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Abstract

The problems of computing two-sided tolerance intervals (TIs) and equal-tailed TIs
for a location-scale family of distributions are considered. The TIs are constructed
using one-sided tolerance limits with the Bonferroni adjustments and then adjusting
the confidence levels so that the coverage probabilities of the TIs are equal to the
specified nominal confidence level. The methods are simple, exact and can be used
to find TIs for all location-scale families of distributions including log-location-scale
families. The computational methods are illustrated for the normal, Weibull, two-
parameter Rayleigh and two-parameter exponential distributions. The computational
method is applicable to find TIs based on a type II censored sample. Factors for
computing two-sided TIs and equal-tailed TIs are tabulated and R functions to find
tolerance factors are provided in a supplementary file. The methods are illustrated
using a few practical examples.

Keywords Asymmetric location-scale - Bisection method - Bonferroni - Content -
Coverage level - Equivariant estimators - type Il censored

1 Introduction

In many practical applications, such as medical, environmental and engineering, it is
desired to find an interval estimate based on a sample that would capture at least a
proportion p of the sampled population with confidence y. Such a statistical interval is
referred to as the tolerance interval (TI). A tolerance interval based on a random sample
is constructed so that it would include at least a proportion p of the sampled population
with confidence level y. This type of interval estimate is referred to as a p content—y
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coverage tolerance interval (TI) or simply (p, y) TI. Another type of TI (L., U,) is
constructed so that at most a proportion (1 — p)/2 of the population is less than the
lower endpoint L, and at most a proportion (1 — p)/2 of the population is greater
than the upper endpoint U, (Owen 1964). This type of TI controls the percentages in
both tails and is referred to as the (p, y) “equal-tailed” TI. A (p, y) one-sided lower
tolerance limit (TL) is constructed so that at least a proportion p of the population falls
above the limit with confidence y while a (p, y) one-sided upper TL is constructed so
that at least a proportion p of the population falls below the limit with confidence y .
For earlier work and numerous applications of TIs, see the book by Guttman (1970),
and the book by Krishnamoorthy and Mathew (2009). Tolerance intervals for many
commonly used distributions can be computed using the R package “tolerance” by
Young (2010).

To define TIs formally, let Q,, .5 < p < 1, denote the 100pth percentile of a
population. The (p, y) one-sided upper TL is a y level upper confidence limit for O,
and the (p, y) one-sided lower TL is a y level lower confidence limit for Q1. The
(p, y) equal-tailed TI (L.(X), U.(X)) based on a sample X is constructed so that

Px (LX) = 01y and Q1ip = V(X)) = . (M

2

That is, the random interval [L.(X), U.(X)] includes the interval (Q 1-p, Q14p )
2 2

with probability y. Since the percentiles are a function of parameters, calculation
of one-sided TLs or equal-tailed TIs simplifies to construction of confidence limits
for some parametric functions. However, the problem of computing a two-sided TI
(L{(X), U;(X)) can’t be simplified to the problem of estimating some population
quantiles as it is defined as

Px {Px (L(X) = X =UX)IX) = p} = Px {Fx (U(X)) — Fx (L(X)) = p} = v, (2)

where Fx(x) denotes the cumulative distribution function (cdf) associated with the
sampled population. Following the approach of Wald and Wolfowitz (1946) for the
normal case, Krishnamoorthy and Xie (2011) have provided a general approach for
constructing TIs for a symmetric location-scale family of distributions based on a cen-
sored or uncensored sample. However, their approach is not applicable for asymmetric
location-scale families such as the family of two-parameter exponential distributions
and log-location-scale families such as the family of Weibull distributions. Yuan
et al. (2016) have proposed an exact numerical/simulation approach which essentially
involves calculation of coverage probabilities of TIs over a grid of (lower, upper) fac-
tors and then choose a pair for which the coverage probability is close to the specified
nominal confidence level and satisfy another constraint.

Construction of a tolerance interval for a location-scale family of distributions
involves computing a factor that depends on the sample size, content level p and the
confidence level y. Since the one-sided tolerance limits (TLs) are one-sided confidence
limits for appropriate population percentiles, pivot-based methods are commonly used
to find the necessary factors. In general, it is easier to find factors for one-sided TLs
than those for two-sided TIs. An equal-tailed TI or a two-sided TI can be easily
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deduced from the one-sided tolerance limits by adjusting the content level and using the
Bonferroni adjustment to the confidence level. But such two-sided TIs could be overly
conservative yielding intervals that are unnecessarily wide. However, by adjusting
the confidence level so as to satisfy the probability requirement in (1) or in (2), an
equal-tailed TT or a two-sided TI can be obtained. As the coverage probability of a
TI based on equivariant estimators for a location-scale distribution does not depend
on any parameter, the TIs formed by the one-sided tolerance limits with the adjusted
confidence level are exact. They are exact in the sense that the coverage probabilities are
equal to the nominal confidence level for all parameter values. As shown in the sequel,
such modified TLs are easier to obtain numerically or by simulation. Furthermore,
this approach can be easily extended to the type II censored case.

The rest of the article is organized as follows. In the following section, we outline the
methods for computing factors to construct one-sided tolerance limits and calculation
of coverage probabilities of a two-sided TI. In Sect. 3, we describe an existing method
and our new method to find two-sided and equal-tailed TIs for a location-scale family
of distributions. In Sect. 4, we illustrate the methods for the normal, Weibull, two-
parameter Rayleigh and two-parameter exponential distributions. Tolerance factors,
based on the adjusted confidence levels, for computing two-sided TIs and equal-tailed
TIs are reported, and R functions to compute factors are provided in a supplemental
file. As noted earlier, the tolerance intervals based on the adjusted one-sided tolerance
factors are exact. In Sect. 5, we briefly outline our approach to handle type II censored
samples. The methods are illustrated using some practical examples in Sect. 6, and
some concluding remarks are given in Sect. 7.

2 One-sided Tls and calculation of coverage probabilities
As our method of constructing a two-sided TI or an equal-tailed TI is based on one-

sided tolerance limits, we shall now describe the construction of one-sided tolerance
limits based on equivariant estimators for a location-scale family of distributions.

2.1 One-sided tolerance intervals

Consider a location-scale family with the probability density function (pdf) of the
form

X — [
o

1
fxlp, o) = ;f(

), —0 <X <00, —00o<u<oo,o0>0 (3

where u is the location parameter and o is the scale parameter. Let 11 and & be
equivariant estimators of 1« and o, respectively, based on a sample of size n. Then (it —
w)/o, /o and (i@ — u)/7 are all pivotal quantities. In other words, the distributions
of these quantities do not depend on any parameter. Furthermore, for a location-
scale distribution, the maximum likelihood estimates are equivariant estimators. See
Theorem E2 of Lawless (2003).
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For .5 < p < 1, let Q,(u, o) denote the 100p percentile of the distribution
f(x|u, o). Let 1* and 6* be equivariant estimators based on a sample of size n from
the distribution f(x|0, 1). The percentile O, (u, o) of a location-scale distribution is
location-scale equivariant, and so

Qp(n.o) =t 0,0, 1) — "

_ *
= =4, s,

Gl

where “X ~ Y” means that X and Y are identically distributed. So the percentiles of
q; can be used to set confidence bound on Q (i, o). Specifically, if ‘I;,y is the 100y
percentile of ¢, then

A+4q5,0. 0)

is a 100y % upper confidence limit for Q , (i, o) or (p, y) one-sided upper tolerance
limit. The percentiles of g, can be calculated numerically or estimated by Monte Carlo
simulation. In similar notations, the one-sided lower TL can be expressed as

ﬁ+qi’<_p;1_y3, (5)

where g} il is the 100(1 — y) percentile of qfi =[0Q1-,(0,1) — ﬁ*]/&*

For a symmetrlc location-scale family, the percentlle qi_ ey = —q* p.y» and so it
is reasonable to seek a two-sided TI of the form [t & k&, where k is the factor that is
determined on the basis of the sample size, content level p and the coverage level y .
For asymmetric location-scale family, g} il 75 q , and in such cases one may
consider a (p, y) two-sided TI of the form (u + ko, ,u + k,0), where k; < k.

2.2 Calculation of coverage probabilities of tolerance intervals

Equal-Tailed Tolerance Interval

Consider an equal-tailed TI of the form (& + E;o, @ + E,0), where [t and & are
equivariant estimators and the factors E; and E,, are determined so that E; < E,. The
coverage probability of this equal-tailed TI is given by

Hpg (v i 0)=Pag (R+E6 < 01y (1.0) and Q1sp (1,0) < A+EG). (6)

1-p
2
Since & and ¢ are equivariant estimators, the probability Hy 5 (y|u, o) does not
depend on the parameter values, as a result, H; 5(y |, 0) = Hpx 5+ (v 10, 1) for all
wand o > 0, where (t*, o) are the equivariant estimators based on a sample of size
n from the distribution with the pdf f(x|0, 1). Thus, the coverage probability of the

TI is given by

0, 1) <"+ Eﬁ) :
@)

Hee(v10.1) = P (0" + EG" < 0100, 1) and Qs

I+p
2
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For an exact TI, the above probability should be equal to y.

In most cases, the coverage probability Hp+ 5+ (|0, 1) can be estimated only by
Monte Carlo simulation, which can be carried out as follows. Generate N samples,
each of size n, from f(x0, 1). Let iz} and 5" denote the equivariant estimators based
on the ith sample,i = 1, ..., N. Then

Ha+ 5+(y10, 1)

2 2

N
1 SO SO
= Y [EHEG = 01,0 Dand Q1 (0.1) < ] + E5 .
i=1

®)

where I[x] is the indicator function, is an estimate of Hz= 5+(y [0, 1).
Two-Sided Tolerance Interval

Consider a two-sided TI of the form (i + Tjo, i + T,0), where (1}, T,,) are the
(lower, upper) factors. Using the equivariance arguments as in the preceding section
and the definition (2) of the two-sided TI, the coverage probability can be calculated
using the expression

G570, 1) = Ppx 5+ {FX (ﬁ* + T,,c*|0, 1) — Fyx (ﬁ* + T;0|0, 1) > p} ,(9)
where Fx(x]0, 1) denotes the cdf of f(x|0, 1) and (j1*, 5*) are the equivariant esti-
mators based on a sample of size n from the distribution f(x|0, 1). A Monte Carlo
estimate of G+ 5+ (|0, 1) is given by

N
-~ 1 o~ ~x% o~ ~x%
G+ (r10, 1) = = > T [Fx (i} + T,5710, 1) = Fx (& + 15710, 1) = p].,

i=1
(10)

where N, iz and ¢ are as defined in (8).
3 Methods for computing tolerance intervals

3.1 The method by Yuan et al. (2016)

We shall first describe the exact numerical/simulation method by Yuan et al. (2016)
for constructing a two-sided TI of the form (&t + 7;o, it + T,0). An estimate of the
coverage probability of such tolerance interval is given by

N
1 —~ ~ . ~
CP(1,Ty) = N E I[Fx(@f + 1,570, 1) — Fx (] + 10,10, 1) = p]. (11)
i=1
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where N is the number of simulation runs. Furthermore, define

N
1 ~ ~
CPy(T) = §_1 [Fx(@* +T,5%0,1) = p/2] and
1 N
S
CPLT) = §_1 [Fx(@* + T30, 1) < 1 = p/2].

To find the factors, first one needs to compute the coverage probabilities over a grid
of T; and T, values, and then collect factors (7}, T,,) for which C P(T;, T,) = y. The
intersection point of the curves C P(T;, T,,) = y and C P,(T,,) = C P;(T;) gives the
required factors. The intersection point of these two curves can be obtained using
linear interpolation.

It should be noted that one needs to specify ranges of 7; and T, to use the above
searching method. In general, specifying ranges is not an easy task, and one has to
determine the ranges case by case depending on the sample size, content level p and
the confidence level y. Instead of searching a pair of factors over a rectangular region,
we take the factors of the form

Tip.y)=4q7, ., and T,(p,y) =4}, 1,y
20 2

20 2

where q oy is as defined in (4), and search for the value of y’ for which the cover-
age probablhty of the TI is specified nominal level y. In other words, we calculate
the factors for TIs as confidence-adjusted one-sided factors as shown in the sequel.
Furthermore, the search for y’ is restricted to the interval [y — 8, y] for some small
5> 0.

3.2 Tolerance intervals based on confidence-adjusted one-sided factors

We shall now find factors for constructing two-sided or equal-tailed TIs on the basis
of confidence-adjusted one-sided tolerance factors.

Factors for Equal-tailed Tolerance Intervals

It follows from the definition of one-sided tolerance limits that

P(ﬁJrcz*f,,.1 0 < Qip(u, o)) =y and
7 1Y 2
P(Ql;p( )<u+q1+p )—y

Applying the Bonferroni inequality and using (7), we see that the coverage probability
of the interval

<M+CI1 b1y 0y W+ qis p,m?) (12)
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is

2

Hpe e 10.1) = P (74 41y, 1,5 < Q1p 0.1 and 0120,1)
<B4l a) - (13)

Let y, < y be the adjusted confidence level so that Hg= 5+ (y/|0, 1) = y. Then the
interval

(mq:‘pwa ﬁ+qt+p.1+yﬁ) (14)

is an exact equal-tailed TI.

Factors for Two-Sided Tolerance Intervals
Notice that the TI in (12) also satisfies the probability inequality

0.1)

0. 1) > p} >y, (15)

Gpx 5+ (710, 1) = Ppx 5+ {Fx (ﬁ* +qhp 1440

2 2

_FX <’lz* +q>’l‘—p. -y 8*
20720

2

where Fyx(x|0, 1) denotes the cdf of f(x]0, 1) and (u*, *) are the equivariant esti-
mators based on a sample of size n from the distribution f(x|0, 1). Let y; < y be
such that

Gae5+ (10, 1) = Pp - {FX (’7* +41, 1y 0|0 1)
2 2

—Fx (ﬁ* +q* 5%, 1) > p} =y. (16)

1-p. 1y

2 0 2
Then
~ ~ o~ ~
(u+q1p.1y},a, ,u+ql+p.1+y/cr> (17)
20 2 20 2

is an exact two-sided TL.
Computational Algorithm

To provide some computational details on finding the confidence level y, that
satisfies (16), we first note that exact numerical methods for computing one-sided
factors are available only for a few distributions. For most of the distributions, the
factors for computing one-sided tolerance limits can be obtained only by Monte Carlo
simulation. Keeping this fact in mind, we shall provide the following Algorithm 1 to
compute the adjusted-confidence level y; that satisfies (16).
Algorithm 1
For a given n, content level p and coverage level y,
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1. Generate N samples, each of size n, from the location-scale distribution with
u=0ando = 1.
2. Compute the equivariant estimators 7 and o, based on the ith sample, i =

1,...,N.
Ql-%—ip(ovl)fﬁj< Ql—p (0’1)717?
3.SetlUj=—*—=——andl;=————i=1,...,N.
4. Set U* Uy, ...,UpN) andL* (L1,...,Lp).
5. Letqlﬂ, 15 be the 100(1+§)/2 percentile ofU* andletgy_ o1t be the 100(1 —
T
£)/2 percentlle of L7,

6. Set the function f(E) /G\ﬁ*,a* (€10, 1) — v, where G (see Eqn (10)) is given by

_ 1 Y
G 5+(£]0, 1) = NEI Fx (i} +q1+,, .+§o *|0, 1)
=

—Fx(ﬁzk +C]&, 1756\,'*|0, 1) > Pi| .
5L

2

7. Solve the equation f(§) = 0 using a bisection method with [y — .4, y], say, as a
root bracketing interval.
8. The root of the equation is the adjusted coverage level y, that satisfies (16).
9. The percentllesq . andq i, 102 are the (p, y) two-sided tolerance factors.
2 ’ 2 2 2
An adjusted-confidence level ¥, to compute an equal- -tailed TT can be obtained using
Algorithm 1 by replacing G,L 5+(£10, 1) in step 6 with HA 5+(£]0, 1) defined in (8).

4 Computation of tolerance intervals
4.1 Normal

It should be noted that calculations of factors for computing one-sided as well as
two-sided TIs for a normal distribution are well-known and widely available in the lit-
erature; see Wald and Wolfowitz (1946) or Section 2.3 of Krishnamoorthy and Mathew
(2009). We here use the normal case just to illustrate our approach and show that the
modified one-sided tolerance factors and the available exact factors for computing
two-sided TIs are the same.
Two-Sided Tolerance Intervals

Let (X, S?) denote the (mean, variance) based on a sample of size n froma N (i, o?)
distribution. Note that X and S? are equivariant estimators of u and o2, respectively.
The (p, y) factor for one-sided tolerance limitis given by kj, , = 1,1, (2 pﬁ) /1,
where t,,.,(8) denotes the a quantile of the noncentral ¢ distribution with degrees of
freedom (df) m and the noncentrality parameter 6 and z,, denotes the 100p percentile
of the standard normal distribution. For writing convenience, let

1
K,., =k ;) = —t /<Z] n) 18
2874 lél)’ H;V, \/7L n—l: H;yt #\/_ (18)
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Let (X*, $*2) denote the (mean, variance) based on a sample of size n from a N (0, 1)
distribution. The value of y; is determined so that

GO10, 1) = Pe g @ (R +1,,5") = @ (X =k

S
= PZn,U [<D<Z”+K[7,V/U> —CD(Zn _KP,}/[/ )
=v, (19)

where Z, ~ N (0, 1/n) independently of U? ~ Xy%_l/(n — 1) and ®(x) is the stan-
dard normal cumulative distribution function. That is, y/ is the root of the equation
G(y/10, 1)—y = 0, which can be obtained using a bisection method with [y —.4, y] as
the root bracketing interval. The probability G (3,0, 1) can be evaluated numerically;
see Section 2.3 of Krishnamoorthy and Mathew (2009).
Equal-Tailed Tolerance Intervals

To find an equal-tailed tolerance factor, we need to determine coverage level y, so
that

H(y)|0,1) = Pz, v (Zn —kp U < —Zip and g < Zn +K,,%/U> =,
(20)

where Z, and U are as defined in (19) and «, ,, is as defined in (18). Thus, y, is the
root of the equation H(y,|0,1) —y = 0, which can be obtained using a bisection
method with [y — .4, ] as the root bracketing interval. Following the approach in
Owen (1964), the probability H (y,|0, 1) can be evaluated numerically.

The values of y, that satisfy (19) are calculated for some values of (n, p, y) and
they are reported in Table 1. The values of y, that satisfy (20) are also reported in
Table 1 for the same values of (n, p, y).

Using the StatCalc that accompanies the book by Krishnamoorthy (2016) or the
R-package “tolerance” by Young (2010), it can be readily verified that the exact two-
sided factors on the basis of Wald and Wolfowitz’s (1946) and equal-tailed factors
based on Owen’s (1964) approach and the ones in the above Table 1 are the same for
all cases.

As an example, suppose it is desired to construct a (.90, .95) TI based on a sample
of size n = 15. In this case, the value of ¥/ = .8756 (see Table 1),

1 1
N (210 /) = e, o3(1.6449 x /15) = 2492,

and X =+ 2.492S, where (X, S) is the (mean, SD) based on a sample of size 15, is
a (.90, .95) two-sided TI. To compute (.90, .95) equal-tailed TI based on the same
sample size 15, we found the adjusted confidence level ye’ = 0.9449 (see Table 1),
and the equal-tailed factor is

1 1
Nl (210 /) = s ta.oms(1.6449 x V15) = 2765,
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and X £ 2.765S is a (.90, .95) equal-tailed TI.

4.2 Weibull

Let X1, ..., X, be a sample from a two-parameter Weibull(b, ¢) distribution with the
probability density function

fx|b,c) = % (%)C_lexp{— [%]C] x>0, b6>0, ¢c>0.

LetY; = In(X;),i = 1, ..., n. The maximum likelihood estimate (MLE) of c¢ is the
solution of the equation

R n N n . 1 n
1/c—|:ZXin:|/ZXf+;ZY,-=O, (21)
i=1 i=1 i=1

and the MLE of b is given by b = (rll Yo Xi?) V€ See Cohen (1965) or Krishnamoor-

thy et al. (2009). The estimator ¢ = I%SV’ where Sg =>" ,(Y; —=Y¥)?/(n— 1) can

be used as an initial value to find the MLE of ¢ using the Newton—Raphson iterative
scheme.
One-sided tolerance limits

Recall that the (p, y) upper tolerance limit is a y level upper confidence limit for
the pth quantile g, = b(—In(1 — p))% of the Weibull(b, ¢) distribution. Let b* and ¢
denote the maximum likelihood estimates (MLEs) based on a sample of size n from
a Weibull(1, 1) distribution. Let

wpy =¢* (= In(@*) +In(~In(1 — p))). (22)

Letw,, denote the gth quantile wj,. Thena (p, y) one-sided lower and upper tolerance
limits are given by

bexp (wi—p;1—y/€¢) and bexp (wpiy /C), (23)

respectively. For more details on one-sided tolerance limits for a Weibull distribution,
see Section 7.5 of Krishnamoorthy and Mathew (2009).
Two-sided tolerance intervals

Following the lines of Sect. 3.2, a (p, y) two-sided tolerance interval can be
expressed as

(L 3.0, U, 3.0)

= <Eexp (u),_p_ 1=y /?) , gexp <w1+p_ 14/ /?)) (24)
=TT i
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where y/ is to be determined so that

151> _F<Lp,yt/(b*5,c~*) 19 1) ZP} ZV’ (25)
where F(x|1,1) =1 — e™* is the cdf of the Weibull(1,1) distribution.
Equal-tailed tolerance interval

For an equal-tailed TI of the form (24), the adjusted confidence level y, is deter-
mined so that

. 1 1—
Pj o (L,,,yé(b*,e*)g [—m <¥)} and [-m( 2”)}

< Uy (®*.T)) =y, (26)

where b* and ¢* are the MLEs based on a sample of size n from a Weibull(1, 1)
distribution.
Calculation of Tolerance Factors

The adjusted confidence levels y, and y, for computing two-sided and equal-tailed
TIs for Weibull distributions were estimated using Algorithm 1 with 100,000 simu-
lation runs for values of n ranging from 5 to 100, and (p, y) = (.90, .95), (.95, .95)
and (.99, .95). The estimated values of y, and y, along with the factors are reported
in Table 2. To illustrate the calculation of factors, let us suppose that it is desired to
find (p, y) = (.90, .95) tolerance interval for a Weibull distribution based on a sam-
ple of size n = 15. From Table 2, we find y/ = .876. Note that (1 + p)/2 = .95,
(1 —=p)/2=.05 (+y/)/2=.938and (1 — y/)/2 = .062. The lower tolerance
factor is 6.2 percentile of w o5 = ¢* (— ln(i)\*) + In(— ln(.95))) [see Eq. (22)], which
is estimated using simulation with 100,000 runs as —4.72. The upper tolerance factor
is 93.8 percentile of wos = ¢* (— In(®*) + In(— In(.05))), and is estimated as 1.82.
The (.90, .95) TLis (bexp (—4.72/0), bexp (1.82/0)). In Table 2, we present lower
(L;) and upper (U;) factors for constructing (p, y) TIs for a Weibull distribution.

In Table 2, we also present lower (L,.) and upper (U,) factors for constructing
(p, ) equal-tailed TIs for a Weibull distribution. As an example, when n = 10 and
(p,y) = (.95, .95), the lower and upper factors are —7.53 and 2.79, respectively. The
(.95,.95) equal-tailed TI is expressed as (Eexp (=7.53/2), bexp (2.79/0)) .

4.3 Rayleigh distribution

The pdf of a two-parameter Rayleigh distribution with location parameter p and the
scale parameter o is given by

2
— _1fx=n
S x|, o) = S ZM)e H's ) x>u, o>0.
o

We shall denote the above distribution by Rayleigh(u, o). Recently, Krishnamoor-
thy et al. (2019) have proposed a pivotal-based method for constructing one-sided
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tolerance limits. To describe their app_roach, let X1, ..., X, be a sample from a two-
parameter Rayleigh distribution. Let X denote the sample mean and define the sample
variance as §2 = anl Zf’zl (X; — X)2. The moment estimates derived in Dey et al.

(2014) are 52 = 28%/(4—nm)and Ll = X — \/g 0. The MLE of u is the root of the
equation

22 (X — -
MMX%=§§%;f%p—§]&—M)I=O 27)
=1 i=1

Krishnamoorthy et al. (2019) have shown that the MLE of w lies in the inter-
val (X(1)—125/4/n, X)), where & is the moment estimate, and the MLE of
i can be obtained as the root of the equation A(u|X) = O using the interval
(X(1y — 126 /4/n, X(1y) as a root bracketing interval (e.g., R function uniroot()). Let

7t denote the MLE of . thus obtained. Then the MLE of ¢ = % (X — )2
One-sided tolerance limits
The pth quantile of the Rayleigh(a, b) distribution can be expressed as

Qp(p,0) =p+oy/=2In(l — p). (28)

Noting that a (p, y) one-sided upper tolerance limit is a 100y % upper confidence
limit for Q, (i, o), the (p, y) upper tolerance limit is expressed as [t + q;)yﬁ, where
gy, is the 100y percentile of g5, = (Qp(0,1) — 11*)/G* and [i* and G* are MLEs
based on a sample of size n from a Rayleigh(0, 1) distribution. Similarly, a (p, y) lower
tolerance limit can be expressed as L +¢qj_, 0, wheregj_, |, is the 100(1 —y)
percentile of (Q1—,(0, 1) — 1*) /o*, and Q1—,(0, 1) = /=2Tn p.

Two-sided tolerance intervals

A (p, y) two-sided tolerance interval can be expressed as

I—p. |*V;/ I+p. H'yt/
2 02 2 02

(L,;,y,«ﬁ,a),U,,,y,m,a))=(mq* R a),

where y/ is to be determined so that

P 5+ {F <Ups}’/(ﬁ*»8*) 0, 1> - F (Lp,y,’(ﬁ*’g*)

OJ)zp}:% (29)

In the above, F(x|0,1) =1 — e‘xz/z, x > 0, is the cdf of the Rayleigh(0, 1) distribu-
tion, and ;t* and 6* are the MLEs based on a sample of size n from the Rayleigh(0, 1)
distribution.
Equal-tailed tolerance intervals

A (p.y) equal-tailed TI can be expressed as (L, (11, 0), Uy, (11, 5)) , where
v, is to be determined so that
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Paeg (Lpy (@5 = =21+ p)/2) and
V2= p)/2) £ Uy (@59 = v, (30)

where [1* and 6* are the MLEs based on a sample of size n from the Rayleigh(0,1)
distribution.
Calculation of Tolerance Factors

To construct a TI for a Rayleigh distribution, the factors based on the adjusted-
confidence levels were estimated using Algorithm 1 with 100,000 simulation runs.
The adjusted-confidence levels along with factors are reported in Table 3 for some
values of (p, y) and n ranging from 5 to 100. As an example, suppose it is desired
to find a (.90, .95) TI based on a sample of size 15. The required factors from Table
3are (L;, U;) = (—.101, 3.25), and the two-sided TI is (& — .1015, &t + 3.250),
where & and ¢ are the MLEs based on a sample of size n. The factors for constructing
(.90, .95) equal-tailed TI are (L., U,) = (—.241,3.50), and the equal-tailed TI is
(n — 2415, 1 + 3.500).

4.4 Exponential distribution

Let X1, ..., X;, be a sample from a two-parameter exponential distribution with the
pdf
1
fxlp, o) = gexp(—(x —-w/o), x>p, o>0. (3D

The MLEs of 1 and o are given by @ = X(1) and & = X — X(1), where X(j is the
smallest of the X;’s. The MLEs are equivariant and independent with 2n (it — w)/o ~
x22 and 2n6 /o ~ X22n—2'
One-sided tolerance limits

Note that the p quantile of a two-parameter exponential distribution is given by
qp = i — o In(1 — p). A y level upper confidence limit (one-sided upper tolerance
limit) is i+E ,, &, where E ., isthe y quantile of E,, = [~2nIn(1—p)—x31/x3, -
Similarly, a (p, y) one-sided lower tolerance limit can be expressed as i+ E{— p;1—, G .
The percentiles of £, can be estimated in a straightforward manner using Monte Carlo
simulation. Krishnamoorthy and Xia (2018) have provided an exact numerical method
of computing the percentiles of E .
Two-sided tolerance intervals

A (p, y) two-sided tolerance interval can be expressed as

(Lo @9 Upy@.8)) = (R4 Bry 1y B Ery 1y D)
where y/ is to be determined so that

Pﬁ*,a* {F <Lp,yt’(ﬁ*v 6-\*)

0J>—F0hwmiﬁ)

0J>2p}=% (33)
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In the above equation, (1*, 5*) are the MLEs based on a sample of size n from the
exponential(0, 1) distribution, and F(x[0,1) = 1 —e™™, x > 0, is the cdf of the
exponential(0,1) distribution.
Equal-tailed tolerance intervals

A (p,y) two-sided tolerance interval is given by (L poyl(8,0), Up (I, 3)),
where y, is to be determined so that

e 1
Py 5+ (Lp,yg(u*,o*) < —ln( J;p> and

- SR
~In (T”) < Uy (", o*>) =y. (34)

Calculation of Tolerance Factors

We estimated the adjusted-coverage levels that satisfy (33) for some values of
(n, p, y) using Algorithm 1, and presented them in Table 4. For example, when
(n, p,y) = (20, .90, .95), we estimated the adjusted-confidence level that satisfies
(33) using Algorithm 1 as y/ = .859. The upper tolerance factor is (1+7,)/2 = .9295
quantile of E(14)2 = [—2nIn((1 — p)/2) — x31/ X3, _,» which is estimated as 4.53.
The lower factor is (1 — y/)/2 = .0705 quantile of E(1_ )2 = [-2nIn((1+ p)/2) —
X22] / X22n72’ which is estimated as —.089. All the factors in Table 4 were estimated
using Algorithm 1 with 100,000 simulation runs.

We also estimated adjusted-confidence levels for computing equal-tailed TIs for an
exponential distribution, and presented them in Table 4. Adjusted-confidence levels y,
are given for some values of (n, p) and y = .95. Notice that the adjusted-confidence
levels y, coincide with the nominal confidence levels y for sample of sizes around
15 or more. In other words, for n is around 15 or more, the interval formed by the
lower tolerance limit Z + E1-, 1-, 0 and the upper tolerance limit iz + E Lp 1y T is

2 02

a (p, y) equal-tailed TI.

5 Censored case

The pivotal quantities based on the MLEs and the computation of tolerance factors
described earlier for the uncensored case are also valid if the samples are type 11
censored case. The pivotal quantities based on the MLEs are not valid when the
samples are type I censored. However, we can use our computational method to find
approximate tolerance intervals based on a type I censored sample. We shall briefly
outline the methods for some distributions below.
Weibull Distribution

Let X1y < --- < X be a set of failure times recorded from a sample of n test
items. Let X = X¢),i = 1,...,rand X;, = X(,i =r+1,...,n. Then the MLE
C of ¢ is the solution of the equation

1 " -~ - < 1 -
/Z\ - |:Z ch* IH(X,'*):| /Z ch* + ; Zln(Xi*) =0, (35)
i=1 i=1 i=1
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and b = (Z?:l Xl‘; /r) '€ The solution of the above equation can be obtained using
the Newton—Raphson method or using the R function [survreg(Surv(X, §) ~ 1, dist =
“weibull”)], where X is the censored sample and § is a vector whose ith element is 1
if X; is uncensored and is O if X; is censored.

Using the MLEs and following the approach in Sect. 3.2, we can compute the
factors for finding two-sided or equal-tailed TTs. In Table 5, we present the lower (L;)
and upper (U;) factors for constructing (p, y) two-sided TIs for a Weibull distribution
based on a sample of size n with r uncensored observations. For easy reference, the
computed factors are given for some values of n and r in Table 5. The readers can also
use the R code provided in the supplemental file to compute the factors for a given
(n,r,p,y).

Two-parameter exponential distribution

Let X1y < --- < X() be the ordered uncensored observations from a type II
censored sample of size n from a two-parameter exponential distribution. The MLEs
of the location parameter a and the scale parameter b are given by

_ ~ 1|¢
= X(]) and b = ; |:;(X(i) — X(l)) + (I’l — I’) (X(r) — X(l)):| .
1=

2n (a a) 2rh

The MLEs are independent with ~ X2 and == ~ er ,- See Section 4.5.3
of Lawless (2003).
Two-parameter Rayleigh distribution

Let X(1) < --- < X() be the ordered uncensored observations from a type II
censored sample of size n from a two-parameter Rayleigh distribution with the location
parameter p and the scale parameter o. Krishnamoorthy et al. (2019) have derived the

MLE of u as the solution of the equation

g(u) =2r [Z(X* - u)} /Z(X* W? - Z /(X =) =0,

i=1

where X;x = X, i = 1,...,randis Xy fori = r +1,...,n. Let 8',2 =
252/(4 — m) and S? is the variance of the uncensored observations. The MLE
7y of ;o can be found as the root of the equation g(u) = O using the interval
(X(1) — 126, /+/r, X(1)) as the root bracketing interval. The MLE of o' can be obtained

as o, = \/ Yo (XF —T11)%/(2r). For easy reference, the computed factors based on
censored samples are given for some values of n and r in Table 6.

6 Examples
Example 1 The data in Table 7, taken from Krishnamoorthy et al. (2006), represent
air lead levels collected by the National Institute of Occupational Safety and Health

(NIOSH) from a work facility for health hazard evaluation purpose. The air lead levels
were collected from n = 15 different areas within the work facility as follows.
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Table7 Air lead level 3
irleadlevels (ue/m™ 00 159 15 7 8 6 48 61

380 80 29 1000 350 1400 110

Table 8 Numbers of revolutions (in millions) of 23 ball bearings before failure

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84
51.96 54.12 55.56 67.80 68.64 68.64 68.88 84.12
93.12 98.64 105.12 105.84 127.92 128.04 173.40

Krishnamoorthy et al. (2006) have shown that the data fit a lognormal distribution,
which belongs to the log-location-scale family of distributions. The mean and standard
deviation of the log-transformed samples are x = 4.3329 and s = 1.7394. To compute
(.90, .90) two-sided TI, the adjusted confidence level y/ that satisfies (19) is 0.7736
and the factor is

1 1
NG n—1: ()2 Zp/1) = Ell4;.8868(6-3705) = 2.2855.

The above tolerance factor coincides with the exact factor given in Table B2
of Krishnamoorthy and Mathew (2009). The mean and standard deviation of the
log-transformed data are 4.3329 and 1.7394, respectively. So, the two-sided TI
exp (4.3329 + 2.2855 x 1.7394) = (1.43, 4057.4). The two-sided factor reported
in Yuan et al. (2016) is 2.29 and exp (4.3329 4 2.29 x 1.7394) = (1.42, 4089.3).
The factor 2.37 reported in Yuan et al. (2016) is based on the maximum likelihood
estimate of the variance. If we use the unbiased estimate of the variance, then the

factor is 2.37,/ "n;l = 2.29. The discrepancy between the T1Is is that Yuan et al. used
the factor as 2.29 which is accurate only up to two digits.

To compute the (.90, .90) equal-tailed TI, we calculated the adjusted confidence
level y, that satisfies (20) as .8874. The tolerance factor is computed as

1

1
ﬁtn—l;(l-i-)/e’)/Z(ZP\/ﬁ) = Etl4;'9437(6.3705) = 2.5260.

The above factor also coincides with the exact one reported in Table B3 of Krish-
namoorthy and Mathew (2009). The (.90, .90) equal-tailed TIis exp (4.3329 £ 2.5260 x
1.7394) = (.94, 6164.9). Using their computational approach, Yuan et al. (2016)
computed the equal-tailed TI as exp (4.3329 £2.52 x 1.7394) = (.95, 6100.9),
which is also different from our equal-tailed TI. This discrepancy is due to the fact
that Yuan et al. (2016) have used the factor 2.52 instead of 2.5260.

Example 2 The data in Table 8 represent the number of million revolutions before

failure for each of 23 ball bearings. The data were analyzed by Thoman et al. (1970)
and others using a Weibull distribution. The MLEs are ¢ = 2.102 and b = 81.874.
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Table 9 Failure mileage of 19 military carriers

162 200 271 302 393 508 539 629 706 771
884 1008 1101 1182 1463 1603 1984 2355 2880

We computed the adjusted confidence level to find (.90, .95) two-sided tolerance
interval as y; = .862. The lower factor is estimated by (1 — .862)/2 = .069 quantile
of Wos =¢* (— ln(?;*) + In (— 1n(.95))), and is —4.20. The upper factor is estimated
by (1 + .862)/2 = .931 quantile of W95 = ¢* (—ln(i;*) + In (—In(.05))), and is
1.60. Thus, the (.90, .95) two-sided TI is

(b exp(—4.20/0), bexp(1.60/0)) = (11.10,175.3).

The adjusted confidence level to compute a (.90, .95) equal-tailed TI is .9456, and
the factors are

W 0s: 0272 = .0272 quantile of ¢ (— In(b¥) + In (— In(.95))) = —4.62
and
W 9s. 9728 = 9728 quantile of ¢* (— In(®*) +In (- ln(.OS))) =1.77
Thus, the (.90, .95) equal-tailed TT is
(b exp(—4.62/0), bexp(1.77/0)) = (9.1,190.0).

To illustrate the method for the censored case, let us assume the test was termi-
nated after the 16th failure. That is, we have a type II right-censored sample with
n = 23 and r = 16. The MLEs for this right-censored sample is b = 76.696
and ¢ = 2.469. The value of y/ to find a (.9, .95) two-sided TI is .89, and
so the factors are Wops. 055 = —4.67 and Wos. 045 = 2.10 we get (76.695 x
exp(—4.67/2.469), 76.695 xexp(2.10/2.469)) = (11.5, 179.5), which is the desired
(.9, .95) TI. The above factor also coincides with the exact one reported in Table B3
of Krishnamoorthy and Mathew (2009). Notice that the TI based on censored sample
is very close to (11.1, 175.3) that is based on all 23 observations.

Example 3 In this example, we shall use the failure mileage data on 19 military carriers
given in Grubbs (1971). The data are reproduced here in Table 9. Bain and Engelhardt
(1973), Krishnamoorthy and Xia (2018), and many others considered this data for
illustrating the methods for two-parameter exponential distribution.

The MLEs based on the data are it = X () = 162 and o = 835.21.

In failure time data analysis, it is of interest to find a lower tolerance limit to judge
the minimum life span of a product. The exact (.95, .95) factor for finding lower
tolerance limit is —.1188, and the tolerance limit is 162 — .1188 x 835.2 = 62.78.
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Table 10 Lifetime (in min) of a sample of 1.88-mm drills

105 105 95 87 1128 95 97 71 103 78 87 107 9% 719
91 108 97 80 76 92 8 76 9% 77 80 100 94 82 104
91 95 93 99 99 94 84 99 91 85 86 719 89 89 100

This means that at least 95% of military carriers will last 62.78 units of miles with
confidence 95%. The factor for computing (.95, .95) upper tolerance limit is 4.810,
and the upper tolerance limit is 162 + 4.810 x 835.2 = 4179.3. To find a (.95, .95)
two-sided TI, the factors given in Table 4 are —.144 and 5.87. The desired two-sided
TIis (162 — .144 x 835.2, 162 4+ 5.87 x 835.2) = (41.7, 5064.6). This means that at
least 95% of military carriers have life span between 41.7 and 5064.6 units of miles
with confidence 95%.

Example 4 The data in Table 10 represent the lifetimes of 1.88-mm drills from a sup-
plier. Lifetime data for the drills are collected during the production process in a factory
and reported in Table 1 of Chen et al. (2019). The data are reproduced here in Table 10.
The p-value of the Kolmogorov-Smirnov test for checking a Rayleigh distribution is
0.642. Thus, the data fit a Rayleigh distribution quite well. See Krishnamoorthy et al.
(2019) for more details.

There are n = 45 lifetime measurements, and the MLEs are ;& = 72.84 and ¢ =
14.79. Tofind a (p, y) = (.95, .95) two-sided TI, we find the factors from Table 3 are
0.041 and 3.11. The (.95,.95) two-sided TI is
(72.84 + .041 x 14.79,72.84 + 3.11 x 14.79) = (73.4,118.8). That is, at least
95% of drills survive 73.44 to 118.8 min with confidence 95%. The factors for com-
puting a (.95, .95) equal-tailed TI are —.024 and 3.25, and the equal-tailed TI is
(72.84 — .024 x 14.79,72.84 +3.25 x 14.79) = (72.5, 120.9). That is, no more than
2.5% of drills survive less than 72.5 min and no more than 2.5% of drills survive more
than 120.9 min.

Now we assume that the largest 14 observations of those n = 45 lifetime were
censored and the r = 31 lifetimes were uncensored. The MLEs based on such censored
sample are [t = 72.35 and & = 15.74. The value of / is 0.868, and $0 ¢ 5. (4 2lONZ
with q275;.934 are 0.020 and 3.303, respectively. Then the (.95, .95) Tl is (72.35 +
0.020 x 15.74, 72.35 + 3.303 x 15.74) = (72.7,124.3).

7 Concluding remarks

Wald and Wolfowitz (1946) have proposed a method to find tolerance intervals for a
normal distribution, and Owen (1964) has introduced equal-tailed TIs and outlined
a method to find them for a normal distribution. The methods provided in these
two articles can be extended to find TIs for a symmetric location-scale family of
distributions (Krishnamoorthy and Xie 2011). As these methods use the symmetric
property of the distributions to compute TIs, they are not applicable to find TIs for an
asymmetric location-scale family of distributions. Recently, Yuan et al. (2016) have
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proposed methods to find TIs for any location-scale distribution. However, as noted
earlier, their method involves searching for factors in a two-dimensional plane whereas
our method involves searching for a confidence level within a specified interval, and
thereby reducing computational complexities. The proposed method is applicable to
any location-scale distribution, and is conceptually simpler than the methods given
in the literature for a symmetric location-scale distribution. To help practitioners and
future researchers, we have provided R functions (Tolerance.Intervals.r) in a sup-
plemental file to compute factors for constructing one- and two-sided TIs and also
equal-tailed TIs for Weibull, two-parameter exponential and Rayleigh distributions.
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