30 2.80

40 0.569 0.379 0.239 0.029 1.72 2.02 2.27 2.77

45 0.579 0.392 0.254 0.046 1.71 2.00 2.25 2.74

50 0.587 0.402 0.265 0.058 1.70 1.99 2.23 2.71

60 0.599 0.418 0.282 0.080 1.68 1.96 2.20 2.68

70 0.609 0.429 0.296 0.096 1.67 1.94 2.18 2.65

80 0.618 0.438 0.306 0.107 1.66 1.93 2.17 2.63

90 0.625 0.445 0.314 0.117 1.65 1.92 2.16 2.61

100 0.628 0.451 0.321 0.124 1.64 1.91 2.15 2.60

where t is a specifiedmission time. To assess the survival time, a lower confidence limit
for τ is needed, which can be deduced from a lower tolerance limit (see Section 1.1.3
of Krishnamoorthy and Mathew [11]) as follows. Let L(p; μ̂, σ̂ ) be a (p, γ ) lower
tolerance limit for a Maxwell distribution. Then, by definition of the lower tolerance
limit, we have

Pμ̂,̂σ

{
PX

(
X ≥ L(p; μ̂, σ̂ )

∣∣∣∣μ̂, σ̂

)
≥ p

}
= γ. (17)
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For a given (μ̂, σ̂ ), let p be determined so that L(p; μ̂, σ̂ ) = t . Then (17) implies that
PX (X > t) ≥ p with probability γ, and so p is the 100γ% lower confidence limit
for τ = P(X > t). To find the value of p such that L(p; μ̂, σ̂ ) = t for a Maxwell
distribution, we need to equate the (p, γ ) lower tolerance limit to t or equivalently,

W1−p,1−γ = t − μ̂

σ̂
,

where W1−p = [√G−1((1 − p)|3/2) − μ̂∗]/σ̂ ∗ and W1−p;α is the 100α percentile
of W1−p. Thus, for a given (μ̂, σ̂ , γ ), we need to determine p so that

100(1 − γ ) percentile of W1−p =
√
G−1((1 − p)|3/2) − μ̂∗

σ̂ ∗ = t − μ̂

σ̂
,

where μ̂∗ and σ̂ ∗ are equivariant estimators based on a sample of size n from a standard
Maxwell distribution. The value of p that satisfies the above equation can be found
using Monte Carlo simulation and a root finding method with root bracketing interval
[.001, F̄(t)], where F̄(t) = 1−G

(
(t − μ̂)2/σ̂ 2|3/2). The following Algorithm 1 can

be used to find the root. The lower confidence limit based on this approach is exact
except for simulation error.
Algorithm 1

1. For a given sample of size n and a value of t , compute the MLEs μ̂ and σ̂ and
compute the estimate p0 = 1 − G((t − μ̂)/σ 2|3/2) of τ = P(X > t) and the
value of t0 = (t − μ̂)/σ̂ .

2. Generate, say, 100,000 samples, each of size n, from the standard Maxwell distri-
bution.

3. Calculate the MLEs μ̂∗
i and σ̂ ∗

i based on the i th sample generated in the preceding
step, i = 1, . . . , 100,000

4. Denote the 100(1 − γ ) percentile of
√

G−1((1−p)|3/2)−μ̂∗
σ̂ ∗ by Qp and set f (p) =

Qp−t0. Note that for a given p, Qp can be estimated using the simulated estimates
μ̂∗ and σ̂ ∗ in Step 3.

5. Using the value of p0 in Step 1 and p1 = .001, say, as the root bracketing values,
the solution to the equation f (p) = 0 can be found using a bisection method. The
root of the equation is a 100γ% lower confidence limit for τ = P(X > t).

Note that to compute f (p) defined in the above algorithm at various values of p, we
need to carry out the simulation in Step 3 only once. The bisection scheme converges
in a fewer steps with the bracketing interval in Step 5.

6 Prediction Intervals for theMean of a Future Sample

We shall now see an exact method of finding a prediction interval (PI) for the mean
of a future sample of size m based on an available sample of size n. Let (μ̂e, σ̂e)

be equivariant estimator of (μ, σ ) based on the current sample of size n from a
Maxwell(μ, σ ) distribution, and let Ȳ denote the mean of a future sample of size
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m from the same Maxwell distribution. Let μ̂∗
e and σ̂ ∗

e are equivariant estimators
based on a sample of size n from the standard Maxwell distribution and Ȳ ∗ is the
mean of an independent sample of size m from the standard Maxwell distribution.

Then (Ȳ − μ̂e)/σ̂e
d= (Ȳ ∗ − μ̂∗

e)/σ̂
∗
e . If hα denotes 100α percentile of (Ȳ ∗ − μ̂∗

e)/σ̂
∗
e ,

then

(μ̂e + hασ̂e, μ̂e + h1−ασ̂e) (18)

is a 100(1 − 2α)% PI for a future sample mean Ȳ . Note that the percentile hα can be
estimated by Monte Carlo simulation since the distribution of (Ȳ ∗ − μ̂∗

e)/μ̂
∗
e does not

depend on any parameter.
We could use any of the three estimators MLEs, MEs and MMLEs in (18) to find a

PI for Ȳ . Our simulation studies (see Table 5) indicate that the PIs based on the MEs
and MMLEs are very similar (in terms of precision) and the ones based on the MLEs
are slightly narrower than others. The differences among the PIs seem to be negligible
when sample sizes are 30 or more.

In the following Table 6, we provide critical values needed to find 95% PIs based
on the MLEs. We have provided critical values for only a few values n and m. Crit-
ical values for any n, m and confidence level can be computed the R code given in
“Appendix B”.

7 Tolerance Intervals

We shall now find factors for constructing equal-tailed and two-sided TIs using the
general approach given in Hoang-Nguyen-Thuy and Krishnamoorthy [7]. Let Qp =
μ + qp(0, 1)σ , where qp(0, 1) is defined in (15), denote the 100p percentile of the

Maxwell(μ, σ ) distribution. Note that the interval
(
Q 1−p

2
, Q 1+p

2

)
includes 100p

percentage of the distribution. An interval (Le,Ue) that includes the above interval
with confidence γ is called (p, γ ) equal-tailed TI. Note that the interval (Le,Ue)

not only includes at least 100p percent of the population, but also no more than
100(1− p)/2 percent of the population is less than Le and no more than 100(1− p)/2
percent of the population is greater than Ue. A (p, γ ) two-sided TI includes at least
100p percent of the population and it does not have to include Q 1−p

2
or Q 1+p

2
. Formally,

the two-sided TI (L(X),U (X)) is determined so that

PX (F(U (X)|μ, σ) − F(L(X)|μ, σ) ≥ p) = γ,

where the CDF F(x |μ, σ) is defined in (3).

7.1 Equal-Tailed TIs

Let q∗
p = [qp(0, 1) − μ̂∗

e ]/σ̂ ∗
e , where qp(0, 1) denote the 100p percentile of the

standard Maxwell distribution. Furthermore, let q∗
p,α denote the 100α percentile of
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Table 6 Lower and upper percentiles for computing 95% PIs for the mean of a future sample of size m
based on the background sample of size n using the MLEs

n = 10 n = 15 n = 30 n = 40

m 2.5% 97.5% m 2.5% 97.5% m 2.5% 97.5% m 2.5% 97.5%

1 .113 2.48 1 .197 2.36 1 .267 2.26 1 .283 2.23

3 .456 1.97 5 .629 1.73 5 .685 1.64 5 .696 1.62

5 .564 1.82 8 .703 1.64 10 .789 1.51 10 .804 1.49

7 .620 1.75 10 .730 1.60 15 .834 1.46 15 .849 1.44

9 .654 1.71 15 .773 1.55 20 .859 1.43 20 .875 1.41

11 .677 1.69 20 .796 1.53 25 .876 1.41 30 .905 1.37

15 .707 1.65 25 .810 1.51 35 .897 1.39 40 .922 1.35

q∗
p. Then, a (p, γ ) lower tolerance limit is given by

LT L = μ̂e + q∗
1−p,1−γ σ̂e

and a (p, γ ) upper tolerance limit is given by

UT L = μ̂e + q∗
p,γ σ̂e.

That is, at least 100p percent of the population is greater than the LTLwith confidence
γ . Similarly, the UTL can be interpreted as at least 100p percent of the population is
less than the UTL with confidence γ . Noting that LTL is a 100γ% lower confidence
limit for lower quantile μ+ q1−p(0, 1)σ and UTL is a 100γ% upper confidence limit
for μ + qp(0, 1)σ , we find

P
(
μ̂e + q∗

1−p,1−γ σ̂e ≤ μ + q1−p(0, 1)σ
)

= γ and

P
(
μ̂e + q∗

p,γ σ̂e ≥ μ + qp(0, 1)σ
)

= γ. (19)

It follows from the above first probability statement that

P

(
μ̂e + q∗

1−p
2 ,

1−γ
2

σ̂e ≤ μ + q 1−p
2

(0, 1)σ

)
= 1 − 1 − γ

2

and from the second probability that

P

(
μ̂e + q∗

1+p
2 ,

1+γ
2

σ̂e ≥ μ + q 1+p
2

(0, 1)σ

)
= 1 − 1 − γ

2
.

Thus, using Bonferroni inequality and noting that 1 − (1 − γ )/2 − (1 − γ )/2 = γ ,
we find

P

(
μ̂e + q∗

1−p
2 ,

1−γ
2

σ̂e ≤ μ + q 1−p
2

(0, 1)σ and μ + q 1+p
2

(0, 1)σ ≤ μ̂e + q∗
1+p
2 ,

1+γ
2

σ̂e

)
≥ γ. (20)
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That is, the interval

(
μ̂e + q 1−p

2 ,
1−γ
2

σ̂e, μ̂e + q 1+p
2 ,

1+γ
2

σ̂e

)
(21)

would include at least 100p percent of the population with confidence at least γ .
The coverage probability of the TI in (21) does not depend on any parameter, and

so the coverage probability in (20) can be expressed as

Hμ̂∗
e ,̂σ

∗
e
(γ |0, 1) = P

(
μ̂∗
e + q∗

1−p
2 ; 1−γ

2
σ̂ ∗
e ≤ q 1−p

2
(0, 1) and q 1+p

2
(0, 1)

≤ μ̂∗
e + q∗

1+p
2 ; 1+γ

2
σ̂ ∗
e

)
≥ γ. (22)

Note that, for any given confidence level γ ′, Hμ̂∗
e ,̂σ

∗
e
(γ ′|0, 1) is the actual coverage

probability of the TI in (21) with γ replaced by γ ′. In view of (22), we can choose
γ ′ so that Hμ̂∗

e ,̂σ
∗
e
(γ ′|0, 1) = γ. A Monte Carlo estimate of the coverage probability

Hμ̂∗
e ,̂σ

∗
e
(γ ′|0, 1) along with a root bracketing interval [γ − .4, γ ], say, can be used to

find the root of the equation Ĥμ̂∗
e ,̂σ

∗
e
(γ ′|0, 1) − γ = 0. Let γ ′

e denote the root of the
equation. Then the interval

(
μ̂e + q∗

1−p
2 ; 1−γ ′

e
2

σ̂e, μ̂e + q∗
1+p
2 ; 1+γ ′

e
2

σ̂e

)
(23)

is an exact equal-tailed TI.

7.2 Two-Sided Tolerance Intervals

Notice that the TI in (21) would include at least 100p% of the population with prob-
ability at least γ . So the probability content in the interval (21) is

F

(
μ̂e + q∗

1+p
2 ,

1+γ
2

σ̂e

)
− F

(
μ̂e + q∗

1−p
2 ,

1−γ
2

σ̂e

)
≥ p

with probability at least γ . That is,

P

(
F

(
μ̂e + q∗

1+p
2 ,

1+γ
2

σ̂e

)
− F

(
μ̂e + q∗

1−p
2 ,

1−γ
2

σ̂e

)
≥ p

)
≥ γ. (24)

Since the above probability does not depend on any parameter, we can express the
probability as

Gμ̂∗ ,̂σ ∗(γ |0, 1) = P

{
FX

(
μ̂∗ + q∗

1+p
2 ; 1+γ

2
σ̂ ∗

∣∣∣∣0, 1
)

−FX

(
μ̂∗ + q∗

1−p
2 ; 1−γ

2
σ̂ ∗

∣∣∣∣0, 1
)

≥ p

}
≥ γ, (25)
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where FX (x |0, 1) denotes the CDF of the standard Maxwell distribution. Let γ ′
t ≤ γ

be such that

Gμ̂∗ ,̂σ ∗(γ ′
t |0, 1) = P

{
FX

(
μ̂∗ + q∗

1+p
2 ; 1+γ ′

t
2

σ̂ ∗
∣∣∣∣0, 1

)

−FX

(
μ̂∗ + q∗

1−p
2 ; 1−γ ′

t
2

σ̂ ∗
∣∣∣∣0, 1

)
≥ p

}
= γ. (26)

Then
(

μ̂ + q∗
1−p
2 ; 1−γ ′

t
2

σ̂ , μ̂ + q∗
1+p
2 ; 1+γ ′

t
2

σ̂

)
(27)

is an exact two-sidedTI. The root of theEq. (26) can be found along the lines for finding
equal-tailed TI described in the preceding paragraph. For more details and algorithm
to compute the equal-tailed and two-side TI factors, see Hoang-Nguyen-Thuy and
Krishnamoorthy [7].

We compared tolerance intervals based on the MLEs, MEs, and MMLEs in terms
of expected widths. The comparison results are very similar to those in the preceding
sections, and so we do not report the comparison results here. That is, TIs based on the
MLEs are a little shorter than those based on the MEs and MMLEs. So we computed
(p, .95) factors based on the MLEs to compute two-sided as well as equal-tailed TIs
and reported them in Table 7 for p = .80, .90, .95 and .99, and for various values of
sample size ranging from 5 to 100. Factors for any values of (n, p, γ ) can be computed
using the R function TFs.Maxwell() in “Appendix B”.

8 Examples

Example 1 The data in Table 8 are fromChen et al. [3], and they represent the lifetimes
of 1.88-mm drills from a supplier. These data were collected during the production
process of drills in a factory. Krishnamoorthy et al. [11] and Hoang-Nguyen-Thuy and
Krishnamoorthy [8]modeled the data using a two-parameter Rayleigh distribution and
constructed CIs, PIs and TIs. These data also fit a two-parameter Maxwell distribution
quite well; see the Q-Q plot in Figure 1.

We computed various point estimates, 95% CIs for the mean lifetime of drills, (.90,
.95) lower tolerance limits (LTLs), 95% PIs for the mean X̄15 of a future sample of size
five, (.90, .95) tolerance intervals and 95% lower confidence limit for P(X > 76) and
presented them in Table 9. All these intervals were computed using the R functions
in “Appendix B”. As noted earlier, comparison of various intervals indicates that all
statistical intervals based on different equivariant estimates are practically similar and
only minute differences exist among them. The results are also in agreement with our
earlier comparison studies. In particular, we note that interval estimates based on the
MLEs are slightly narrower than corresponding other intervals.

By fitting a two-parameter Rayleigh distribution for the data in Table 8, Krish-
namoorthy et al. [9] have obtained the following results: The 95% CI for the mean
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Table 8 Lifetime (in min) of a sample of 1.88-mm drills

105 105 95 87 112 80 95 97 77 103 78 87 107 96 79

91 108 97 80 76 92 85 76 96 77 80 100 94 82 104

91 95 93 99 99 94 84 99 91 85 86 79 89 89 100

Fig. 1 Maxwell Q-Q plot for drills’ life data

on the basis of the MLEs is (88.64, 94.52) and the one based on the MEs is (88.68,
94.58). Note that both CIs are in agreement with the corresponding ones in Table 9
which are based on a Maxwell model. The (.90, .95) lower tolerance limit based on
the MLEs and two-parameter Rayleigh model is 77.0 and the one based on the MEs
is 76.8. These two tolerance limits are also in agreement with the corresponding ones
in Table 9.

Example 2 For this example, we shall use the flood data given in Dumonceaux and
Antile [5]. The data are reproduced here in Table 10, which are maximum flood levels
(in millions of cubic feet per second per 4-year period cycle) of Susquehenna River
at Harrisburg, PA, for the period of 1890-1969. Application of the K-S test by Dey et
al. [4] indicated that the data fit a Maxwell distribution. Our Q-Q plot in Figure 2 also
indicates that the data fit a Maxwell distribution satisfactorily.

We computed various statistical intervals using the R functions given in “Appendix B”,
and presented them in Table 11.We once again observe that the comparison results are
in agreement with our earlier comparison of various statistical intervals. In particular,
the MLE-CIs are slightly narrower than the ME-intervals for estimation of mean,
prediction and tolerance intervals. The MLE-intervals and the MMLE-intervals are
practically the same.
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Table 10 Flood levels (106 cubic feet per second) data

.654 .613 .315 .449 .297 .402 .379 .423 .379 .3235

.269 .740 .418 .412 .494 .416 .338 .392 .484 .265

0.3 0.4 0.5 0.6

0.
3

0.
4

0.
5

0.
6

0.
7

Maxwell quantiles

sa
m

pl
e 

qu
an

til
es

Fig. 2 Maxwell Q-Q plot for maximum flood levels data

9 Concluding Remarks

In this article, we have compared various exact statistical intervals that can be con-
structed using equivariant estimators. In particular, we compared the interval estimates
based on equivariant MEs, MLEs and MMLEs which can be readily obtained. Our
extensive comparison studies indicated that only little differences exist among these
intervals in terms of precision. In general, the interval estimates based on the MLEs
are slightly better than intervals based on other estimates for small sample sizes. For
moderate to large samples, interval estimates based on all three equivariant estimates
are very similar. It should be noted that even though the MEs and MMLEs are in
closed-form, computer programs are necessary to find CIs, PIs and tolerance intervals
based on them. Furthermore, method of moments and modified maximum likelihood
method could produce inaccurate estimates of μ that are greater than x(1). Since com-
puter programs are necessary to construct statistical intervals based on equivariant
estimators, one may prefer to use the interval estimates based on natural MLEs. To
help practitioners, we provide R functions in the “Appendix B”, which can be used
to find CIs, PIs, one-sided tolerance limits, confidence bound on survival probability
and tolerance intervals and equal-tailed TIs.
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Appendix A

We here derive an interval based on a sample of size n that would include the location
parameter μ with a specified probability. The derivation below is similar to the one
by Hoang-Nguyen-Thuy and Krishnamoorthy (2020) for Rayleigh distributions. Let
X(1) denote the smallest order statistic for a sample of size n from a Maxwell(μ, σ )

distribution. Note that the distribution of X(1) is given by

P(X(1) ≤ x) = 1 − (1 − F(x |μ, σ))n ,

where F(x |μ, σ) is the CDF in (3). For a given P ∈ (0, 1), let us determine the value
of t so that P

(
X(1) − t ≤ μ ≤ X(1)

) = P(μ ≤ X(1) ≤ μ+ t) = P . LetG(x |�(3/2))
denote the gamma distribution function with the shape parameter 3/2 and the scale
parameter 1. For a given P , we need to determine t so that

P(μ ≤ X(1) ≤ μ + t) = 1 −
(
1 − G(t2/σ 2|�(3/2))

)n

= P.

Solving the above equation for t , we obtain

t = σ

√
G−1

(
1 − (1 − P)1/n|3/2),

where G−1(q|a) is the quantile function of gamma(a, 1). In practice, σ is unknown,
and so using the moment estimate σ̂M , we estimate t by

t̂ = σ̂M

√
G−1

(
1 − (1 − P)1/n|3/2).

Note that we estimated the value of t by replacing σ by σ̂M . By choosing P = .999,
the interval

(
X(1) − t̂, X(1)

)
is expected include with high probability.
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Appendix B

# This function generates n pseudo random numbers
from a Maxwell(mu, sigma)

# distribution

rmaxwell = function(n, mu, sigma){
z = rgamma(n, 3/2)
x = mu + sqrt(z)*sigma
return(x)
}
# Usage:
x = rmaxwell(n = 20, mu = 2, sigma = 3)

# This function computes the MLEs for a given sample x
MLEs = function(x){
n = length(x); Pf = 1-(1-.999)ˆ(1/n)
qp = sqrt(qgamma(Pf, 3/2))
sigsq.x = (n-1)*var(x)/n
xb = mean(x); s = sqrt(sigsq.x); xmin = min(x)
sigh = s*sqrt(2*pi/(3*pi-8))
tconst = sigh*qp
fn = function(v){
gt = n*(xb-v)-.6666667*(sigsq.x+(xb-v)ˆ2)*sum(1/(x-v))
}
muh = uniroot(fn, c(xmin-tconst, xmin))[[1]]
sigh = sqrt(2*(sum((x-muh)ˆ2))/3/n)
return(c(muh,sigh))
}
# This function computes the percentiles

to compute 100cl
# for the mean; sample size is n; nr

= number of simulation runs

perc.ci.mean = function(nr, n, cl){
al = (1-cl)/2; cs = 2/sqrt(pi)
x = matrix(rmaxwell(nr*n,0,1),nr,n)
ml = apply(x, 1, function(x) MLEs(x))
muh = ml[1,]; sigh = ml[2,]
piv = (cs-muh)/sigh
crt = quantile(piv, c(al,1-al))
print(crt,3)
}
# Usage:
> perc.ci.mean(10ˆ5, n = 20, cl = .95)
2.5
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0.915 1.380

# This function computes the percentiles to
construct 100cl

# for the mean of a future sample of size m;
nr = number of simulation runs

PI.fac = function(nr, n, m, cl){
x = matrix(rmaxwell(nr*n,0,1),nr,n)
ml = apply(x, 1, function(x) MLEs(x))
muh = ml[1,]; sigh = ml[2,]
y = matrix(rmaxwell(nr*m,0,1),nr,m)
yb = apply(y, 1, function(x) mean(x))
piv = (yb-muh)/sigh
crt = unname(quantile(piv,c(.025,.975)))
print(crt,3)
}
PI.fac(10ˆ5, n = 45, m = 5, cl = .95)

# This function computes (p, cl) one-sided
tolerance factors

fac.os.TLs = function(nr, n, p, cl){
x = matrix(rmaxwell(nr*n,0,1),nr,n)
ml = apply(x, 1, function(x) MLEs(x))
muh = ml[1,]; sigh = ml[2,]
UppP = sqrt(qgamma(p,3/2))
piv = (UppP-muh)/sigh
crtU = quantile(piv, cl)
LowP = sqrt(qgamma(1-p,3/2))
piv = (LowP-muh)/sigh
crtL = quantile(piv, 1-cl)
print(c(crtL, crtU),3)
}
fac.os.TLs(10ˆ5, n = 10, p = .9, cl = .95)

# Lower confidence limit for P(X > t)

CI.Surv.Prob = function(nr, x, t, cl){ # x = sample
n = length(x); al = 1-cl
mls = MLEs(x); muh0 = mls[1]; sigh0 = mls[2]
xm = matrix(rmaxwell(nr*n,0,1), nr, n)
mles = apply(xm, 1, function(x) MLEs(x))
muh = mles[1,]; sigh = mles[2,]
t0 = (t-muh0)/sigh0; p0 = 1-pgamma(t0ˆ2,1.5)
#
fn = function(y){
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Qp = quantile((sqrt(qgamma(1-y,1.5))-muh)/sigh, al)
return(Qp-t0)
}
Low = uniroot(fn, c(.001, p0))[[1]]
print(Low)
}

# Two-sided or equal-tailed tolerance factors
TFs.Maxwell = function(nr,n,p,gam,tails){
ql = sqrt(qgamma((1-p)/2,1.5))
qu = sqrt(qgamma((1+p)/2,1.5))
x = matrix(rmaxwell(nr*n,0,1), nr, n)
mles = apply(x, 1, function(x) MLEs(x))
muh = mles[1,]; sigh = mles[2,]
# one-sided factor
TF = function(nr, n, muh, sigh, p, gam){
wu = (qu-muh)/sigh; wl = (ql-muh)/sigh
UTF = quantile(wu, gam); LTF = quantile(wl, 1-gam)
return(c(LTF,UTF))
}
# CDF of Maxwell
pmaxwell = function(x, mu, sig){
x = pmax(mu,x)
z = (x-mu)ˆ2/sigˆ2
return(pgamma(z,1.5))
}
fn = function(gamt){
fac = TF(nr,n, muh, sigh, (1+p)/2, (1+gamt)/2)
Low = muh + fac[1]*sigh; Upp = muh + fac[2]*sigh
if(tails == "E-T"){
cont = Low <= ql & qu <= Upp}
else{
cont = pmaxwell(Upp,0,1)-pmaxwell(Low,0,1)}
covr = mean(cont >= p)
return(covr-gam)
}
# bisection method
xl = .5; xr = gam; k = 1
repeat{
fl = fn(xl); fr = fn(xr)
xm = (xl+xr)/2
fm = fn(xm)
if(abs(fm) < 1.0e-5 | k > 50){break}
if(fl*fm > 0){xl = xm}
else{xr = xm}
k = k + 1
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}
fac = unname(TF(nr,n, muh, sigh, (1+p)/2, (1+xm)/2))
print(fac,3)
}
> TFs.Maxwell(10ˆ5, n = 20, p = .9, gam = .95,

tails = "T-S")
[1] 0.157 2.401
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