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Abstract
The problems of constructing confidence intervals (CIs) for a proportion, prediction
intervals (PIs) for a future sample size in a negative binomial sampling to observe a
specified number of successes and tolerance intervals (TIs) for negative binomial dis-
tributions are considered. For interval estimating the success probability, we propose
CIs based on the fiducial approach and the score method, evaluate them and compare
them with available CIs with respect to coverage probability and precision. We pro-
pose PIs based on the fiducial approach and joint sampling approach, and compare
themwith the exact and other approximate PIs.We also propose TIs on the basis of our
new CIs and evaluate them with respect to coverage probability and expected width.
All three statistical intervals are illustrated using two examples with real data.

Keywords Beta-negative binomial · Coverage probability · Equal-tailed tolerance
interval · Fiducial approach · Highest probability mass function · Inverse sampling ·
Precision

1 Introduction

Binomial is one of the most popular discrete probability distributions that has been
received great attention in the literature. Statistical intervals for one- and two-sample
problems involving binomial models are widely available. In comparison with the
binomial, inferential results on negative binomial distributions are very limited. In
binomial sampling, a fixed number of sampling units are drawn from an infinite popu-
lation and the number of units with an attribute (success) of interest is counted whereas
in negative binomial sampling (also known as inverse sampling) units are drawn from
an infinite population until a prespecified number of successes is observed. Thus, in
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binomial sampling the sample size is fixed and the number of successes is a random
variable whereas in negative binomial sampling the number of success is fixed while
the sample size or the number of failures is a random variable. Negative binomial
sampling is commonly used in situations where one encounters events that occur with
small probability. Haldane (1945) has noted that in epidemiological studies on rare
disease, negative binomial sampling design may be used to ensure that a reasonable
number of cases are observed. Tian et al. (2009) have noted the applications of neg-
ative binomial distributions in biological and medical studies. Kikuchi (1987) has
used negative binomial distributions in case-control study involving a rare exposure
of maternal congenital heart disease (see Example 1), and Madden et al. (1996) have
noted the applications in botanical study of plant diseases. In mail-in survey sampling,
non-responses are quite common, and the initial sample size needs to be determined in
order to get a specified number of final responses. Recently, Young (2014) has shown
application of negative binomial tolerance intervals (TIs) in such survey sampling; see
Example 2.

The problem of finding statistical intervals for negative binomial distributions has
received only little attention. George and Elston (1993) have considered the problem
of finding confidence intervals (CIs) for proportions based on inverse sampling until
the occurrence of the first event. Lui (1995) has noted that the confidence interval given
in Clemans (1959), which was calculated on the basis of the first event, may be too
wide for general utility. Tian et al. (2009) have proposed some approximate confidence
intervals (CIs) for the success probability p of a negative binomial distribution. The
comparison studies by these authors have indicated that the available exact CI is too
conservative and so they have proposed some approximate confidence intervals which
are less conservative. Even though the exact CIs for binomial, Poisson and negative
binomial distributions are optimal among strictly nested intervals (Thulin andZwanzig
2017), it is well-known that the exact CIs are often too conservative and unnecessarily
wide. Alternative simple closed-form approximate CIs based on the score method and
Bayesianmethods are proposed for binomial and Poisson distributions. However, such
CIs are not available for negative binomial distributions.

Another statistical interval that is commonly used in applications is the prediction
interval (PI). The prediction problem that we will address concerns two independent
negative binomial distributions with the same “success probability” p, but possibly
different target numbers of successes. Given that n independent Bernoulli trials are
needed to observe r successes, we like to predict the number of trials required in
another negative binomial sampling to observe s successes with confidence 1− α. In
particular, we like to find a prediction interval [L(X; r , s, α), U (X; r , s, α)] so that

PX ,Y (L(X; r , s, α) ≤ Y ≤ U (X; r , s, α)) ≥ 1 − α. (1)

In the above, the random variable X represents the number of failures before the r th
success (so that n = X + r ) and it has a negative binomial distribution with success
probability p and the number of successes r , say, NBin(r , p) and Y has a NBin(s, p)
distribution independently of X . Note that by adding s to the PI for Y , we find the PI
for the number of trials needed to observe s successes in a future negative binomial
sampling.Althoughmany authors (seeKnüsel 1994;Dunsmore 1976;Krishnamoorthy
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and Peng 2011) have addressed the problem of finding PIs for binomial and Poisson
distributions, to the best of our knowledge, no PI is available for a negative binomial
distribution.

The problem of constructing TIs for a discrete distribution has received some atten-
tion in the literature. TIs for a discrete distribution are used to assess the magnitude
of discrete quality characteristics of a product, for example, the number of defective
components in a system. Methods for finding TIs for the binomial and Poisson models
are proposed in Hahn and Chandra (1981), Hahn and Meeker (1991), and Krish-
namoorthy et al. (2011). These authors have provided exact and some approximate
methods of obtaining TIs. Wang and Tsung (2009) provided an example where it is
desired to find a TI for a binomial distribution to assess the number of defective chips
in a wafer. Young (2014) has proposed some TIs for negative binomial distributions
showing applications to survey sampling (see Example 2).

In this article, we address the following problems. (i) Construction of CIs for the
success probability, (ii) finding PIs for Y ∼ NBin(s, p) based on X ∼ NBin(r , p),
and (iii) construction of equal-tailed tolerance intervals. Since we propose the fiducial
approach for the problems (i) and (ii), we first describe fiducial distributions for the
success probability p in a negative binomial sampling. In Sect. 3, we propose fiducial
and score CIs for p and compare them with an available large sample CI in terms of
coverage probabilities and precisions. In Sect. 4, we propose a fewCIs for the expected
number of trials required to observe a fixed number of successes in a future negative
binomial experiment. In Sect. 5, we describe an exact PI, and propose a fiducial
PI, highest probability mass (HPM) prediction interval and a PI based on a joint
sampling approach. All these PIs are evaluated with respect to coverage probabilities
and expected widths. The problem of constructing equal-tailed TIs is addressed in
Sect. 6. In Sect. 7, two examples with real data are used to illustrate the methods, and
some concluding remarks are given in Sect. 8.

2 Fiducial distribution for p

The negative binomial probability mass function (PMF) is given by

P(X = x |r , p) =
(
r + x − 1

x

)
pr (1 − p)x , x = 0, 1, 2, . . . (2)

where the random variable X represents the number of failures until the occurrence
of the r th success in a sequence of independent Bernoulli trials each with success
probability p. Let us denote the negative binomial distribution by NBin(r , p).

A fiducial distribution for a parameter can be obtained by inverting a hypothesis
test as suggested by Fisher (1935) or by deducing from a random number generat-
ing method (Hannig 2009). As both methods produce similar fiducial distributions,
we shall follow Hannig’s approach. To identify the data generating mechanism in a
negative binomial distribution, we note that x∗ is a pseudo random number from the
NBin(r , p) distribution if
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P(X ≤ x∗ − 1|r , p) < U ≤ P(X ≤ x∗|r , p),

whereU is a uniform(0,1) random variable (e.g., see Casella and Berger 2001, p. 249).
Let x be an observed value of X ∼ NBin(r , p). For a given x , the fiducial distri-

bution of p is implicitly determined by

P(X ≤ x − 1|r , p) < U ≤ P(X ≤ x |r , p), (3)

where U has a uniform(0, 1) distribution. Let Ba,b denote the beta random variable
with shape parameters a and b. Using the result (see Patil 1960) that P(X ≤ x |r , p) =
P(Br ,x+1 ≤ p), where X ∼ NBin(r , p) in (3), we see that the fiducial distribution of
p is implicitly determined by

P(Br ,x ≤ p) < U ≤ P(Br ,x+1 ≤ p), (4)

or equivalently,
Br ,x+1;U ≤ p < Br ,x;U , (5)

where Ba,b;q denotes the qth quantile of a beta(a, b) distribution. Notice that if
u1, . . . , uN are random numbers from uniform(0, 1) distribution, then Ba,b;u1, . . . ,
Ba,b;uN are random numbers from beta(a, b) distribution. Thus, a fiducial distribution
of p lies between beta(r , x + 1) and beta(r , x) distributions.

For a given (x, r), random samples p̂u1 , . . . , p̂uN from the fiducial distribution of
p are determined by

Br ,x+1;ui < p̂ui ≤ Br ,x;ui , i = 1, . . . , N .

Like in the binomial case (see Krishnamoorthy and Lee 2010), a random quantity that
is “stochastically between” Br ,x+1 and Br ,x can be used as a single fiducial variable
for p. A simple choice is

Br ,x+.5, (6)

which stochastically lies between Br ,x+1 and Br ,x . That is, for any given (r , x),

Br ,x+1;U ≤ Br ,x+.5;U ≤ Br ,x;U for all U ∈ (0, 1). (7)

3 Confidence intervals

3.1 Fiducial confidence interval

For a given confidence coefficient 1−α, the lower and upper α/2 quantiles of Br ,x+.5
form a 1 − α generalized fiducial CI for p. That is, the fiducial CI is given by

(
Br ,x+.5;α/2, Br ,x+.5;1−α/2

)
. (8)

123



Confidence intervals, prediction intervals and tolerance…

3.2 Exact confidence interval

It follows from (5) that, for a given x ,

(pL , pU ) = (
Br ,x+1;α/2, Br ,x;1−α/2

)
(9)

is also a 1 − α fiducial CI for p. Note that the above interval is an observed value of
the random interval (

Br ,X+1;α/2, Br ,X;1−α/2
)
, (10)

where X ∼ NBin(r , p). This random CI is obtained by using the “pivoting a CDF”
approach and so it is exact in the frequentist sense; see Theorem 9.2.14 of Casella and
Berger (2001) and the paper by Lui (1995). In particular, the endpoints of the exact
CI (pL , pU ) are the solutions of

FX (x |r , pL) = α

2
and F̄X (x |r , pU ) = α

2
, (11)

where x is an observed value of X ∼ NBin(r , p), FX (x |r , p) = P(X ≤ x |r , p) and
F̄X (x |r , p) = P(X ≥ x |r , p). The solutions of the above equations are the end-
points of the CI (9), which can be verified using the distributional results that
P(X ≤ x |r , p) = P(Br ,x+1 ≤ p) and P(X ≥ x |r , p) = P(Br ,x ≥ p).

Remark 1 Tian et al. (2009) have found an approximation, say, F̂X (x |r , p), to the
distribution function FX (x |r , p) using the saddle point approximation, and then
determined pL and pU as solutions of F̂X (x |r , pL) = α

2 and ̂̄FX (x |r , pU ) = α
2 ,

respectively. This approximate CI is not in closed-form and can be obtained only
numerically. However, the solutions of the exact method determined by equations in
(11) are in closed-form given in (10), and simple to compute. So we will not consider
this saddle point approximate CI for further studies.

3.3 Score confidence interval

Let η = (1 − p)/p. For X ∼ NBin(r , p), E(X) = rη. The score CI for p can be
obtained from the one for η. Noting that η̂ = X/r is an unbiased estimate of η and
Var(̂η) = η/(rp),we consider the quantity

√
r (̂η − η)/

√
η/p,which is asymptotically

normally distributed (Wald 1943). Replacing pwith the maximum likelihood estimate
(MLE) p̂ = r/(r + X), we find a CI for η on the basis of the result that

Zη =
√
r (̂η − η)√

η/ p̂
∼ N (0, 1), asymptotically. (12)

Let zα/2 denote the upper 100α/2 percentile of the standard normal distribution. Solv-
ing the equation Z2

η = z2α/2 for η, we find a 1 − α CI for η as

(L,U ) = η̂ + z2α/2

2r p̂
± zα/2

r

√
z2α/2

4 p̂2
+ X

p̂
. (13)
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A CI for p, deduced from the above CI, is given by (1/(1 +U ), 1/(1 + L)).

3.4 Large sample confidence interval

The large sample CI, proposed in Tian et al. (2009), is based on the asymptotic
normality of the MLE of p. The MLE of p is p̂ = r/(r + x) with variance
Var( p̂) = p2(1 − p)/r . These results lead to the large sample CI as

p̂ ± zα/2

√
p̂2(1 − p̂)

r
. (14)

The left endpoints of all CIs are truncated at 0 if they are negative, and the right
endpoints are truncated at 1 if they are greater than 1.

3.5 Coverage probabilities and expected widths of confidence intervals

To judge the coverage probabilities and precisions of the exact, fiducial, score and
large sample CIs, we computed the coverage probabilities as follows. For a given x of
X ∼ NBin(r , p), let (L(x; r , α),U (x; r , α)) be a 1 − α CI for p. Then the coverage
probability of the CI can be computed using the negative binomial probabilities as

∞∑
x=0

(
r + x − 1

x

)
pr (1 − p)x I [L(x; r , α) ≤ p ≤ U (x; r , α)], (15)

where I [x] is the indicator function. Expected width of the CI can be computed using
the above expression with the indicator function replaced by the width [U (x; r , α) −
L(x; r , α)].

We computed the coverage probabilities and expected widths of the (i) exact CI, (ii)
fiducial CI, (iii) score CI and (iv) large sample CI for r = 5, 10, 20, 40, 80 and 120,
and plotted them in Fig. 1. Examination of the plots clearly indicates that the large
sample CIs are too liberal having coverage probabilities below 0.80 in many cases; it
is liberal even for large values of r . The exact CI is too conservative even for large
values of r , or equivalently, for large expected number of trials. The over coverage
of the exact CI is increasing with increasing p. The fiducial and score CIs are also
somewhat liberal for very small values of r and large values of p; see the plot for
r = 5. For r ≥ 10, both the score and fiducial CIs perform very similar, except for a
few cases. For instance, the fiducial CI appears to be more liberal than the score CI
for large p, r = 10 and 20.

In order to compare the coverage probabilities and expected widths simultaneously,
we plotted the expected widths on the right pane in Fig. 1.We first note from Fig. 1 that
the expected widths are in agreement with the coverage probabilities of the CIs. The
coverage probabilities of the large sample CI are much lower than the nominal level
0.95, as a result, they are narrower than other CIs. The exact CIs are too conservative
and so they are wider than others in all cases. Between the fiducial and score CIs,
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Fig. 1 Coverage probabilities and expected widths of 95% confidence intervals for p

the former appears to be slightly wider than the latter for p around 0.5; see the plots
for r = 5, 10 and 20. In general, the fiducial and score CIs perform very similar in
terms of coverage probabilities and expected widths, except that the score CI has an
edge over the fiducial CI in a few cases. Overall, we see that the score CI followed
by the fiducial CI are satisfactory in controlling the coverage probabilities close to the
nominal level and maintaining the precision.
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3

Fig. 1 continued

4 Confidence intervals for the expected number of trials

Let X ∼ NBin(r , p). On the basis of (X , r), we would like to estimate the expected
number of trials required to observe s successes in a future negative binomial experi-
mentwith the same success probability. That is, wewould like to find aCI for E(s+Y ),
where Y ∼ NBin(s, p). Since E(Y ) = s(1− p)/p = sη and s is known, it is enough
to find CI for η. As η is a decreasing function of p, any CI for p can be used to find a
CI for the expected number of trials to observe s successes. Let (pL , pU ) is a 1 − α

CI for p. Then ((1 − pU )/pU , (1 − pL)/pL) is a 1− α CI for η. By using the exact
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Table 1 Coverage probabilities and expected widths (in parentheses) of 95% CIs for the mean number of
trials needed to observe s successes

p r = 10, s = 5 r = 10, s = 10 r = 10, s = 20

Exact Score Exact Score Exact Score

.05 .950(146.8) .938(126.7) .950(293.7) .938(253.5) .950(587.4) .938(507.1)

.15 .952(46.7) .945(40.1) .952(93.54) .945(80.3) .952(187.0) .945(160.7)

.20 .954(34.2) .947(29.3) .954(68.42) .947(58.6) .954(136.8) .947(117.2)

.25 .958(26.6) .943(22.7) .958(53.31) .943(45.5) .958(106.6) .943(91.1)

.50 .959(11.2) .959(9.52) .959(22.58) .959(19.0) .959(45.16) .959(38.0)

.60 .972(8.59) .948(7.21) .972(17.19) .948(14.4) .972(34.39) .948(28.8)

.70 .983(6.57) .955(5.50) .983(13.15) .955(11.0) .983(26.30) .955(22.0)

.80 .989(4.94) .973(4.13) .989(9.88 ) .973(8.26) .989(19.77) .973(16.5)

.90 .991(3.53) .966(2.97) .991(7.06 ) .966(5.94) .991(14.12) .966(11.8)

.95 .980(2.87) .980(2.44) .980(5.74 ) .980(4.88) .980(11.40) .980(9.76)

p r = 30, s = 5 r = 30, s = 15 r = 30, s = 45

.05 .950(74.4) .946(70.9) .950(223 ) .946(212 ) .950(669) .946(638)

.15 .952(23.5) .945(22.4) .952(70.7) .945(67.2) .952(212) .945(201)

.20 .953(17.2) .946(16.3) .953(51.6) .946(48.9) .953(154) .946(146)

.25 .953(13.3) .946(12.6) .953(40.1) .946(37.9) .953(120) .946(113)

.50 .962(5.57) .953(5.21) .962(16.7) .953(15.6) .962(50.1) .953(46.8)

.60 .956(4.20) .956(3.90) .956(12.6) .956(11.7) .956(37.8) .956(35.1)

.70 .967(3.17) .952(2.92) .967(9.5) .952(8.7) .967(28.5) .952(26.3)

.80 .971(2.32) .971(2.13) .971(6.9) .971(6.3) .971(20.8) .971(19.1)

.90 .989(1.53) .973(1.41) .989(4.6) .973(4.2) .989(13.8) .973(12.7)

.95 .993(1.12) .974(1.04) .993(3.3) .974(3.1) .993(10.1) .974(9.43)

CI for p, we can find the exact CI for η. Note that the score CI for η is already defined
in (13).

The coverage probabilities of theseCIs forη should be similar to those for theCIs for
p. In the following Table 1, we reported the coverage probabilities and expectedwidths
of confidence intervals for the mean number of trials required to observe s successes
for some values of r , s and confidence level 0.95. We observe from Table 1 that the
coverage probabilities of the score CIs are very close to or greater than the nominal
level for all the cases. Furthermore, the score CIs are shorter than the corresponding
exact CIs for all values of r and s reported in the Table 1.

Remark 2 A CI for the mean of a NBin(r , p) distribution can also be obtained by
parameterizing θ = r and μ = r(1 − p)/p. In this formulation, the PMF can be
written as

P(X = k) = �(θ + k)

�(k + 1)�(θ)

(
μ

μ + θ

)k (
θ

μ + θ

)θ

, k = 0, 1, 2, . . . .
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Table 2 95% confidence intervals based on simulated data from NB(r , p)

(n, r , p) (
∑n

i=1 xi , s
2) Gamma CI Exact Fiducial Score

(5,5,.3) (56, 27.7) (7.93, 15.0) (7.11, 18.7) (7.18, 18.6) (7.02, 17.8)

(10,5,.3) (111,67.9) (6.93, 16.2) (8.02, 15.8) (8.06, 15.8) (7.96, 15.5)

(20,5,.3) (270, 45.1) (11.1, 16.1) (10.8, 17.2) (10.8, 17.1) (10.7, 17.0)

(50,5,.3) (619, 44.2) (10.9, 14.0) (10.7, 14.4) (10.7, 14.4) (10.7, 14.3)

where θ is real positive, and both θ and μ are unknown. Shilane et al. (2010) have
addressed the problem of finding CIs for the mean μ based on a sample X1, . . . , Xn

from a distribution with the above PMF and using the above parameterized model
(Hilbe 2011). They have provided some CIs based on the result that the sample mean
X̄ has a gamma distribution asymptotically. Since

∑n
i=1 Xi has the NB(nr , p) dis-

tribution, the asymptotic approaches in Shilane et al. can be used to find a CI for the
mean r(1 − p)/p. However, to apply our methods, the value of r should be known,
and so they are not applicable to find a CI for μ in this parameterized model. For
large n, as indicated by the CIs based on simulated data given in Table 2, the gamma
asymptotic CI and our CIs are in agreement, but they are appreciably different for
small to moderate sample sizes.

5 Prediction intervals for the number of trials

Some of the PIs that we consider below are based on the hypergeometric distribution
and for easy reference, we describe the probability mass function (PMF) of the hyper-
geometric distribution with n = sample size, a = number of items with an attribute
of interest and b = the number of items without the attribute, as

h(x; a, b, n) = P(X = x |a, b, n) =
(a
x

)( b
n−x

)
(a+b

n

) , Lx ≤ x ≤ Ux , (16)

where Lx = max{0, n − b} and Ux = min{n, a}. Let us denote the PMF of the
hypergeometric distribution by h(x; a, b, n) and the cumulative distribution function
(CDF) by H(x; a, b, n).

5.1 Exact prediction interval

Let X ∼ NBin(r , p) independently of Y ∼ NBin(s, p). For a given (X , r), we like
to predict Y or, equivalently, the number of trials Y + s required to have s successes
in a future negative binomial sampling with the same success probability p. The
conditional PMF can be expressed as
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P(X = x |X + Y = f ) =
(x+r−1

x

)(s+ f −x−1
f −x

)
( f+r+s−1

f

)
= s

f + s − x
h(x; x + r − 1, s + f − x, f ), (17)

for max{0, x − s} ≤ x ≤ min{ f , x +r −1}. In the above equation, h(x; a, b, n) is the
hypergeometric PMF in (16). To find an exact PI for the number of trials required to
have s successes, we shall use the approach given in Thatcher (1964) for the binomial
case. Following Thatcher’s approach, we find the lower prediction limit for Y as the
smallest integer L for which

P(X ≥ x |X + L = f ) = s
x+L∑
i=x

h(i; i + r − 1, s + x + L − i, x + L)

f + s − i
> α.

The upper prediction limit for Y is the largest integer U for which

P(X ≤ x |X +U = f ) = s
x∑

i=0

h(i; i + r − 1, s + x +U − i, x +U )

f + s − i
> α.

The interval [L,U ] is the (1 − 2α) exact PI for Y .

5.2 Fiducial prediction interval

To find a fiducial PI, we shall use the general approach of Wang et al. (2012). For a
given (r , x, s), the fiducial PI is based on the predictive distribution which is described
by

Ỹ |W ∼ NBin(s,W ) and W ∼ beta(r , x + .5),

where beta(a, b) denotes the beta distribution with shape parameters a and b. The
probability mass function (PMF) of Ỹ can be obtained as

P(Ỹ = y) = EW P(Ỹ = y|W )

=
(
s + y − 1

y

)
1

beta(r , x + .5)

∫ 1

0
ws+r−1(1 − w)y+x+.5−1dw

=
(
s + y − 1

y

)
beta(r + s, y + x + .5)

beta(r , x + .5)
. (18)

The above PMF is called the beta-negative binomial. See Sect. 6.2.3 of Johnson et al.
(2005).
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5.2.1 Equal-tailed prediction interval

For a given (r , x, s), the lower 100α/2 and the upper 100α/2 percentiles of Ỹ form a
1− α fiducial PI for Y . This PI [L̃, Ũ ] can be computed as follows. The left endpoint

is smallest integer L̃ so that
∑L̃

y=0 P(Ỹ = y) > α/2 and the right endpoint is the

largest integer Ũ so that
∑∞

y=Ũ P(Ỹ = y) > α/2.

5.2.2 Highest posterior mass prediction interval

The highest posterior mass (HPM) fiducial PIs are constructed by collecting integers
with large probability masses according to the predicting distribution. The HPM-PIs
are expected to be shorter than equal-tailed PIs. To compute the HPM-PI, let ym denote
the mode of the predicting distribution. The HPM-PI can be obtained by first adding
ym to the predicting set S and then adding the integers in decreasing order of their
probability mass until P(Ỹ ∈ S) ≥ 1 − α.

To find the mode of the distribution of Ỹ defined in (18), it can be easily verified
that

P(Ỹ = y + 1)

P(Ỹ = y)
= (s + y)(y + x + .5)

(y + 1)(r + s + x + y + .5)
> 1

if

y ≤
⌈
s(x − 1) − (r + x − .5(s − 1))

r + 1

⌉
= ym,

where 	x
 is the ceiling function. Thus, the PMFof P(Ỹ = y) is an increasing function
for y ≤ ym and decreasing for y > ym . Therefore, ym is the mode. For R code to
compute the HPM-PI, see the appendix.

5.3 Joint sampling approach

Wenowpropose a closed-form approximate PI based on the “joint sampling approach”
which is similar to the oneused tofind confidence interval in a calibrationproblem (e.g.,
see Brown 1982, Sect. 1.2). This approach was also used to find an approximate PI for
binomial distributions (Krishnamoorthy and Peng 2011). To describe this approach,
we first note that X ∼ NBin(r , p) independently of Y ∼ NBin(s, p) and the sum

X +Y has also NBin(r + s, p) distribution. Let η = (1− p)/p. Then E
(
X+Y
r+s

)
= η.

Let η̂xy = X+Y
r+s . Consider the quantity

rY − sX√
Var(rY − sX)

= rY − sX√
rs(r + s)η/p

.

Since E(rY − r X) = 0, by the Wald result, the above quantity follows the standard
normal distribution asymptotically. Replacing η with η̂xy and p with the MLE p̂ =
r/(r + X) in the above expression, we see that
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CX
(sX − rY )2

X + Y
∼ Z2, asymptotically,

where Z ∼ N (0, 1) and CX = 1/[s(r + X)]. Let zα/2 denote the upper 100α/2
percentile of the standard normal distribution. Then solving the equation

CX
(sX − rY )2

X + Y
= z2α/2

for Y , we find the roots as

(L,U ) = s

(
X

r
+ z2α/2

2r2
(r + X)

)
∓ zα/2

r

√
s(r + X)

√√√√s

(
X

r
+ z2α/2

4r2
(r + X)

)
+ X .

The 1− α PI for the number of trials required to have s successes in a future negative
binomial experiment with success probability p is given by

[	L + s
, �U + s] , (19)

where 	x
 and �x are the ceiling and floor functions, respectively.

5.4 Coverage probabilities and expected widths of prediction intervals

For a given (r , s, p, α), the exact coverage probability of a PI [L(x, r , s, α),
U (x, r , s, α)] can be evaluated using the expression

∞∑
x=0

∞∑
y=0

(
r + x − 1

x

)(
s + y − 1

y

)
pr+s (1 − p)x+y I [L(x, r , s, α) ≤ y ≤ U (x, r , s, α)], (20)

where I [x] is the indicator function. The coverage probabilities of a good PI should be
close to the nominal level. The above expression with the indicator function replaced
by U (x, r , s, α) − L(x, r , s, α) can be used to compute the expected width.

We evaluated the coverage probabilities of the exact, equal-tailed, HPM prediction
intervals and the PI based on the joint sampling approach (JS-PI) for some values of
(r , s) at the confidence level 0.95. These coverage probabilities were plotted in Fig. 2.
We first observe from these plots that the exact PIs are too conservative for all values
of (r , s). The HPM PI is also conservative but less conservative than the exact one.
The equal-tailed PI is liberal for some values in the parameter space; see the plots for
(r , s) = (10, 10) and (10, 20). The JS-PI is also slightly liberal for the values of p
near zero, but it maintains the coverage probability very close to the nominal level for
most of the cases.

As the magnitudes of the coverage probability and the expected width of a PI are
quite different, the plots of such values are less informative. Instead, we tabulated the
coverage probabilities and corresponding expected widths of all PIs for some values of
p, r and s in Table 3. We first observe that the exact PI is too conservative and so they
are wider than others for all the cases reported in Table 3. Between the equal-tailed PI
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Fig. 2 Coverage probabilities of 95% prediction intervals for NB(s, p) distributions

and the HPM prediction interval, the latter has better coverage probabilities than the
former for all the cases. So the HPM-PI is preferable to the equal-tailed PI. The PI by
the joint sampling approach (JS-PI) is shorter than other PIs, and it also has coverage
probabilities close to the nominal level for all the cases. We also note that between the
HPM PI and the JS-PI, the latter is simple to compute.

6 Tolerance intervals

Let X ∼ NBin(r , p). On the basis of (X , r), we like to find an equal-tailed tolerance
interval (TI) for a NBin(s, p) distribution. Let κq(p; s) denote the qth quantile of a
NBin(s, p) distribution. A γ content and 1 − α coverage equal-tailed TI or simply
a (γ, 1 − α) equal-tailed TI [L(X , r , s),U (X , r , s)] for a NBin(s, p) distribution is

constructed so that it includes the interval
[
κ 1−γ

2
(p; s), κ 1+γ

2
(p; s)

]
with confidence

1 − α; see Chap. 1 of Krishnamoorthy and Mathew (2009). That is,

P
{
L(X , r , s) ≤ κ 1−γ

2
and κ 1+γ

2
≤ U (X , r , s)

}
= 1 − α. (21)
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Note that 100γ percent of the NBin(p, s) distribution falls in the interval[
κ 1−γ

2
(p; s), κ 1+γ

2
(p; s)

]
. So a 1 − α CI for this interval will include at least 100γ

percent of the distribution with confidence 1 − α.

6.1 Tolerance intervals based on different confidence intervals

A CI for
[
κ 1−γ

2
(p; s), κ 1+γ

2
(p; s)

]
can be found using the confidence limits for p

based on X ∼ NBin(r , p). Since the negative binomial distribution is stochastically
decreasing in p, the quantile κq(p; s) is a decreasing function of p. Using this fact,
we see that

κ 1−γ
2

(pU ; s) ≤ κ 1−γ
2

(p; s) and κ 1+γ
2

(p; s) ≤ κ 1+γ
2

(pL ; s) with probability 1 − α,

where (pL , pU ) is a 1 − α CI for p based on X ∼ NBin(r , p). In other words,

[
κ 1−γ

2
(pU ; s), κ 1+γ

2
(pL ; s)

]
(22)

is a (γ, 1 − α) equal-tailed TI for the NBin(s, p) distribution.

Remark 3 The approach of finding a TI given in Young (2011) is essentially the same
as the above approach. Mathew and Young (2013) have also proposed a TI on the
basis of fiducial approach which is equivalent to the above TI based on the fiducial CI
for p. We follow the above approach as it is simple and is easy to implement in R as
shown below.

The properties of the TIs defined above are similar to those of the CIs. For example,
if (pL , pU ) is an exact CI for p based on X ∼NBin(r , p), then the TI defined above is
an exact TI in the sense that the coverage probabilities are always greater than or equal
to 1 − α for all p. We also note that these TIs are easy to compute using the quantile
function available in software packages. For example, after finding the CI (pL , pU ),
the R function qnbinom(q, s, p) can be used to find the quantiles. Specifically,
the (γ, 1 − α) TI can be computed as

[qnbinom((1 − γ )/2, s, pU ), qnbinom((1 + γ )/2, s, pL)].

Remark 4 Cai andWang (2009) have proposedfirst-order and second-order probability
matching tolerance intervals for discrete distributions in exponential families which
include binomial, Poisson and negative binomial distributions. The two-sided TIs
proposed in the Cai and Wang’s paper is determined so that

PX {F(U (X)) − F(L(X)) ≥ γ } = 1 − α,

where F(x) denotes the CDF of a NBin(r , p) distribution. It is important to note
that Cai and Wang (2009) have defined the random variable X as the number of
successes until the r th failure, which is different from our commonly used definition.
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This two-sided TI is expected to be shorter than an equal-tailed TI, because the latter is
constructed to include the lower and upper 100(1+γ )/2 percentiles. That is, an equal-
tailed (γ, 1−α)TI not only includes at least 100γ%of the population, but also includes
the lower and upper 100(1 + γ )/2 percentiles whereas a two-sided TI is constructed
just to include at least 100γ% of the population. Our coverage studies indicated that
the Cai and Wang TIs are satisfactory for large r and .05 ≤ p ≤ .95. They are not
satisfactory for value of p at boundaries even when r is large. For example, for r = 50,
the coverage probabilities of (.90, .95) two-sided TIs for a NBin(50, p) distribution
at p = .01, .02, .03, .04 and .05 are .303, .550, .707, .848 and .902 respectively; at
p = .97, .98 and .99, they are .909, .866 and .781, respectively. So these two-sided
TIs should be used with caution, and further research is needed to improve these TIs.

6.2 Coverage probabilities and expected widths of tolerance intervals

To judge the coverage probabilities and expected widths of the TIs, we computed the

exact coverage probability of a TI
[
κ 1−γ

2
(pU ; s), κ 1+γ

2
(pL ; s)

]
using the following

expression:

∞∑
x=0

(
r + x − 1

x

)
pr (1 − p)x I

[
κ 1−γ

2
(pU ; s) ≤ κ 1−γ

2
(p; s) and

κ 1+γ
2

(p; s) ≤ κ 1+γ
2

(pL ; s)
]
, (23)

where I [x] is the indicator function.
We evaluated coverage probabilities of the following equal-tailed TIs: (i) the inter-

val in (22) with the exact CI (10) for p (referred to as the exact TI), (ii) the interval
in (22) with the score CI deduced from (13) for p (referred to as the score TI),
and (iii) the interval in (22) with the large sample CI (14) for p (referred to as the
large sample TI). The coverage probabilities of (.90, .95) TIs were computed for
(r , s) = (20, 10), (20, 30), (30, 10), (30, 20), (50, 10) and (50,40). These coverage
probabilities were plotted in Fig. 3. We observe from these plots that the large sample
TIs are, in general, too liberal having coverage probabilities much smaller than the
nominal level .95. The score TI and the exact TI are conservative except that in some
cases the score TIs are less conservative than the exact TIs. For example, see the cases
(r , s) = (20, 10), (20, 30), (30, 20) and (50,40).

We further compared the TIs with respect to expected widths. We tabulated some
summary statistics of the expected widths of the exact and score TIs in Table 4.
The summary statistics are based on expected widths for p = .001(.001).999. We
considered only these two TIs because the third one, the large sample TI, is too liberal.
The summary statistics of the expected widths of these two TIs clearly indicate the
score TI is narrower than the exact TI for all the cases. This comparison result was
anticipated because the exact TIs are more conservative than the score TIs.
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Fig. 3 Coverage probabilities of (.90, .95) tolerance intervals for NB(s, p) distributions

7 Examples

Example 1 Astudywas conducted tofind the associationbetween thematernal congen-
ital heart disease and low birthweights of infants (Kikuchi 1987). A negative binomial
sampling plan was used to recruit pregnant mothers until r = 5 maternal congenital
heart disease mothers were observed. The 5th congenital heart disease mother was
observed at the 146th selection. Thus, the number of normal mothers is x = 141 and
the number of congenital heart disease mothers is r = 5. Tian et al. (2009) have used
these results to illustrate different interval estimation methods for the proportion p
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Table 5 95% confidence intervals for p and 95% prediction intervals

Methods Confidence intervals Methods Prediction intervals

Exact (.011, .069) Exact [178, 1438]

Large sample (.005, .064) Equal-tailed [179, 1427]

Fiducial (.011, .069) HPM [121, 1186]

Score (.015, .078) Score [140, 1073]

of the mothers with the congenital heart disease. Young (2014) has used the data to
construct a two-sided tolerance interval for future samples of pregnant mothers.

We computed the 95% CIs for the proportion p of the mothers with the congenital
heart disease using different methods described earlier, and presented them in Table 5.
Note that the uniformly minimum variance unbiased estimate for p is (r − 1)/(r +
x − 1) = 4/145 = .0276, which indicates that the population proportion is likely to
be small. For such cases, all interval estimation methods are satisfactory and similar in
terms of coverage probabilities and expected widths; see Fig. 1. So, for this example,
all the methods produced CIs that are not much different.

Suppose it is desired to estimate the expected number of pregnant mothers to be
examined in order to find 15 congenial mothers. The 95% CI based on the exact CI
for p is (202, 1323). That is, on average, 202 to 1323 mothers are to be examined in
order to find 15 congenial mothers. The 95% CI based on the score method is [178,
1004], which is much shorter than the exact CI.

To illustrate the construction of the PIs, we computed 95% PIs for the number of
pregnant mothers to be examined in order to find s = 15 congenital heart disease
pregnant mothers. PIs based on various methods are given in Table 5. The PIs for the
number of pregnant mothers to be examined to observe 15 mothers with congenital
heart disease are quite different. Among all the PIs the score PI [140, 1073] is the
shortest, and it means that 140 to 1073 pregnant mothers to be examined to find 15
congenital heart disease pregnant mothers.

Suppose it is desired to find an interval with 90% confidence where 90% of all
future samples of healthy pregnant mothers would fall if a similar study were to be
performed; that is, to capture a target number of s = 5 mothers with congenial heart
disease. Using (r , x) = (5, 141), we computed the 90% exact CI (9) as (.0136, .0620).
On the basis of this exact CI, the (.90, .90) TI was computed using the R function as

[qnbinom(.05, 5, .0620),qnbinom(.95, 5, .0136)] = [28, 666].

Similarly, using the score CI (13), the (.90, .90) TI was computed as [25, 539]. The
(.90, .90) TIs for the total sample sizes for negative binomial sampling scheme to
observe s = 5 mothers with congenial heart disease can be obtained by adding five to
these TIs.
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Table 6 The American Community Survey data from 2006 to 2010

Year Housing units Group quarters

Initial Final Initial Final

2010 2,935,687 1,940,293 197,970 145,552

2009 2,933,345 1,940,458 199,768 147,374

2008 2,930,800 1,954,659 187,783 146,619

2007 2,922,519 1,960,496 187,952 143,200

2006 2,921,218 1,991,487 190,572 145,995

Mean 2,928,714 1,957,479 192,809 145,748

Total 14,643,569 9,787,393 964,045 728,740

Example 2 The American Community Survey (ACS) collects data1 to help local offi-
cials, community leaders and businesses to understand the changes taking place in
their communities and regions. The data are collected annually from all counties and
county equivalents for various purposes. Data were first collected by self-enumeration
via mailback. The completed ACS captures roughly 65% of housing units (HUs) and
75% of group quarters (GQs) originally listed in the sample. For more details on data
collection, see Young (2014) who used the data to demonstrate the construction of
tolerance intervals for a negative binomial distribution. The following Table 6, taken
from Young (2014), shows the initial sample sizes and final interview sizes for HUs
and GQs during the years 2006–2010.

It is quite common inmail-in surveys that the final target sample size is considerably
smaller than the initial samples. Young (2014) has used the average initial sample size
as the total number of negative binomial trials required to obtain the average final
interview size. The averages are given in the last row of Table 6. For example, Young
has used r = 1, 957, 479 and x = 2, 928, 714−1, 957, 479 = 971, 235 to construct a
TI for HUs. As negative binomial distributions have additive property, we can use the
total initial sample size 14,643,569 as r+x and the total final interview size 9,787,393
as r .

7.1 Prediction intervals

For a future survey of target size of 2,000,000, we would like to predict the initial
sample size for HUs with 95% confidence. In our present notations, s = 2, 000, 000,
r + x = 14, 643, 569 and r = 9, 787, 393, and we like to find a 90% PI for s + Y ,
where Y ∼ NBin(s, p). The PIs based on all four methods are reported in Table 7.
For GQs, we like to predict the initial sample size to obtain 200,000 final interviews.
In this case, r + x = 964, 045, r = 728, 740 and s = 200, 000. Using these data, we
computed 90% PIs for the initial sample size and reported them in Table 7. All four
methods produced similar PIs for both cases. To interpret the PI, we note that the exact
PI for GQs is [264, 036, 265, 122]. This means that an initial sample size of 264,036

1 http://www.census.gov/acs/www/methodology/sample_size_and_data_quality/.
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Table 7 90% prediction intervals based on the ACS data

Methods Housing units Group quarters

Exact [2,990,134, 2,994,534] (264,036 265,122)

Equal-tailed [2,990,134, 2,994,532] (264,037, 265,122)

HPM [2,990,133, 2,994,532] (264,036, 265,122)

Score [2,990,134, 2,994,532] (264,037, 265,121)

to 265,122 is needed to obtain the final target size of 200,000 responses. Other PIs can
be interpreted similarly.

7.2 Tolerance intervals

Based on the average of the initial sample and final interview sizes, Young (2014)
has estimated (.99, .95) TI where 99% of all initial sample sizes will fall if target
final sample size of 2,000,000 is required for HUs. Using the large sample CI, the
(.99, .95) TI for the HUs was computed as [2,986,789, 2,997,894]. We computed the
same TI using the total initial sample size and the total final interview size. On the
basis of totals, the TIs based on the exact CI, score CI and the large sample CI are
the same and is [2,988,119, 2,996,556]. This means that 99% of initial sample sizes
from this interval would produce a target response size of 2,000,000 with confidence
95%. Young (2014) has also estimated (.99, .95) TI where 99% of all initial sample
sizes fall if target final sample size of 200,000 is required for GQs. Using the large
sample CI based on average sizes, Young has computed the (.99, .95) TI as [263,163,
266,011]. On the basis of the total sizes, we find the TIs based on the exact, score and
large sample CIs are the same and is [263,530, 265,636]. That is, 99% of all initial
sample sizes between 263,636 and 265,636 would produce 200,000 final responses
with confidence 0.95.

Finally, we note that the TIs based on the total sizes are shorter than the correspond-
ing TIs based on the average sizes for both HUs and GQs. Furthermore, all methods
produced the same TI because the sample sizes are very large.

8 Concluding remarks

The classical exact methods for discrete distributions are known to be too conservative
producing confidence intervals and prediction intervals that are unnecessarily wide or
tests that are less powerful. For the binomial and Poisson distributions, Agresti and
Coull (1988), Brown et al. (2001) and many other authors have recommended alter-
native approximate approaches for constructing confidence intervals and prediction
intervals with satisfactory coverage probabilities and good precision. In this article,
we have provided similar approximate methods for constructing CIs, PIs and TIs for
negative binomial distributions. Furthermore, we showed that the approximate CIs
and PIs have good coverage properties with expected widths narrower than those of
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the exact CIs and PIs. In terms of simplicity and accuracy, the PI based on the joint
sampling approach, the score CI and the TI based on the score CI are preferable to
others. These statistical intervals are not only easy to compute, but also safe to use in
practical applications.

Acknowledgements The authors are grateful to three reviewers for providing valuable comments, sugges-
tions and references relevant to this article.

Declarations

Conflict of interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

Appendix

R code to compute HPM-PI

NB.HPM.PI = function(r, x, s, cl){
al = (1-cl)/2
probs = function(y,r,x,s){
lpr = lgamma(s+y)-lgamma(y+1)-lgamma(s)+

+ lgamma(r+s) + lgamma(y+x+.5)-lgamma(r+s+y+x+.5)+
+ lgamma(r+x+.5)-lgamma(r)-lgamma(x+.5)

return(exp(lpr))
}
md = ceiling((s*(x-1)-(r+x-.5*(s-1)))/(r+1))
cdf = 0
if(md <= 3){
yi = 0
repeat{
cdf = cdf + probs(yi,r,x,s)
if(cdf >= cl){break}
yi = yi + 1}
return(c(s, yi+s))
}
cdf = probs(md,r,x,s)
yf = md+1; yb = md-1
probsf = probs(yf,r,x,s)
probsb = probs(yb,r,x,s)
repeat{
if(probsf >= probsb){
cdf = cdf + probsf
if(cdf >= cl){break}
yf = yf+1
probsf = probs(yf,r,x,s)
}
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else{
cdf = cdf + probsb
if(yb <= 0 | cdf >= cl){break}
yb = yb-1
probsb = probs(yb,r,x,s)}
}
if(cdf >= cl){
return(c(yb+s, yf+s))}
repeat{
probf = probs(yf,r,x,s)
cdf = cdf + probf
if(cdf >= cl){break}
yf = yf+1
}
return(c(yb+s,yf+s))
}
> NB.HPM.PI(5,141,15,.95)
[1] 121 1186
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