
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=cjas20

Journal of Applied Statistics

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/cjas20

Estimation of the probability content in a specified
interval using fiducial approach

Ngan Hoang-Nguyen-Thuy & K. Krishnamoorthy

To cite this article: Ngan Hoang-Nguyen-Thuy & K. Krishnamoorthy (2021) Estimation of the
probability content in a specified interval using fiducial approach, Journal of Applied Statistics, 48:9,
1541-1558, DOI: 10.1080/02664763.2020.1768228

To link to this article:  https://doi.org/10.1080/02664763.2020.1768228

Published online: 19 May 2020.

Submit your article to this journal 

Article views: 53

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=cjas20
https://www.tandfonline.com/loi/cjas20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/02664763.2020.1768228
https://doi.org/10.1080/02664763.2020.1768228
https://www.tandfonline.com/action/authorSubmission?journalCode=cjas20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=cjas20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/02664763.2020.1768228
https://www.tandfonline.com/doi/mlt/10.1080/02664763.2020.1768228
http://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2020.1768228&domain=pdf&date_stamp=2020-05-19
http://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2020.1768228&domain=pdf&date_stamp=2020-05-19


JOURNAL OF APPLIED STATISTICS
2021, VOL. 48, NO. 9, 1541–1558
https://doi.org/10.1080/02664763.2020.1768228

Estimation of the probability content in a specified interval
using fiducial approach

Ngan Hoang-Nguyen-Thuy and K. Krishnamoorthy

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA, USA

ABSTRACT
Statistical methods for constructing confidence intervals for the
probability content in a specified interval are proposed. Exact and
approximate solutions based on the fiducial approach are described
when themeasurements on the variable of interest can bemodelled
by a location-scale (or log-location-scale) distribution. Methods are
described for the normal, Weibull, two-parameter exponential and
two-parameter Rayleigh distributions. For each case, the solutions
are evaluated for their merits. Three examples, where it is desired to
estimate the percentages of engineering products meet the specifi-
cation limits, are provided to illustrate the methods.
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1. Introduction

Mechanical parts aremanufactured tomeet some tolerance specification limits so that they
can be used for their intended purpose. For example, if a shaft is designed to have a ‘sliding
fit’ in a hole, the shaft should be little smaller than the hole. Specifically, if a shaft with a
nominal diameter of 10mm is to have a sliding fit within a hole, the shaftmight be specified
with a tolerance range from 9.964 to 10mm, and the hole might be specified with a toler-
ance range from 10.04 to 10.076mm. Both the shaft and hole sizes will usually formnormal
distributions.1 In electrical components production, an electrical specification might call
for a resistor with a nominal value of 100 ohms, but will also state a tolerance such as±1%.
Thus, in many applications, one needs to assess the percentage of parts that meet the spec-
ifications. For example, the acceptance sampling plan, an important statistical method, is
commonly used in quality control. In particular, the plan is used to accept/reject a shipment
of a product based on some quality characteristics of the parts in a sample from the ship-
ment. Suchmethods are also used in different stages of production by amanufacturer. If an
acceptance sampling plan is based on a continuous variable type data, and it is designed to
accept/reject the shipment or a production process on the basis of the percentage of parts
satisfy the tolerance specifications, then a confidence interval (CI) or hypothesis test for the
true percentage of parts that meet specification is required to implement the acceptance
sampling plan.
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A tolerance interval maybe used to assess the percentage of parts thatmeet the tolerance
specification (NIST2). Recall that a p-content – γ coverage tolerance interval or (p, γ ) toler-
ance interval based on a sample is constructed so that it would include at least a proportion
p of the sampled populationwith confidence γ . If a specification interval (LSL,USL), where
the LSL and USL denote the lower and upper specification limits, respectively, includes a
(p, γ ) tolerance interval then it can be concluded that at least 100p% of the parts meet
specifications with confidence γ . However, it should be noted that if the tolerance interval
overlaps with the specification interval, then no conclusion can be made as to the percent-
age of parts that meet specifications. Assuming normality for the continuous variable data,
Owen [23] has proposed simultaneous confidence intervals (CIs) for the lower and upper
percentiles of a normal distribution. Krishnamoorthy and Mathew [18] ( Section 2.3.3)
have used these simultaneous CIs to test if a specified percentage of parts are within the
specification limits. If the null hypothesis of the test is rejected then it can be concluded
that at least a specified percentage of parts are within the specification limits. However, the
specification interval (LSL, USL) may include at least a specified percentage of parts even
if the null hypothesis is not rejected. See Example 1 in the sequel. Recently, Young et al. [26]
have investigated the problem of determining sample size so that a (p, γ ) lower tolerance
limit is greater than LSL. For such sample size, it is expected that the lower tolerance limit
is greater than LSL, as a result, at least proportion p of the measurements meet the lower
specification. These authors have also considered the problem of determining sample size
so that a two-sided tolerance interval would include (LSL,USL).

In some applications, an engineering part is required to meet only the LSL and the
problem is to estimate this probability based on the inspection of a sample of parts. In
lifetime data analysis, the probability P(X > t), where t is a specified time period, is
referred to as the survival probability. Commonly a lower bound on this probability is
required to quantify the effect of a treatment or to judge the minimum percentage of
parts that meet the lower specification limit. No closed-form expression is available for
the lower bound even in the normal case, and it can be computed only numerically. Specif-
ically, if T(X; p, γ ) denotes the (p, γ ) lower tolerance limit, then the value of p for which
T(X; p, γ ) = t is a 100γ% lower confidence limit for P(X > t). However, to the best of
our knowledge, no confidence interval is available for the probability content in a specified
interval.

In this article, we provide some simple solutions based on the fiducial approach to the
aforementioned problems. The concepts of fiducial distribution and fiducial inferencewere
introduced by Fisher [8,9]. Even though there are some severe criticisms concerning the
interpretation of fiducial distribution (Zabell [27]) and not a popular statistical method,
Efron [7] has noted in Section 8 of his paper that ‘maybe Fishers biggest blunder will
become a big hit in the 21st century!’. The fiducial approach was resurfaced in the name
of generalized variable approach introduced by Tsui andWeerahandi [24] andWeerahandi
[25]. Hannig [11] has noted that the generalized variable approach is a special case of the
fiducial approach, and all the results obtained using the generalized variable approach can
be obtained using the fiducial approach. The fiducial approach is a useful tool to find solu-
tions to many complex problems with satisfactory frequentist properties. See Clopper and
Pearson [3], Garwood [10] and Chapman [1] for some classical results. For other prob-
lems where fiducial inference led to exact CIs, see Dawid and Stone [5], the articles by
Krishnamoorthy and Mathew [16,17]. Applications of the fiducial approach to estimate
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the process capability indices (PCIs) can be found in Mathew et al. [22] and the recent
article by Edirisinghe et al. [6].

The rest of the article is organized as follows. In the following section,we provide fiducial
quantities for the parameters of a location-scale distribution. We show that the fiducial
confidence interval for the survival probability P(X > t) is exact when X has a location-
scale distribution. In Section 3, we provide fiducial CIs for the probability contents in a
specified finite interval for the normal, Weibull, two-parameter exponential and Rayleigh
distributions. For each case, the accuracy of the fiducial CI is evaluated by Monte Carlo
simulation studies. In Section 4, the methods are illustrated using three examples with real
data. Some concluding remarks are given in Section 5.

2. Location-scale family of distributions

A family of probability distributions is called a location-scale family if their probability
density function (pdf) can be expressed in the form

f (x|μ, σ) = 1
σ
f
(
x − μ

σ

)
, −∞ < x < ∞, −∞ < μ < ∞, σ > 0, (1)

where μ is the location parameter and σ is the scale parameter. For example, the normal,
Laplace, logistic and two-parameter exponential distributions are all location-scale distri-
butions. The lognormal and Weibull distributions are log-location-scale distributions as
the log-transformed samples from these distributions follow location-scale distributions.

Let F(x|μ, σ) denote the cumulative distribution function (cdf) and let F−1(p|μ, σ)

denote the inverse distribution function. Let μ̂ and σ̂ be equivariant estimators of μ and
σ , respectively, based on a sample of size n. Then μ̂−μ

σ
, σ̂

σ
and μ̂−μ

σ̂
are all pivotal quan-

tities (see Lawless [20], Theorem E2). That is, their distributions remain the same for all
parameter values. As a consequence, the quantities

μ̂ − μ

σ

d= μ̂∗ and
σ̂

σ

d= σ̂ ∗, (2)

where μ̂∗ and σ̂ ∗ are equivariant estimators based on a sample of size n from the
distribution f (x|0, 1), and the notation ‘X d= Y ’ means X and Y are identically distributed.

Using the approach by Dawid and Stone [5], fiducial distributions of the location and
scale parameters can be obtained as follows. Let (μ̂0, σ̂0) be an observed value of (μ̂, σ̂ ).
Solving the ‘equations’ in Equation (2) for μ and σ , and then replacing (μ̂, σ̂ ) by (μ̂0, σ̂0),
we obtain the fiducial quantities (FQs) for μ and σ as

Qμ = μ̂0 − μ̂∗

σ̂ ∗ σ̂0 and Qσ = σ̂0

σ̂
, (3)

respectively. For a fixed (μ̂0, σ̂0), the distribution of the above FQs are called fiducial
distributions.
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2.1. Fiducial distribution of FX(t|μ, σ)

For a given t, let Pt = P(X ≤ t|μ, σ) = FX(t|μ, σ) and consider testing

H0 : Pt = p0 vs. Ha : Pt > p0, (4)

where p0 is a specified value in (0, 1). It can be readily verified that testing above hypotheses
is equivalent to testing

H0 : μ + F−1(p0|0, 1)σ = t vs. Ha : μ + F−1(p0|0, 1)σ < t. (5)

Furthermore,

μ + F−1(p0|0, 1)σ − μ̂

σ̂

d= F−1(p0|0, 1) − μ̂∗

σ̂ ∗ , (6)

where μ̂∗ and σ̂ ∗ are equivariant estimators based on a sample of size n from the dis-
tribution f (x|0, 1). In view of Equation (6) and the probability integral transform, under
H0 : μ + F−1(p0|0, 1)σ = t, the p-value

P
(
F−1(p0|0, 1) − μ̂∗

σ̂ ∗ <
t − μ̂

σ̂

)
has the uniform (0, 1) distribution. For a given level α and an observed value (μ̂0, σ̂0) of
(μ̂, σ̂ ), the test that rejects H0 whenever the p-value

P
(
F−1(p0|0, 1) − μ̂∗

σ̂ ∗ <
t − μ̂0

σ̂0

)
< α ⇐⇒ P

(
F∗
(

σ̂ ∗
(
t − μ̂0

σ̂0

)
+ μ̂∗

)
> p0

)
< α,

(7)

where F∗ is the cumulative distribution function of the location-scale distribution with
μ = 0 and σ = 1, is an exact level α test. For a given (μ̂0, σ̂0), the ‘probable values’ of
Pt = p0 are determined by the distribution of

QPt = F∗
(

σ̂ ∗
(
t − μ̂0

σ̂0

)
+ μ̂∗

)
, (8)

which is the fiducial distribution for Pt . The above quantity QPt is called the fiducial
quantity for Pt = P(X ≤ t|μ, σ).

Remark 2.1: It should be noted that a FQ for F(t|μ, σ) can be obtained in a straight-
forward manner by replacing (μ, σ) with their FQs (Qμ,Qσ ). However, in the preceding
paragraph, we deduced the FQ for F(t|μ, σ) from hypothesis test in order to show that
the fiducial inferential results for F(t|μ, σ) are exact. To obtain the FQ for F(t|μ, σ) by
substitution, let F(x|0, 1) = F∗(x). Recall that for a location-scale distribution,

F(t|μ, σ) = F
(
t − μ

σ

∣∣∣∣0, 1) = F∗
(
t − μ

σ

)
.

Replacing (μ, σ) by (Qμ,Qσ ), we find the FQ in Equation (8).
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2.2. Fiducial CIs for probability

2.2.1. Confidence Intervals for FX(t|μ, σ)

For a given (μ̂0, σ̂0), the fiducial distribution of FX(t|μ, σ) is the distribution of

QPt = F
(

σ̂ ∗
(
t − μ̂0

σ̂0

)
+ μ̂∗

)
. (9)

A 1 − 2α fiducial CI for Pt is formed by the lower and upper 100α percentiles of QPt .
Specifically, if QPt;q denotes the 100q percentile of QPt , then (QPt ;α , QPt ;1−α) is a 1 − 2α
CI for Pt . For a given (μ̂0, σ̂0), the distribution of the above fiducial quantity does not
depend on any parameter, its percentiles can be estimated by Monte Carlo simulation. As
the fiducial quantity is obtained by inverting an exact test, the fiducial CI for P(X ≤ t|μ, σ)

is exact.

2.2.2. Confidence intervals for P(L ≤ X ≤ U)

Writing P(L ≤ X ≤ U) = P(X ≤ U) − P(X ≤ L) and replacing the parameters with their
FQs, we can obtain a fiducial quantity for PLU = P(L ≤ X ≤ U) as

QPLU = QPU − QPL = F∗
(

σ̂ ∗
(
U − μ̂0

σ̂0

)
+ μ̂∗

)
− F∗

(
σ̂ ∗
(
L − μ̂0

σ̂0

)
+ μ̂∗

)
. (10)

For a given (μ̂0, σ̂0), the distribution of the above fiducial quantity does not depend on any
parameter, and so its percentiles can be estimated by Monte Carlo simulation. Percentiles
of the above fiducial quantity form a CI for the probability PLU . However, such fiducial CIs
for PLU are not necessarily exact with respect to the joint distribution of μ̂ and σ̂ .

In the following sections, we shall illustrate the fiducial approach for some location-scale
families of distributions.

3. Some location-scale distributions

In this section, we shall describe FQs for the probabilities under the normal, Weibull,
exponential and Rayleigh distributions. Specifically, we point out efficient equivariant esti-
mators and the methods to calculate them. For each case, we explain the methods of
computing CIs for P(X < t) and for P(L ≤ X ≤ U), where X follows a location-scale
distribution. Note that if (Lt ,Ut) is a CI for P(X < t), then (1 − Ut , 1 − Lt) is a CI for
P(X > t).

3.1. Normal distribution

For the normal case, we shall use the usual equivariant estimators, the sample mean μ̂ = X̄
and the variance σ̂ 2 = S2. Note that μ̂∗ and σ̂ ∗2 are the sample mean and variance based
on a sample of size n from a standard normal distribution, and so μ̂∗ ∼ N(0, 1/n) inde-
pendently of σ̂ ∗ ∼

√
χ2
n−1/(n − 1). Let us denote the observed value (μ̂0, σ̂0) by (x̄, s). In
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these notations, the FQ for Pt = P(X < t) is expressed as

QPt = �

(
W(t − x̄)

s
+ Z√

n

)
, (11)

where Z ∼ N(0, 1) independently ofW ∼
√

χ2
n−1/(n − 1) and�(x) is the cdf of the stan-

dard normal distribution. For a given (t, x̄, s), the percentiles of QPt can be estimated by
Monte Carlo simulation, and appropriate percentiles form a CI for P(X < t). As noted ear-
lier, the above CI is exact except for the simulation errors. R code for computing confidence
limits for P(X < t) is given in the appendix.

Alternatively, one can find a closed-form approximate CI for P(X < t) using the mod-
ified normal approximation by Krishnamoorthy [14]. Let Wα denote the 100α percentile
ofW. To find a CI for P(X < t), it is enough to find percentiles of W(t−x̄)

s + Z√
n . The lower

100α percentile is approximated as

Lt =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
W.5

(
t − x̄
s

)
−
√(

t − x̄
s

)2
(W.5 − Wα)2 + z2α/n if

t − x̄
s

> 0,

W.5

(
t − x̄
s

)
−
√(

t − x̄
s

)2
(W.5 − W1−α)2 + z2α/n if

t − x̄
s

≤ 0.

(12)

The 100(1 − α) percentile can be approximated as

Ut =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
W.5

(
t − x̄
s

)
+
√(

t − x̄
s

)2
(W.5 − W1−α)2 + z2α/n if

t − x̄
s

> 0,

W.5

(
t − x̄
s

)
+
√(

t − x̄
s

)2
(W.5 − Wα)2 + z2α/n if t−x̄

s ≤ 0.

(13)

The approximate 100(1 − 2α) CI for P(X < t) is given by (�(Lt),�(Ut)). This approxi-
mate CI is as good as the one based on Monte Carlo simulation. For more details on this
approximation, see Hoang-Nguyen-Thuy [12].

3.1.1. A Fiducial CI for PLU = P(L ≤ X ≤ U)

Using (10), the fiducial quantity for PLU can be expressed as

QPLU = �

(
W(U − x̄)

s
+ Z√

n

)
− �

(
W(L − x̄)

s
+ Z√

n

)
, (14)

whereW and Z are as defined in Equation (11). For a given (L,U, x̄, s), Monte Carlo sim-
ulation can be used to estimate the percentiles ofQPLU , and appropriate percentiles form a
CI for PLU .

3.1.2. On selecting tail error probabilities
The fiducial distribution is essentially the posterior distribution with no prior distribu-
tions of the parameters, and so a highest probability density (HPD) region can be used as a
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Figure 1. Histograms of the normal fiducial quantity (14); Left: n = 10, x̄ = 0.070, s = 1.256, (L,U) =
(−1, 2); Right: n = 30, x̄ = −0.062, s = 0.932, (L,U) = (−1, 2).

fiducial CI for PLU . One can find suchHPD region using the R function as in the appendix.
However, ourMonte Carlo simulation studies (not reported here) indicated that suchHPD
intervals have poor coverage probabilities. For some parameter values, the coverage prob-
ability could be as low as .85 when the nominal level is .95. Alternatively, we can choose the
tail error probabilities, so that the coverage probabilities are close to the nominal level for
all parameter values as follows. Let αl and αr denote the left and right-tail error probabili-
ties so that αl + αr = α. Then 100αl lower percentile and 100αr upper percentile of QPLU
form a 1 − α fiducial CI for PLU . In order to choose the values of αl and αr, we plotted
the histogram of the fiducial quantity QPLU in (14) for some values of (n, x̄, s) as shown in
Figure 1. The plots in Figure 1, and other plots (not reported here) for various values of
(n, x̄, s) clearly indicated that the fiducial distribution for PLU is left-skewed. So by choos-
ing αl > αr, one could obtain a shorter CI for PLU . On the basis of extensive numerical
studies, for values αl = 0.68α and αr = 0.32α , the 1 − α fiducial CI for PLU has satisfac-
tory coverage probabilities for most cases. For example, to find a 95% fiducial CI for PLU ,
we choose the left endpoint as the lower 100αl = 100 × 0.68 × 0.05 = 3.4 th percentile of
QPLU and the right endpoint as the upper 100αr = 100 × 0.32 × 0.05 = 1.6 th percentile
of QPLU .

3.1.3. Coverage studies
To judge the accuracy of the fiducial CIs (a) formed by lower and upper 100α/2 per-
centiles of FQ in Equation (14) and (b) CI formed by the lower 100×0.68 × α and upper
100×0.32 × α percentiles of FQ in Equation (14), we estimated the coverage probabilities
of these two CIs with the nominal level 0.95. The coverage probabilities along with the
expected widths of the CIs are reported in Table 1. The estimated coverage probabilities
and expected widths clearly indicate that the CI (b) is better than (a) for all sample sizes
and L andU. For small sample sizes, the CI (a) is little liberal having coverage probabilities
less than the nominal level 0.95. Even for large samples of size 30 or more, the CI (b) has
the edge over the CI (a) in terms of coverage probabilities.

3.1.4. Lognormal distribution
If Y follows a lognormal distribution with parameters μ and σ 2, then X = ln(Y) has a
normal distributionwithmeanμ andσ 2. SoP(L ≤ Y ≤ U) = P(ln(L) ≤ X ≤ ln(U)), and
the above method for the normal case can be applied to log-transformed sample from a
lognormal population to find a CI for the probability P(ln(L) ≤ X ≤ ln(U)).
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Table 1. Coverageprobabilities (CP), left-tail error probabilities (LE), right-tail error probabilities (RE) and
average lengths (AL) of 95% fiducial CIs for P(L < X < U), X ∼ N(0, 1).

n = 10 n = 20

(a) (b) (a) (b)

L(U) [LE]CP[RE] (AL) [LE]CP[RE] (AL) [LE]CP[RE] (AL) [LE]CP[RE] (AL)

−0.3(0.3) [0.006]0.936[0.058] 0.208 [0.009]0.950[0.041] 0.213 [0.010]0.943[0.048] 0.146 [0.014]0.954[0.032] 0.149
−0.6( 0.6) [0.007]0.935[0.058] 0.354 [0.011]0.949[0.040] 0.359 [0.010]0.943[0.047] 0.252 [0.015]0.954[0.031] 0.256
−1.0( 1.0) [0.008]0.935[0.057] 0.424 [0.012]0.948[0.039] 0.421 [0.010]0.942[0.047] 0.303 [0.016]0.953[0.031] 0.303
−2.0( 2.0) [0.011]0.936[0.053] 0.278 [0.016]0.947[0.037] 0.259 [0.013]0.941[0.046] 0.171 [0.018]0.953[0.030] 0.162
−2.3( 2.3) [0.011]0.937[0.052] 0.221 [0.017]0.947[0.036] 0.203 [0.014]0.941[0.046] 0.124 [0.018]0.952[0.029] 0.116
−2.5( 2.5) [0.012]0.937[0.051] 0.188 [0.018]0.946[0.036] 0.170 [0.014]0.941[0.045] 0.098 [0.019]0.952[0.029] 0.090
−0.3( 1.0) [0.009]0.932[0.059] 0.362 [0.012]0.949[0.039] 0.366 [0.012]0.937[0.051] 0.254 [0.017]0.947[0.036] 0.257
−1.0( 0.3) [0.009]0.926[0.065] 0.359 [0.012]0.942[0.046] 0.363 [0.010]0.944[0.046] 0.258 [0.015]0.955[0.031] 0.262
−1.5(−0.5) [0.009]0.941[0.050] 0.254 [0.012]0.952[0.036] 0.260 [0.011]0.947[0.042] 0.187 [0.016]0.957[0.028] 0.190
0.5( 1.5) [0.010]0.942[0.047] 0.256 [0.014]0.954[0.032] 0.262 [0.014]0.948[0.038] 0.186 [0.019]0.955[0.025] 0.189
0.0( 1.0) [0.009]0.930[0.060] 0.295 [0.013]0.948[0.039] 0.301 [0.012]0.936[0.052] 0.205 [0.017]0.948[0.036] 0.209
0.3( 2.3) [0.016]0.950[0.034] 0.383 [0.022]0.956[0.022] 0.390 [0.021]0.950[0.028] 0.285 [0.028]0.952[0.019] 0.291
−0.5( 2.5) [0.020]0.942[0.038] 0.425 [0.026]0.948[0.026] 0.421 [0.020]0.945[0.036] 0.305 [0.027]0.949[0.023] 0.303

n = 30 n = 50

(a) (b) (a) (b)

L(U) [LE]CP[RE] (AL) [LE]CP[RE] (AL) [LE]CP[RE] (AL) [LE]CP[RE] (AL)

−0.3( 0.3) [0.014]0.942[0.045] 0.116 [0.019]0.951[0.030] 0.118 [0.018]0.946[0.036] 0.090 [0.024]0.952[0.024] 0.092
−0.6( 0.6) [0.014]0.941[0.045] 0.202 [0.020]0.951[0.030] 0.204 [0.018]0.946[0.036] 0.157 [0.024]0.952[0.024] 0.159
−1.0( 1.0) [0.015]0.940[0.045] 0.244 [0.020]0.951[0.029] 0.244 [0.019]0.945[0.036] 0.190 [0.024]0.952[0.024] 0.190
−2.0( 2.0) [0.016]0.940[0.044] 0.130 [0.022]0.950[0.029] 0.124 [0.020]0.945[0.035] 0.093 [0.024]0.952[0.024] 0.090
−2.3( 2.3) [0.017]0.940[0.043] 0.090 [0.022]0.949[0.029] 0.085 [0.020]0.946[0.035] 0.061 [0.025]0.951[0.024] 0.059
−2.5( 2.5) [0.017]0.940[0.043] 0.068 [0.022]0.949[0.028] 0.064 [0.020]0.946[0.034] 0.045 [0.025]0.951[0.024] 0.042
−0.3( 1.0) [0.014]0.939[0.047] 0.205 [0.019]0.950[0.031] 0.209 [0.014]0.946[0.040] 0.162 [0.020]0.952[0.027] 0.164
−1.0( 0.3) [0.013]0.945[0.042] 0.208 [0.017]0.956[0.026] 0.211 [0.020]0.944[0.036] 0.160 [0.025]0.952[0.023] 0.161
−1.5(−0.5) [0.015]0.947[0.038] 0.155 [0.021]0.952[0.027] 0.157 [0.019]0.953[0.028] 0.122 [0.024]0.959[0.017] 0.125
0.5( 1.5) [0.017]0.947[0.036] 0.154 [0.022]0.955[0.022] 0.157 [0.013]0.952[0.035] 0.122 [0.020]0.953[0.023] 0.121
0.0( 1.0) [0.014]0.938[0.048] 0.166 [0.020]0.950[0.030] 0.170 [0.014]0.944[0.042] 0.131 [0.019]0.952[0.029] 0.131
0.3( 2.3) [0.022]0.950[0.028] 0.239 [0.029]0.953[0.018] 0.243 [0.017]0.954[0.029] 0.191 [0.024]0.952[0.018] 0.191
−0.5( 2.5) [0.024]0.943[0.033] 0.253 [0.029]0.952[0.019] 0.255 [0.019]0.948[0.033] 0.202 [0.025]0.952[0.021] 0.202

(a) CI formed by lower and upper 2.5th percentiles of Equation (14).
(b) CI formed by the lower 3.4th and upper 1.6th percentile of Equation (14).

3.2. Weibull distribution

Let X1, . . .,Xn be a sample from a two-parameter Weibull(c, b) distribution with the
probability density function

f (x|b, c) = c
b

(x
b

)c−1
exp

{
−
[x
b

]c}
, x > 0, b > 0, c > 0.

Let Yi = ln(Xi), i = 1, . . . , n. The maximum likelihood estimate (MLE) of c is the solution
of the equation

1
ĉ

−
( n∑

i=1
X̂c
i Yi

)( n∑
i=1

X̂c
i

)−1

+ 1
n

n∑
i=1

Yi = 0, (15)

and the MLE of b is given by b̂ = ( 1n
∑n

i=1 X̂
c
i )
1/̂c. See Cohen [4] or Krishnamoorthy et al.

[15] The estimator ĉ = π√
6Sy

, where S2y = ∑n
i=1(Yi − Ȳ)2/(n − 1) can be used as an initial
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value to find the MLE of c using the Newton–Raphson iterative scheme. The R code given
in the appendix can be used to compute the MLEs for Weibull parameters.

3.2.1. Fiducial quantity for probabilities
The FQs for c and b are given by

Qc = ĉ0
ĉ∗

and Qb =
(

1
b̂∗

) ĉ∗
ĉ0
b̂0, (16)

respectively. See Krishnamoorthy et al. [15] Substituting these FQs for the parameters in
the cdf of aWeibull(c, b) distribution F(x|c, b) = 1 − exp[−( xb )

c], we find the FQ for Pt =
P(X < t|c, b) as

QPt = 1 − exp

(
−̂b∗

(
t
b̂0

)̂c0/̂c∗
)
. (17)

A fiducial quantity for PLU = P(L ≤ X ≤ U) can be expressed as

QPLU = exp

(
−̂b∗

(
L
b̂0

)̂c0/̂c∗
)

− exp

(
−̂b∗

(
U
b̂0

)̂c0/̂c∗
)
. (18)

3.2.2. Coverage studies
In order to determine the tail error probabilities αl and αr so that 100αl lower percentile
and 100αr upper percentile of QPLU in Equation (18) form a 1 − (αl + αr) = 1 − α fidu-
cial CI for PLU , we constructed histograms of the fiducial distribution for various values of
(n, ĉ0, b̂0) and presented only two histograms in Figure 2. All our numerical studies indi-
cated that the fiducial distributions for the Weibull case are nearly symmetric, and so we
recommend to use αl = αr = α/2. That is, we form the fiducial CI using the lower and
upper 100α/2 percentiles of QPLU in Equation (18). The estimated coverage probabilities
of such fiducial CIs are given in Table 2. Examination of table values indicates that the CI
could be liberal for small sample sizes. For sample sizes of 20 or more, the coverage prob-
abilities are close to the nominal level. Furthermore, we note that the precision of the CI
increasing with increasing samples size. For n ≥ 20, our fiducial CI for P(L ≤ X ≤ U) are
safe to use for a practical purpose.

Figure 2. Histograms of the Weibull fiducial quantity (14); Left: n = 10, ĉ0 = 0.8688, b̂0 =
0.7208, (L,U) = (0.2, 0.3); Right: n = 30, ĉ0 = 1.0685, b̂0 = 0.8841, (L,U) = (0.2, 0.3).
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Table 2. Coverage probabilities (CP) and average lengths (AL) of 95% fiducial CIs for P(L < X < U),
X ∼Weibull(c, b).

Weibull(1, 1) Weibull(1.5, 5)

n = 10 n = 20 n = 30 n = 40 n = 10 n = 20 n = 30 n = 40
L(U) CP[AL] CP[AL] CP[AL] CP[AL] CP[AL] CP[AL] CP[AL] CP[AL]

0.2(0.3) 0.950[0.074) 0.951[0.054] 0.950[0.044] 0.951[0.038] 0.951[0.029] 0.947[0.020] 0.943[0.016] 0.950[0.013]
0.2(0.5) 0.938[0.181) 0.945[0.126] 0.945[0.101] 0.950[0.089] 0.945[0.083] 0.953[0.059] 0.952[0.048] 0.948[0.040]
0.2(0.7) 0.929[0.257) 0.936[0.177] 0.940[0.141] 0.950[0.123] 0.949[0.125] 0.948[0.091] 0.948[0.076] 0.946[0.065]
0.3(0.9) 0.922[0.267) 0.932[0.182] 0.940[0.146] 0.940[0.125] 0.949[0.136] 0.948[0.104] 0.946[0.086] 0.948[0.076]
0.4(1.0) 0.925[0.252) 0.934[0.173] 0.943[0.139] 0.947[0.121] 0.951[0.128] 0.953[0.099] 0.948[0.083] 0.953[0.074]
0.5(1.0) 0.927[0.209) 0.935[0.144] 0.944[0.115] 0.951[0.101] 0.955[0.105] 0.953[0.082] 0.946[0.068] 0.950[0.060]
0.6(1.2) 0.930[0.226) 0.939[0.158] 0.948[0.128] 0.941[0.109] 0.955[0.117] 0.948[0.090] 0.948[0.076] 0.950[0.067]
0.7(1.3) 0.930[0.213) 0.940[0.149] 0.949[0.122] 0.948[0.105] 0.954[0.113] 0.950[0.087] 0.948[0.073] 0.953[0.065]
1.0(1.5) 0.930[0.153) 0.939[0.107] 0.945[0.088] 0.948[0.076] 0.954[0.085] 0.950[0.065] 0.951[0.055] 0.952[0.049]
1.5(2.5) 0.924[0.178) 0.934[0.131] 0.939[0.108] 0.947[0.095] 0.953[0.137] 0.954[0.098] 0.947[0.081] 0.953[0.071]
2.0(3.0) 0.941[0.130) 0.942[0.099] 0.946[0.083] 0.947[0.073] 0.932[0.127] 0.941[0.087] 0.949[0.071] 0.949[.060]

3.3. Some other continuous distributions

3.3.1. Exponential distribution
Let X1, . . . ,Xn be a sample from a two-parameter exponential distribution with the pdf

f (x|μ, σ) = 1
σ
exp(−(x − μ)/σ), x > μ, σ > 0. (19)

TheMLEs ofμ and σ are given by μ̂ = X(1) and σ̂ = X̄ − X(1), whereX(1) is the small-
est of the Xi’s. The MLEs are equivariant and independent with 2n(μ̂ − μ)/σ ∼ χ2

2 and
2nσ̂ /σ ∼ χ2

2n−2. Notice that μ̂∗ ∼ χ2
2 /(2n) independently of σ̂ ∗ ∼ χ2

2n−2/(2n). Using
these quantities in Equation (9), we can write FQ for Pt = P(X ≤ t) as

QPt = 1 − exp
(

− 1
2n

[
χ2
2n−2

(
t − μ̂0

σ̂0

)
+ χ2

2

])
, (20)

where the χ2 random variables are independent. The fiducial quantity for PLU = P(L ≤
X ≤ U) can be expressed as

QPLU = exp
(

− 1
2n

[
χ2
2n−2

(
L − μ̂0

σ̂0

)
+ χ2

2

])
− exp

(
− 1
2n

[
χ2
2n−2

(
U − μ̂0

σ̂0

)
+ χ2

2

])
. (21)

3.3.2. Rayleigh distribution
The pdf of a two-parameter Rayleigh distribution with location parameter μ and the scale
parameter σ is given by

f (x|μ, σ) = (x − μ)

σ 2 e−
1
2

(
x−μ
σ

)2
, x > μ, σ > 0. (22)

The cdf is given by

F(x|μ, σ) = 1 − e−
1
2

(
x−μ
σ

)2
, x > μ, σ > 0, (23)
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with the standard form F∗(x) = F(x|0, 1) = 1 − e−x2/2. We shall denote the above distri-
bution by Rayleigh(μ, σ).

Let X1, . . . ,Xn be a sample from a two-parameter Rayleigh distribution. Let X̄ denote
the sample mean and define the sample variance as S2 = 1

n−1
∑n

i=1(Xi − X̄)2. Krish-
namoorthy et al. [19] have shown that the MLE μ̂ of μ can be obtained as the root of
the equation

h(μ|X) = 2n2(X̄ − μ)∑n
i=1(Xi − μ)2

−
n∑

i=1
(Xi − μ)−1 = 0 (24)

using the interval (X(1) − 12σ̃ /
√
n, X(1)) as a root bracketing interval. Here, σ̃ 2 =

2S2/(4 − π) is the moment estimate. The MLE σ̂ =
√

1
2n
∑n

i=1(Xi − μ̂)2, where μ̂ is the
MLE of μ.

It follows from Equation (8) and (23) that the FQ for Pt = P(X ≤ t|μ, σ) can be
expressed as

QPt = 1 − e−
1
2

[
σ̂ ∗
(
t−μ̂0
σ̂0

)
+μ̂∗

]2
, (25)

where μ̂0 and σ̂0 are the observed MLEs based on a sample of size n from the
Rayleigh(μ, σ) distribution and μ̂∗ and σ̂ ∗ are the MLEs based on a sample of size n from
the Rayleigh(0, 1) distribution. A FQ for PLU = P(X ≤ U|μ, σ) − P(X ≤ L|μ, σ) can be
expressed as

QPLU = e−
1
2

[
σ̂ ∗
(
L−μ̂0

σ̂0

)
+μ̂∗

]2
− e−

1
2

[
σ̂ ∗
(
U−μ̂0

σ̂0

)
+μ̂∗

]2
. (26)

For a given (μ̂0, σ̂0), letQPLU ;α denote the 100α percentile ofQPLU . For both the exponential
and Rayleigh distributions, on the basis of shape of the fiducial distributions (simula-
tion results are not reported here), we recommend to use the lower and upper 100α/2
percentiles of QPLU to form a 1 − α CI for the probability PLU .

3.3.3. Coverage studies
The estimated coverage probabilities and average lengths of 95%CIs of probability contents
for the exponential and Rayleigh distributions are given in Tables 3 and 4, respectively. We
observe from Table 3 that the fiducial CIs for the exponential case could be slightly con-
servative for some sample size and parameter values. In general, we see that the coverage
probabilities are slightly larger than the nominal level of 0.95. For the case of Rayleigh dis-
tribution, we observe from Table 4 that the CIs are satisfactory even for samples of size 10.
The coverage probabilities, in the worst case, go as low as 0.93 when the nominal level is
0.95. On an overall basis, we see that CIs for both distributions are satisfactory and they
can be recommended for applications.

4. Examples

Example 4.1: This example along with data is adapted from Liu et al. [21]. A manufac-
turing company of universal serial bus (USB) wants to produce micro-USB instead of mini
USB, because the shape ofmodern digital devices is designedwith thinner and lighter com-
ponents. Accordingly, a particular model of micro-USB receptacle interface is considered
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Table 3. Coverage probabilities (CP) and average lengths (AL) of 95% fiducial CIs for P(L < X < U), X ∼
Exponential(μ, σ).

Exponential(0, 1) Exponential(1, 2)

n = 10 n = 20 n = 30 n = 40 n = 10 n = 20 n = 30 n = 40
L(U) CP[AL] CP[AL] CP[AL] CP[AL] L(U) CP[AL] CP[AL] CP[AL] CP[AL]

0.2(0.4) 0.951[0.168] 0.946[0.101] 0.955[0.081] 0.956[0.070] 1.2(1.4) 0.949[0.126] 0.946[0.072] 0.955[0.058] 0.956[0.049]
0.3(0.5) 0.956[0.128] 0.947[0.078] 0.956[0.063] 0.956[0.054] 1.3(1.5) 0.950[0.110] 0.946[0.064] 0.955[0.051] 0.956[0.044]
0.4(0.7) 0.960[0.131] 0.955[0.079] 0.959[0.063] 0.957[0.054] 1.4(1.7) 0.951[0.134] 0.946[0.080] 0.956[0.065] 0.956[0.055]
0.4(1.5) 0.941[0.233] 0.954[0.123] 0.962[0.089] 0.965[0.069] 1.4(2.5) 0.956[0.308] 0.948[0.186] 0.957[0.150] 0.956[0.128]
0.5(2.5) 0.944[0.246] 0.956[0.139] 0.967[0.101] 0.963[0.081] 1.5(2.5) 0.957[0.258] 0.950[0.156] 0.958[0.126] 0.956[0.107]
0.6(.75) 0.960[0.048] 0.957[0.028] 0.963[0.021] 0.964[0.018] 1.6(1.7) 0.952[0.039] 0.947[0.023] 0.955[0.019] 0.955[0.016]
0.7(2.0) 0.947[0.183] 0.958[0.105] 0.969[0.077] 0.965[0.062] 1.7(3.0) 0.959[0.222] 0.956[0.129] 0.961[0.102] 0.962[0.085]
1.0(2.5) 0.965[0.187] 0.969[0.132] 0.960[0.110] 0.949[0.096] 2.0(3.5) 0.951[0.174] 0.960[0.092] 0.966[0.065] 0.969[0.053]
2.0(3.0) 0.955[0.110] 0.946[0.088] 0.952[0.077] 0.951[0.069] 3.0(4.0) 0.948[0.078] 0.959[0.045] 0.970[0.033] 0.966[0.027]
2.0(4.0) 0.953[0.184] 0.945[0.146] 0.952[0.128] 0.951[0.114] 3.0(5.0) 0.965[0.139] 0.963[0.089] 0.972[0.070] 0.964[0.061]
2.0(5.0) 0.952[0.232] 0.944[0.181] 0.952[0.157] 0.951[0.140] 3.0(6.0) 0.968[0.189] 0.961[0.132] 0.965[0.109] 0.954[0.096]

Table 4. Coverage probabilities (CP) and average lengths (AL) of 95% fiducial CIs for P(L < X < U), X ∼
Rayleigh(μ, σ).

Rayleigh(0, 1) Rayleigh(1, 3)

n = 10 n = 20 n = 30 n = 40 n = 10 n = 20 n = 30 n = 40
L(U) CP[AL] CP[AL] CP[AL] CP[AL] L(U) CP[AL] CP[AL] CP[AL] CP[AL]

0.2(0.4) 0.956[0.138] 0.950[0.084] 0.949[0.064] 0.948[0.054] 1.2(1.4) 0.956[0.056] 0.948[0.036] 0.956[0.028] 0.945[0.023]
0.3(0.5) 0.944[0.126] 0.945[0.077] 0.944[0.059] 0.942[0.050] 1.3(1.5) 0.957[0.054] 0.950[0.035] 0.956[0.027] 0.946[0.022]
0.4(0.7) 0.930[0.171] 0.937[0.109] 0.942[0.086] 0.939[0.073] 1.4(1.7) 0.960[0.078] 0.954[0.049] 0.957[0.038] 0.945[0.031]
0.4(1.5) 0.944[0.422] 0.947[0.293] 0.953[0.238] 0.950[0.205] 1.4(2.5) 0.957[0.241] 0.954[0.149] 0.959[0.115] 0.943[0.095]
0.5(2.5) 0.940[0.379] 0.936[0.243] 0.938[0.186] 0.940[0.157] 1.5(2.5) 0.955[0.217] 0.953[0.134] 0.958[0.104] 0.944[0.085]
0.6(.75) 0.928[0.085] 0.940[0.056] 0.947[0.045] 0.943[0.039] 1.6(1.7) 0.961[0.025] 0.954[0.016] 0.957[0.012] 0.944[0.010]
0.7(2.0) 0.939[0.387] 0.938[0.251] 0.941[0.195] 0.945[0.165] 1.7(3.0) 0.942[0.251] 0.948[0.158] 0.947[0.123] 0.941[0.103]
1.0(3.0) 0.952[0.378] 0.955[0.264] 0.950[0.211] 0.952[0.181] 2.0(4.0) 0.928[0.332] 0.942[0.223] 0.944[0.179] 0.938[0.153]
2.0(3.0) 0.956[0.214] 0.952[0.169] 0.954[0.144] 0.948[0.128] 3.0(4.0) 0.944[0.182] 0.947[0.123] 0.953[0.100] 0.947[0.085]
2.0(4.0) 0.953[0.298] 0.952[0.225] 0.954[0.186] 0.948[0.164] 3.0(5.0) 0.952[0.313] 0.948[0.213] 0.955[0.172] 0.952[0.146]
2.0(5.0) 0.952[0.324] 0.952[0.236] 0.954[0.192] 0.948[0.168] 3.0(6.0) 0.951[0.375] 0.948[0.253] 0.953[0.202] 0.951[0.169]

Table 5. Front widths of a sample of 40 micro USB receptacle interface.

6.905 6.907 6.896 6.895 6.897 6.898 6.903 6.905 6.896 6.903
6.889 6.892 6.898 6.890 6.895 6.901 6.899 6.891 6.893 6.904
6.898 6.896 6.900 6.906 6.902 6.907 6.908 6.907 6.903 6.893
6.907 6.903 6.900 6.893 6.887 6.897 6.900 6.893 6.902 6.899

with the target width of the receptacle interface 6.9mm, and the tolerance 0.02. That is, the
upper and lower specification limits are USL = 6.92 and LSL = 6.88.

A sample of 107 micro USB receptacles is randomly drawn from the entire lot and the
measurements are shown in Table 5 of Liu et al. [21]. The normal probability plot of the
data by these authors clearly indicates that a normal model fits the data well. For simplic-
ity and illustration purpose, a sample of 40 measurements are taken randomly from 107
measurements and are presented in Table 5.

To apply the test proposed inKrishnamoorthy andMathew [18], we computed themean
as x̄ = 6.8989 and the standard deviation as s = 0.005602. To check if 95% of micro USB
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receptacles meet the specifications 6.90 ± .02, the hypotheses of interest are

H0 : 6.88 ≥ μ − z.975σ or μ + z.975σ ≥ 6.92 vs. Ha : (μ ± z.975σ) ⊂ (6.88, 6.92),
(27)

where zp is the 100p percentile of the standard normal distribution. The null hypothesis
will be rejected at the level 0.01, if the specification interval (6.88, 6.92) includes a 99%
CI for (μ − z.975σ , μ + z.975σ). Owen [23] has proposed a CI of the form x̄ ± ks for
(μ − z.975σ , μ + z.975σ). For n = 40, p = 0.95 (because (1 + p)/2 = 0.975) and confi-
dence level 0.99, the factor k from Table B4 of Krishnamoorthy and Mathew [18] is 2.517.
Using the calculated mean and the factor, we found the 99% CI as (6.885, 6.913). Note that
the specification interval (6.88, 6.92) includes the CI (6.885, 6.913), and so we conclude
that at least 95% receptacles meet the specifications with confidence 99%.

In this type of applications, an important question could be the percentage of receptacles
meet the specifications. However, the above testing method checks not only the minimum
percentage of receptacles that are within specifications, but also tests if the percentages in
both tails are equal, which is somewhat redundant. In our method, we need to simply find
a 99% lower confidence limit for

PLU = �

(
6.92 − μ

σ

)
− �

(
6.88 − μ

σ

)
,

where μ and σ denote the mean and SD of the distribution of the widths of micro-USB
receptacles. To find a 99% lower confidence limit for the above probability, we used the
following R code:

########################################################
N = 1000000; n = 40; df = n-1
xb = 6.8989; s = .005602
W = sqrt(rchisq(N,df)/df); Zn = rnorm(N)/sqrt(n)
PivN = pnorm(W*(6.92-xb)/s-Zn)-pnorm(W*(6.88-xb)/s-Zn)
print(quantile(PivN, .01),4)

1%
0.9901
PivN = 1-pnorm(W*(6.88-xb)/s-Zn)
print(quantile(PivN, .05),4)

5%
0.9964
########################################################

From the above R code, we see that at least 99% of the receptacles meet the specification
limits with confidence 99%.

For the sake of illustration, let us estimate a 95% lower confidence limit for P(X > L) =
P(X > 6.88). The traditional approach is to find the value of p for which the (p, 0.95) lower
tolerance limit x̄ − 1√

n tn−1;.95(zp
√
n)s = 6.88. That is, we need to determine the value of
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p so that

t39;.95(zp
√
40) = √

40
(6.8989 − 6.88)

0.005602
.

Using a numerical search method, we find the value of p as 0.9964. If we use the fidu-
cial approach, then we need to find the 5th percentile of 1 − �(W(6.88 − x̄)/s − Z/

√
40).

Using the simulation, as shown in the second part of the above R code, we find the 5th
percentile as 0.9964.

Example 4.2: The data in the following Table 6 represent lifetime of air conditioning
equipments. The lifetimes are operating hours for plane number 7909 with 13 Boeing 720
aircrafts, and they are as given inTable 6. The datawere analyzed byKeating et al. [13] using
a gamma model. In particular, these authors have noted that the data fit a gamma model,
and they have used the data for illustrating a gamma model-based inference. The Weibull
probabilitymodel (Minitab 14) in Figure 3 clearly indicates that the data fit aWeibullmodel
quite well.

Table 6. Lifetime data on air conditioning equipments.

90 10 60 186 61 49 14 24 56 20 79 84
44 59 29 118 25 156 310 76 26 44 23 62
130 208 70 101 208

Figure 3. Weibull probability plot of lifetime data in Table 6.
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The MLEs are ĉ = 1.293 and b̂ = 90.91. To find a 90% CI for P(50 ≤ X ≤ 200), we
estimated the lower 5th and the upper 5th percentiles of

QPLU = exp

(
−̂b∗

(
50

90.91

)1.293/̂c∗
)

− exp

(
−̂b∗

(
200
90.91

)1.293/̂c∗
)

(28)

as 0.43 and 0.66, respectively. That is, 43–66% of the air conditioning equipments survive
between 50 and 200 operating hours with confidence 90%. We also computed 90% HPD
credible interval using R function

hdi(density(Q, n = 105), credMass = .90, tole = 1e-10, allowSplit = TRUE)[1:2]

as (0.43, 0.66) , same as the one formed by the lower and upper 5th percentiles of QPLU . In
the above R function, Q is the vector of 105 replicates of the fiducial quantity QPLU in (28).
Notice that 0.43 is the 95% lower confidence limit for the P(50 ≤ X ≤ 200). This means
that at least 43% of air conditioning equipments work for 50–200 operating hours with
confidence 95%. These confidence limits were estimated using Monte Carlo simulation
with 100,000 runs. See the R functions in the supplemental file.

Example 4.3: A manufacturing factory needs drills of different sizes in the production
process. The factory purchases the 1.88-mm drills from a supplier. Lifetime data for the
drills are collected during the production process and reported in Table 1 of Chen et al.
[2]. The data are reproduced here in Table 7. Krishnamoorthy et al. [19] have shown that
a Rayleigh distribution fits the data quite well.

TheMLEs are μ̂0 = 72.84 and σ̂0 = 14.79. Substituting these numbers in Equation (26),
we find

QPLU = e−
1
2
[
σ̂ ∗( 80−72.84

14.79
)+μ̂∗]2 − e−

1
2
[
σ̂ ∗( 100−72.84

14.79
)+μ̂∗]2

, (29)

where μ̂∗ and σ̂ ∗ are the MLEs based on a sample of size n = 45 generated from the
Rayleigh(0, 1) distribution. UsingMonte Carlo simulationwith 100,000 runs, we estimated
the lower and the upper 2.5th percentiles of QPLU as 0.58 and 0.76, respectively. Thus,
The 95% CI for P(80 ≤ X ≤ 100) is ( 0.58, 0.76). The HPD credible interval using the
R function

hdi(density(Q, n = 105), credMass = 0.95, tole = 1e-10, allowSplit = TRUE)[1:2]

is computed as ( 0.59 0.77). In the above R code, Q is the vector of 105 replicates of QPLU
defined in (29).

Table 7. Lifetime (in minutes) of a sample of 1.88mm drills.

105 105 95 87 112 80 95 97 77 103 78 87 107 96 79
91 108 97 80 76 92 85 76 96 77 80 100 94 82 104
91 95 93 99 99 94 84 99 91 85 86 79 89 89 100
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Suppose it is desired to find a 95% lower confidence limit for P(X > 80). In this case,
the FQ can be obtained from Equation (25) as

1 − QPt = e−
1
2
[
σ̂ ∗( 80−72.84

14.79
)+μ̂∗]2

.

Using simulation with 100,000 runs, we estimated the lower 5th percentile of 1 − QPt as
0.812. That is, at least 81.2% of the drills last 80 or more minutes with confidence 0.95.

5. Concluding remarks

Tolerance intervals and simultaneous tests on lower andupper percentiles are used to assess
the probability content in a specified interval. However, these methods are not specifically
intended for estimating the probability content, and they do not always produce mean-
ingful results. One-sided tolerance limits are used to find one-sided confidence limits for
the tail-probabilities such as the survival probability. In this article, we proposed a simple
exact solution to find not only one-sided confidence limits, but also two-sided CIs for tail
probabilities such as the survival probability. We also provided approximate solutions to
find CIs for the probability content in a specified interval. The proposed fiducial CIs are
approximate for the probability content in a specified interval, and our simulation studies
indicated that the CIs are satisfactory for practical purpose for moderate to large sample
sizes. The proposed methods can be readily extended to the cases where the samples are
type II censored (failure censored). More details of the results on the censored case can be
found in Hoang-Nguyen-Thuy [12]. To help practitioners, we provided R functions in a
supplemental file to compute CIs for tail probabilities and for the probability content in a
specified interval.

Notes

1. https://www.wikizero.com/en/Engineering_tolerance.
2. https://www.itl.nist.gov/div898/handbook/prc/section2/prc263.htm.
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Appendix

The following R code for computing a 95% CI for P(X < t), where X ∼ N(μ, σ 2).

# N is the number of runs
Z = rnorm(N); W = sqrt(rchisq(N, n-1)/(n-1))
Q = W*((t- xbar)/s)+Z/sqrt(n)
perc = quantile(Q, c(.025, .975))
CI = pnorm(perc)

http://doi.org/10.1002/qre.2623
http://doi.org/10.1080/00207543.2014.886028
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##################################################################

R code to find HPD region for P(L ≤ X ≤ U), where X ∼ N(μ, σ 2).

# package "HDInterval" is needed
# cl = confidence level; n = sample size; N = number of simulation

runs
Z = rnorm(N); W = sqrt(rchisq(N, n-1)/(n-1))
Q = pnorm(W*((U- xbar)/s)+Z/sqrt(n)) - pnorm(W*((L- xbar)/s)

+Z/sqrt(n))
hdi(density(Q, n = N), credMass = cl, tole=1e-10, allowSplit

=TRUE)[1:2]
################################################################

The following R code is to compute the MLEs for Weibull parameters.

# package "survival" is needed; x = vector of sample data
model = survreg(Surv(x, rep(1, length(x)))~1, dist="weibull")
c.hat = 1/unname(model$scale); b.hat = exp(unname(model$coef))
################################################################
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