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Confidence Intervals for a Population Size Based on
Capture-Recapture Data

Bao-Anh Danga, K. Krishnamoorthya, and Shanshan Lvb

aDepartment of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana, USA;
bDepartment of Statistics, Truman State University, Kirksville, Missouri, USA

ABSTRACT
Capture-recapture is a popular sampling method to estimate the
total number of individuals in a population. This method is also used
to estimate the size of a target population based on several incom-
plete records/databases of individuals. In this context, a simple
approximate confidence interval (CI) based on the hypergeometric
distribution is proposed. The proposed CI is compared with a popu-
lar approximate CI, likelihood CI and an exact admissible CI in terms
of coverage probability and precision. Our numerical study indicates
that the proposed CI is very satisfactory in terms of coverage prob-
ability, better than the popular approximate CI, and much shorter
than the admissible CI. The interval estimation method is illustrated
using a few examples with epidemiological data.
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1. Introduction

Capture-recapture is a popular sampling design that is often used to estimate the size of
animal populations in a wilderness. The procedure is that at one time a sample of M
animals is captured, tagged and released; this is called the capture stage. At a later time,
another sample of n animals will be caught (recapture) and the number of marked ani-
mals X is recorded. The number of animals in each sample, and the number of animals
common to both, are used to estimate the animal population size. This simple method
was first applied to the epidemiological problem of estimating prevalence by Sekar and
Deming (1949). Since the work of Wittes, Colton and Sidel (1974), this method has
been widely used in many epidemiological problems. For example, to estimate incidence
of diseases (such as cancer, stroke, mental illness), homelessness and people who inject
drugs (PWID). The capture-recapture models are also used to estimate the size of a tar-
get population based on several incomplete records/databases of individuals; for
example, see Tilling (2001) and Chao et al. (2001). Some examples of epidemiological
applications of capture-recapture are given in the example section.
A simple approach of merging data from different sources and eliminating duplicate

cases are likely to underestimate the target population size. One of the methods for esti-
mating the population size is based on the hypergeometric model. Specifically, the
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number of marked animals M in the capture phase is regarded as the number of ani-
mals in the population of size N with an attribute. If the sample of size n at the recap-
ture phase is drawn without replacement, then the number of marked animals X in the
recapture sample has the hypergeometric distribution with the probability mass function
(pmf),

PðX ¼ xjn,M,NÞ ¼
M
x

� �
N �M
n� x

� �
N
n

� � , max 0, nþM � Nf g � x � min n,Mf g: (1)

In this setup, both N and M could be unknown parameters. As noted earlier, in the
capture-recapture sampling, the values of n and M are known, and the problem is to
estimate the population size N.
There are a few approximate confidence intervals (CIs) available in the literature.

Among them, the CI based on the Chapman’s (1951) estimate is popular and commonly
used. Wang (2015) proposed an admissible CI which is shorter than the exact CI.
Wang’s coverage studies indicated that the approximate CIs are too liberal, having
coverage probabilities much smaller than the nominal level. In this sense, the approxi-
mate CI is inaccurate even for large samples. In general, exact CIs for discrete models
are usually too conservative and unnecessarily wide. For example, see Agresti and Coull
(1998) and Brown, Cai and DasGupta (2001). The admissible CI proposed by Wang
(2015) could be narrower than the exact CI, but our numerical study indicates that the
admissible CI is also too wide. Furthermore, calculation of admissible CI is quite
involved and it is extremely time consuming for some cases where n is large. Even
though the problem of estimating the population size based on the capture-recapture
data has been in the literature since the 1940s, no simple approximate closed-form CI
that is satisfactory in terms of coverage probability and precision is available.
In this article, we develop a simple approximate closed-form CI for the unknown

population size by inverting the score statistic for the proportion in a finite population.
In the following section, we describe the available approximate CI based on Chapman’s
estimate, the likelihood CI, the exact CI and the admissible CI due to Wang (2015). We
then propose a score CI, which is formed by two roots (greater than M) of a cubic poly-
nomial function. We also propose a simple closed-form approximate score CI from
which the score CI can be deduced. In Section 3, we evaluate and compare all the CIs
in terms of exact coverage probability and precision. In Section 4, we illustrate the
interval estimation methods using two real examples. Some concluding remarks are
given in Section 5.

2. Confidence Intervals

2.1. An Approximate CI

Petersen (1896) proposed a natural point estimate for N as N̂ ¼ M=ðX=nÞ: Chapman
(1951) modified the Petersen estimator as,
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N̂ ¼ ðM þ 1Þ
ðX þ 1Þ=ðnþ 1Þ � 1: (2)

The above estimator is unbiased if nþM � N and it is approximately unbiased if X � 7:
(Robson and Regier, 1964).
There are a few closed-form approximate CIs available in the literature. The most

popular approximate CI is based on the above Chapman estimate and is given by,

ðnþ 1ÞðM þ 1Þ
X þ 1

� 1

� �
6za=2

ðnþ 1Þðn� XÞðM þ 1ÞðM � XÞ
ðX þ 1Þ2ðX þ 2Þ

 !1=2

, (3)

where za=2 is the upper a=2 quantile of the standard normal distribution.

2.2. Likelihood Confidence Interval

The log-likelihood function is given by,

ln f ðNÞ ¼ ln f ðxjn,M,NÞ,
where f ðxjn,M,NÞ is the pmf given in (1). Noting that the maximum likelihood estima-
tor N̂ of N is the largest integer less than or equal to ðnM=xÞ, a 100ð1� aÞ likelihood
CI for N is given by,

N : �2 ln f ðNÞ � ln f ðN̂Þ
� �

� z2a=2
n o

: (4)

For a given (x, n, M), the likelihood CI (4) can be obtained numerically. For example,
starting from N̂ , a forward search can be used to find the value of N, say N�, for which
�2 ln f ðN�Þ � ln f ðN̂Þ
� �

> z2a=2: Then, N
� � 1 is the right endpoint of the CI. Similarly,

the left endpoint of the CI can be obtained using backward search starting from N̂ :

2.3. Confidence Intervals Based on the Score Statistic

The score statistic for testing the proportion in a finite population is given by,

p̂ � pffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðp̂Þp ¼ p̂ � pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rnp 1� pð Þ=n
p , (5)

where p ¼ M=N, p̂ ¼ X=n and Rn ¼ ðN � nÞ=ðN � 1Þ, which is the finite population
correction. Wald’s (1943) result shows that the above quantity has an approximate
standard normal distribution for large n. For a given (X, n, N), the roots of the equation
jp̂ � pj= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rnpð1� pÞ=np ¼ za=2 form a CI for p, which is referred to as the score CI
for p.
We now use the same score statistic to obtain an approximate CI for N as follows.

Let us write the score statistic (5) in terms of M and N as,

ZðNÞ ¼ X=n�M=Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðX=nÞp ¼ X=n�M=Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rn
M
N 1� M

N

� �
=n

q : (6)
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For a given (X, n, M), an approximate 1� a confidence set is given by

N : Z2ðNÞ � z2a=2andN � M
n o

:

The confidence set is an interval determined by the roots of the equation,

Z2ðNÞ � z2a=2 ¼ 0, (7)

and we shall refer to the CI for N as the score CI. The above equation is a cubic poly-
nomial in N, and two real roots that are greater than M form a CI for N.
In order to find exact roots of the equation (7), we first find approximate closed-

form roots, which form an approximate CI, referred to as the approximate score CI.

2.3.1. An Approximate Score Confidence Interval
A closed-form approximate score CI can be found as follows. Noting that the propor-
tion X/n of the tagged animals in the second sample is similar to the proportion M/N
of the animals trapped in the first occasion, we see that X=n ’ M=N or n=N ’ X=M:

Writing,

Rn ¼ N � n
N � 1

’ 1� n
N

’ 1� X
M

¼ Rx, say,

and replacing the Rn in (7) with Rx, we see that the CI is determined by the values of N
that satisfy the equation,

ðp̂ � pÞ2
Rxp 1� pð Þ=n� z2a=2 ¼ 0, (8)

where p̂ ¼ X=n and p ¼ M=N: The roots can be expressed as follows. Solving the above
equation for p, we find the CI interval for p as,

ðp̂l, p̂uÞ ¼
p̂ þ z2

a=2
Rx

2n

1þ z2
a=2

Rx

n

7
za=2

ffiffiffiffiffi
Rx

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1�p̂Þ

n þ z2
a=2

Rx

4n2

q
1þ z2

a=2
Rx

n

: (9)

If we replace Rx with 1, then the above CI simplifies to the popular Wilson’s (1927)
score CI for the binomial proportion; for more details, see Agresti and Coull (1998).
The CI for N on the basis of the above CI for p is given by,

N̂
ð1Þ
l , N̂

ð1Þ
u

h i
¼ dM=p̂ue, bM=p̂lc
� �

, (10)

where dxe is the ceiling function and bxc is the floor function. It should be noted that
the CI ðpl, puÞ ¼ ð0, z2a=2=ðnþ z2a=2ÞÞ when X¼ 0, and it is ðn=½nþ z2a=2ð1� n=MÞ�, 1Þ
when X¼ n. Thus, the CI (10) for N is defined for all values of X 2 f0, 1, :::, ng:
Remark 1. The hypergeometric pmf remains the same when n and M are swapped.
Specifically, for any given ðn,MÞ ¼ ðn0,M0Þ,

PðX ¼ xjn ¼ n0,M ¼ M0,NÞ ¼ PðX ¼ xjn ¼ M0,M ¼ n0,NÞ:
Any CI for N should reflect this property of the hypergeometric model. In particular,
the CI for N at ðX, n ¼ n0,M ¼ M0Þ and the CI for N at ðX, n ¼ M0,M ¼ n0Þ should

AMERICAN JOURNAL OF MATHEMATICAL AND MANAGEMENT SCIENCES 215



be the same. Notice that the approximate CI in (3) possesses this property, whereas the
CI (10) does not possess this property. To overcome this problem, we compute the CI
½Nð1Þ

l ,Nð1Þ
u � in (10) at ðX, n ¼ n0,M ¼ M0Þ, and construct the same at ðX, n ¼ M0,M ¼

n0Þ, say, ½Nð2Þ
l ,Nð2Þ

u �, and propose the CI,

Nl,Nu½ � ¼ Nð1Þ
l þ Nð2Þ

l

2
,
Nð1Þ

u þ Nð2Þ
u

2

" #
: (11)

We refer to the above CI as the approximate score CI or simply A-score CI.

2.3.2. Calculation of the Score CI. The roots for the extreme cases can be expressed in
closed-form as follows.
Case of X¼ 0: In this case, noting that N � 1 ’ N, we see that (7) becomes quad-

ratic, and the finite root is given by,

N̂ l ¼ M
n

2z2a=2
þ 1
2

 !
þ n

2
þ 1
2z2a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðM þ z2a=2Þ2 þ z2a=2M z2a=2M þ 2nðM � z2a=2Þ

	 
r
,

(12)

and N̂u ¼ 1: Thus, for the case of X¼ 0, we consider the interval ½N̂ l,1� as the 1� a
CI for N.
Case of X¼ n: In this case also (7) becomes quadratic, and the root that is greater

than M is given by,

N̂u ¼ M
1
2
þ
z2a=2
2n

 !
þ 1
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4n2

nþMðnþ z2a=2Þ
	 
2 �M 1þ z2a=2

	 
r
: (13)

Thus, for the case of X¼ n, we consider the interval ½M, N̂ u� as the 1� a CI for N.
We shall now describe a method computing the score CIs for X 2 f1, :::, n� 1g from

the approximate approach in the preceding subsection. Let,

Z2
xðNÞ ¼ ðp̂ � pÞ2

Rxpð1� pÞ=n
so that (8) can be written as Z2

xðNÞ � z2a=2 ¼ 0, or equivalently,

fxðNÞ ¼ nðp̂ � pÞ2 � z2a=2Rxpð1� pÞ ¼ 0: (14)

Similarly, we can write (7) as,

fnðNÞ ¼ nðp̂ � pÞ2 � z2a=2Rnpð1� pÞ ¼ 0, (15)

where p ¼ M=N:

It can be easily checked that the coefficient of N3 in fnðNÞ is positive, and so the
function has two turning points, and is concave in the first half and convex in the
second half. Also, fnðNÞ is positive for N close to M, and for a fixed (X, n, M), it can be
easily verified that
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fxðNÞ � fnðNÞ for N � ðn� 1ÞM
X

þ 1 and fxðNÞ > fnðNÞ for N >
ðn� 1ÞM

X
þ 1:

The above relations between fxðNÞ and fnðNÞ imply that both the smaller and the larger
roots of the equation fnðNÞ ¼ 0 are larger than the corresponding smaller and larger roots
of the equation fxðNÞ ¼ 0: To shed some light, we plotted these functions fxðNÞ and fnðNÞ
for ðX, n,M, 1� aÞ ¼ ð15, 20, 100, :95Þ and (25, 40, 100,.95) and presented them in Figure
1. As seen in the figure, the 95% CI formed by roots of fnðNÞ ¼ 0 falls on the right side of
the 95% CI formed by the roots of fxðNÞ ¼ 0: On the basis of this relation, the score CI
can be computed from the approximate score CI as follows.

Algorithm 1
For a given (x, n, M):
1. Compute the 1� a CI ½N̂ ð1Þ

l , N̂
ð1Þ
u � in (10).

2. Starting from N̂
ð1Þ
l , search the value of N forward until Z2ðNÞ � z2a=2 � 0: The

smallest value of N for which Z2ðNÞ � z2a=2 � 0 is the left endpoint of the
score CI.

3. Starting from N̂
ð1Þ
u , search the value of N forward until Z2ðNÞ � z2a=2 becomes posi-

tive, and denote the corresponding value of N by N�: Then, N� � 1 is the right
endpoint of the score CI.

The score CI based on Algorithm 1 is invariant under the trans-
formationðX, n ¼ n0,M ¼ M0Þ ! ðX, n ¼ M0,M ¼ n0Þ: This is true because Z(N)
defined in (6) is invariant under the transformation ðX, n,MÞ ! ðX,M, nÞ:

2.4. Exact Confidence Intervals

For a given (x, n, M), the cumulative distribution function Fðxjn,M,NÞ ¼ PðX �
xjn,M,NÞ is an increasing function of N. So using Theorem 9.2.14 of Casella and
Berger (2002), we find the following exact one-sided confidence limits for N.
The 1� a lower confidence limit Lo is determined by,

Lo ¼ maxfn,Mg if x ¼ minfn,Mg
minfN : PðX � xjn,M,NÞ � a=2g, for x ¼ 0, 1, :::, n� 1:

�
(16)

Figure 1. Plots of fxðNÞ in (14) and fnðNÞ in (15) as a function of N; 1� a ¼ 0:95:
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The 1� a upper confidence limit Uo is determined by,

Uo ¼ 1 if x ¼ 0
maxfN : PðX � xjn,M,NÞ � a=2g, for x ¼ 1, :::, n:

�
(17)

The exact confidence limits given in Lemmas 5 and 6 of Wang (2015) are defined in a differ-
ent way, but it can be easily verified that they are the same as the above exact confidence lim-
its. Furthermore, the exact CIs are invariant under the transformation
ðX, n,MÞ ! ðX,M, nÞ, because the hypergeometric cdf is invariant under the
transformation.
Wang (2015) has shown that for any 1� a lower confidence limit L� with nondecreasing

in x, Lo � L�: Similarly, for any upper confidence limit U� with nondecreasing in x, Uo �
U�: Even though the one-sided confidence limits have some desirable properties, the 1� 2a
two-sided confidence interval Lo,Uo½ �, formed by these one-sided limits are unnecessarily
wide. Wang (2015) has proposed an iterative algorithm to find an exact admissible two-sided
CI Le,Ue½ � which is a subset of Lo,Uo½ �: However, calculation of the admissible two-sided CI
is numerically quite involved. Wang (2015) has provided an R function which can be used
to compute the admissible CIs for x 2 f0, 1, :::, ng: Specifically, for a given (n, M) and the
confidence level, the R function returns CIs corresponding to all x 2 f0, 1, :::, ng:

2.5. Comparisons of Confidence Intervals

To judge the disparity among the CIs by different methods, we computed 95% likelihood
CI, score CI, approximate score CI and Wang’s (2015) exact admissible CI for ðn,MÞ ¼
ð30, 400Þ and (20, 1000) and is presented in Table 1. By examining the CIs in Table 1, we
see that the admissible CIs are wider than the corresponding score and approximate score
CIs. Indeed, the admissible CIs are much wider than the approximate score and score CIs
when X is much smaller than the sample size n. The likelihood CIs are also wider than the
score CIs. As noted earlier, the score CIs always fall on the right side of the corresponding
approximate score (A-score) CIs. Furthermore, we note that the score CIs are slightly
wider than the corresponding approximate score CIs.

3. Coverage and Precision Studies

For a given ðX, n,M, aÞ, let ðCX, n,M, a=2,CX, n,M, 1�a=2Þ be a 1� a CI for N. Then, for an
assumed value of N, the exact coverage probability of this CI can be computed using the
expression

XU
x¼L

M
x

� �
N �M
n� x

� �
N
n

� � I Cx, n,M, a=2,Cx, n,M, 1�a=2½ �ðNÞ, (18)

where L ¼ maxf0, nþM � Ng,U ¼ minfn,Mg and IAðxÞ is the indicator function.
Similarly, the expected width of ðCX, n,M, a=2,CX, n,M, 1�a=2Þ can be computed using the expres-
sion
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XU
x¼L

M
x

� �
N �M
n� x

� �
N
n

� � Cx, n,M, 1�a=2 � Cx, n,M, a=2
� �

: (19)

Recall, that the right endpoints of all CIs at X¼ 0 are infinity, so the expected widths of
all CIs are infinity. However, comparison of CIs in Table 1 indicates that the score CIs
are much narrower than the admissible CIs for almost all X 6¼ 0: Thus, to compare
these CIs in terms of precision, we calculated the right endpoint of the approximate
score CI using X ¼.5 when the actual value of X¼ 0. This right endpoint of approxi-
mate score CI was used as the right endpoint of all other CIs when X¼ 0. This adjust-
ment ensures that the expected widths of all CIs are finite and a meaningful
comparison can be made. Furthermore, all the CIs are invariant under the transform-
ation ðX, n,MÞ ! ðX,M, nÞ, and therefore, we can assume without loss of generality
that n � M in our comparison studies.
In Table 2, coverage probabilities and expected widths of the approximate CI (3), the

likelihood CI (4), the approximate score CI (11) and the score CI based on Algorithm 1
are reported for some values of (n, M, N) and confidence coefficient.95. We observe
from this table that the approximate CI is not satisfactory in terms of coverage proba-
bilities. Even for a sample size of 80 (see n¼ 80, M¼ 400), the coverage probability of
the approximate CI could be as low as.898. The approximate CIs are narrower than the
other two CIs, because the coverage probabilities are much smaller than the nominal
level.95. The likelihood CI is quite comparable with the approximate and the score CIs
in terms of coverage probabilities, but it is wider than the score CIs in almost all cases.
There are some cases where the score CIs have better coverage probabilities with
smaller width than the likelihood CIs; see when ðn,M,NÞ ¼ ð30, 200, 425Þ, (60,200,550)
and (30, 400, 2000). The approximate score and the score CIs are very similar in terms
of coverage probability. However, the approximate score CIs are shorter than the score
CIs for all the cases considered in Table 2.

Table 1. 95% confidence intervals based on three methods.
n ¼ 30,M ¼ 400 n ¼ 20,M ¼ 1000

X Admis. Likelihood A-Score Score X Admis. Likeihood A-Score Score

5 (1180, 5862) (1240, 6300) (1197, 5424) (1201, 5440) 4 (2441, 14003) (2472, 14941) (2407, 12376) (2410, 12389)
7 (979, 4010) (1000, 3695) (982, 3371) (985, 3382) 5 (2149, 9598) (2167, 10207) (2137, 8921) (2139, 8931)
8 (906, 3029) (916, 3017) (904, 2802) (907, 2810) 6 (1935, 7157) (1940, 7575) (1930, 6858) (1931, 6866)
10 (786, 2234) (788, 2169) (785, 2065) (787, 2071) 7 (1772, 6487) (1765, 5930) (1766, 5505) (1767, 5512)
11 (735, 1972) (739, 1889) (738, 1814) (739, 1820) 8 (1607, 4774) (1624, 4818) (1633, 4558) (1634, 4564)
15 (600, 1215) (598, 1216) (601, 1196) (602, 1199) 9 (1473, 4329) (1509, 4023) (1522, 3862) (1523, 3867)
16 (574, 1148) (572, 1110) (576, 1097) (577, 1100) 10 (1418, 3406) (1413, 3428) (1429, 3331) (1430, 3335)
19 (511, 905) (510, 872) (514, 870) (515, 873) 11 (1329, 3165) (1333, 2969) (1350, 2914) (1351, 2918)
20 (493, 841) (493, 811) (497, 812) (498, 814) 12 (1268, 2767) (1264, 2605) (1282, 2578) (1282, 2582)
21 (481, 785) (477, 757) (482, 760) (482, 762) 13 (1201, 2440) (1205, 2308) (1223, 2303) (1223, 2305)
22 (464, 734) (463, 708) (468, 713) (468, 715) 14 (1164, 2148) (1154, 2063) (1172, 2072) (1172, 2074)
23 (451, 688) (450, 664) (455, 670) (455, 672) 15 (1118, 1934) (1110, 1855) (1127, 1876) (1127, 1878)
24 (442, 646) (439, 624) (444, 632) (444, 633) 16 (1078, 1771) (1073, 1677) (1089, 1706) (1089, 1708)
25 (431, 599) (429, 588) (433, 596) (433, 597) 17 (1045, 1606) (1042, 1521) (1056, 1558) (1056, 1559)
26 (421, 573) (420, 554) (424, 563) (424, 564) 18 (1019, 1438) (1019, 1381) (1029, 1426) (1029, 1427)
27 (413, 541) (412, 522) (415, 533) (415, 533) 19 (1003, 1328) (1003, 1251) (1010, 1304) (1010, 1305)
30 (400, 450) (400, 425) (400, 447) (400, 447) 20 (1000, 1200) (1000, 1099) (1000, 1189) (1000, 1189)
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The coverage probabilities and expected widths of the admissible CI (Admis.), the
likelihood CI (4), the score CI and the approximate score CI (A-Score) are calculated as
a function of n, and reported in Table 3, and they are calculated as a function of M and
reported in Table 4. The approximate CI (3) is omitted for further evaluation, because
its coverage probabilities (see Table 2) are appreciably smaller than the nominal level.
From Tables 3 and 4, we first observe that the admissible CI, being exact, has coverage
probabilities greater than or equal to the nominal level. However, it is too conservative
yielding confidence intervals that are unnecessarily wider. In fact, there are many situa-
tions where the admissible CIs are twice wider than the corresponding score and
approximate score CIs with similar coverage probabilities; see the values at n¼ 11, 13,
17 and ðM,NÞ ¼ ð20, 100Þ in Table 3; n ¼ 9, 11, 13, 15, 28, 30 and ðM,NÞ ¼ ð30, 300Þ:
The likelihood CIs are much wider than the score CIs. Although the likelihood CIs
have satisfactory coverage probabilities, they are too wide. The approximate score CI

Table 2. Coverage probabilities and expected widths of 95% confidence intervals.
n ¼ 20,M ¼ 200 n ¼ 30,M ¼ 200

N Approx. Likelihood A-Score Score Approx. Likelihood A-Score Score

300 .857(170) .952(219) .952(212) .952(214) .927(139) .935(163) .935(160) .936(162)
325 .851(207) .943(273) .943(261) .944(264) .885(169) .952(201) .952(196) .953(198)
350 .926(245) .939(333) .939(313) .940(317) .904(200) .945(243) .967(234) .945(237)
375 .905(285) .936(398) .936(370) .936(373) .910(233) .965(287) .965(275) .966(278)
400 .875(325) .963(470) .963(431) .964(435) .908(266) .964(334) .964(318) .965(321)
425 .922(367) .935(551) .935(497) .936(501) .900(301) .941(384) .964(363) .964(366)
450 .885(410) .964(641) .964(568) .964(572) .885(336) .943(438) .943(411) .944(415)
475 .832(454) .938(743) .938(645) .938(650) .863(373) .945(495) .945(462) .945(466)
500 .877(499) .966(859) .966(729) .967(734) .910(410) .942(556) .967(515) .967(519)
525 .910(546) .942(992) .942(820) .942(826) .882(449) .948(622) .948(571) .949(576)
550 .854(594) .943(1144) .943(920) .944(926) .918(489) .945(693) .947(631) .947(636)
575 .886(642) .939(1316) .971(1028) .972(1034) .885(529) .953(769) .953(694) .953(699)
600 .813(692) .948(1511) .948(1145) .949(1152) .916(571) .951(852) .928(760) .928(765)

n ¼ 60,M ¼ 200 n ¼ 80,M ¼ 200
300 .915(94) .954(101) .954(100) .954(101) .921(78) .947(82) .947(82) .947(82)
325 .948(115) .944(125) .944(123) .945(124) .947(96) .952(102) .952(101) .952(102)
350 .931(137) .937(150) .937(147) .955(149) .928(115) .960(122) .960(120) .946(122)
375 .939(160) .934(176) .950(172) .934(174) .925(134) .957(144) .957(141) .957(143)
400 .937(183) .948(203) .948(199) .965(200) .944(155) .939(166) .953(163) .939(165)
425 .928(208) .949(232) .949(226) .949(228) .925(175) .953(190) .953(186) .953(188)
450 .910(233) .949(262) .949(255) .950(257) .927(197) .953(215) .953(210) .953(212)
475 .927(259) .950(294) .950(285) .950(288) .923(219) .953(241) .953(235) .953(237)
500 .938(285) .949(327) .949(316) .933(319) .945(242) .938(268) .952(261) .938(263)
525 .904(313) .934(361) .951(349) .951(352) .931(266) .955(296) .955(287) .955(290)
550 .907(341) .935(397) .953(382) .953(386) .944(290) .941(325) .941(315) .941(318)
575 .906(370) .938(435) .954(417) .938(421) .922(315) .942(355) .956(344) .942(347)
600 .902(399) .940(474) .940(453) .940(457) .928(341) .943(386) .958(373) .958(377)

n ¼ 30,M ¼ 400 n ¼ 40,M ¼ 400
1000 .906(834) .964(1136) .964(1052) .964(1057) .930(725) .950(902) .931(857) .931(861)
1100 .915(992) .941(1414) .944(1287) .968(1292) .906(862) .956(1104) .956(1039) .957(1043)
1200 .913(1157) .948(1737) .947(1549) .925(1555) .920(1006) .960(1329) .960(1237) .961(1241)
1300 .902(1330) .956(2119) .956(1842) .956(1848) .925(1157) .964(1577) .944(1452) .944(1457)
1400 .883(1509) .933(2573) .961(2170) .961(2177) .923(1314) .947(1855) .947(1686) .948(1692)
1500 .851(1694) .942(3116) .942(2539) .943(2547) .915(1477) .954(2167) .954(1940) .955(1947)
1600 .896(1886) .943(3764) .969(2953) .969(2961) .900(1646) .933(2520) .960(2217) .960(2224)
1700 .855(2083) .952(4530) .952(3416) .952(3425) .876(1820) .943(2921) .943(2519) .943(2526)
1800 .892(2285) .956(5426) .956(3932) .956(3942) .914(1999) .942(3379) .944(2848) .945(2856)
1900 .839(2491) .932(6459) .957(4504) .958(4515) .884(2183) .952(3904) .952(3208) .953(3217)
2000 .873(2701) .932(7633) .965(5133) .965(5146) .841(2372) .954(4504) .931(3600) .931(3610)

220 B.-A. DANG ET AL.



and the score CI perform similar in terms of coverage probabilities. The expected
widths of approximate score CIs are shorter than the score CIs for all the cases consid-
ered in Tables 2–4.
Overall, we see that the admissible CIs, even though they are exact, are much wider

than the other three CIs. The likelihood CIs are also unnecessarily wide. The approxi-
mate score CI and the score CI perform very similar in terms of coverage probabilities,
and the former is in closed-form, simple to compute and slightly narrower than
the latter.

4. Examples

Example 1. This example is taken from Allen et al. (2019) The opioid epidemic has had
a severe impact across the USA, and has fueled outbreaks of HIV and hepatitis C virus
(HCV) infections among people who inject drugs (PWID). The outbreaks were linked
to the injection of prescription opioids and syringe sharing. Allen et al. have conducted
capture-recapture population estimation of PWID in Cabell County, West Virginia in
June and July 2018. The capture phase occurred in June 2018 at the Cabell Huntington
Harm Reduction Program (CHHRP), where the data were collected anonymously

Table 3. Coverage probabilities and (expected widths) of 95% CIs as a function of n.
M ¼ 20,N ¼ 100 M ¼ 20,N ¼ 200

n Admis. Likelihood A-Score Score CI n Admis. Likelihood A-Score Score

4 .975(1258) .975(1101) .975(764) .975(769) 4 .996(1409) .949(1302) .949(1066) .949(1068)
5 .994(1442) .946(1263) .946(819) .946(827) 5 .992(1726) .992(1588) .920(1241) .920(1246)
6 .986(1565) .986(1373) .907(841) .986(851) 6 .985(2018) .985(1849) .981(1386) .985(1392)
7 .971(1632) .971(1435) .971(841) .971(852) 7 .976(2279) .976(2083) .976(1504) .976(1511)
8 .951(1654) .951(1457) .951(822) .951(834) 8 .965(2512) .965(2290) .965(1596) .965(1606)
9 .985(1637) .985(1446) .924(791) .985(804) 9 .951(2716) .951(2470) .951(1667) .951(1678)
10 .974(1588) .974(1408) .974(753) .974(766) 10 .989(2887) .989(2623) .934(1719) .934(1732)
11 .959(1518) .959(1351) .959(709) .959(724) 11 .984(3032) .984(2751) .916(1754) .984(1769)
12 .986(1432) .986(1281) .940(663) .940(679) 12 .978(3149) .978(2855) .978(1776) .978(1792)
14 .959(1238) .968(1117) .968(573) .933(588) 14 .962(3307) .961(2995) .961(1782) .962(1801)
15 .963(1137) .927(1030) .953(530) .927(545) 15 .951(3351) .990(3033) .951(1771) .951(1791)
16 .963(1036) .963(945) .916(489) .963(504) 16 .987(3373) .987(3053) .939(1752) .939(1774)
17 .960(940) .960(863) .960(451) .960(465) 17 .983(3375) .983(3057) .926(1726) .983(1749)
18 .953(849) .953(786) .953(416) .953(430) 18 .978(3360) .978(3046) .978(1696) .978(1718)
19 .978(766) .925(713) .943(384) .943(398) 19 .972(3331) .972(3021) .972(1660) .972(1684)
20 .975(689) .932(646) .929(355) .975(368) 20 .965(3288) .965(2985) .965(1621) .965(1647)

M ¼ 120,N ¼ 800 M ¼ 80,N ¼ 1000
n Admis. Likelihood A-Score Score CI n Admis. Likelihood A-Score Score
10 .951(13460) .990(12234) .951(7241) .951(7255) 10 .960(12697) .960(11737) .960(8257) .960(8269)
15 .984(12780) .984(11730) .940(6364) .940(6382) 12 .988(14262) .988(13160) .935(8834) .935(8848)
20 .979(10350) .979(9643) .979(5108) .979(5128) 15 .973(15942) .973(14692) .973(9295) .973(9314)
25 .960(7774) .960(7378) .960(3992) .960(4011) 17 .959(16657) .959(15348) .959(9394) .959(9415)
30 .967(5675) .929(5495) .967(3137) .967(3154) 20 .982(17210) .982(15864) .931(9315) .931(9341)
35 .951(4156) .951(4103) .951(2520) .951(2536) 25 .957(17030) .988(15745) .957(8787) .957(8818)
40 .962(3122) .928(3133) .962(2085) .962(2100) 30 .972(15936) .972(14808) .972(8006) .972(8039)
45 .950(2440) .950(2476) .950(1777) .950(1791) 35 .982(14363) .982(13429) .946(7144) .946(7179)
50 .962(1994) .932(2033) .962(1556) .962(1570) 40 .955(12609) .965(11878) .965(6302) .965(6338)
60 .963(1496) .938(1516) .963(1270) .963(1282) 45 .956(10874) .956(10331) .956(5530) .956(5565)
70 .966(1245) .945(1244) .943(1095) .966(1106) 53 .968(8401) .916(8102) .935(4487) .968(4520)
80 .952(1094) .952(1078) .950(975) .932(984) 60 .951(6650) .945(6505) .951(3769) .951(3800)
95 .950(940) .934(918) .953(849) .953(857) 68 .964(5120) .964(5090) .941(3139) .941(3168)
100 .964(901) .949(878) .949(815) .949(824) 70 .963(4808) .963(4798) .937(3008) .937(3037)
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through audio computer-assisted self-interview. The recapture phase occurred in com-
munity locations where PWID congregate and commenced two weeks after the comple-
tion of the capture phase. The reported data are as follows. The number of PWID in
the capture phase is 194, in the recapture phase is 201 and in both capture and recap-
ture the sample is 21. The problem is to estimate the total number of PWID in Cabell
County during the study period.
To estimate the total number of PWID in Cabell County during the study period, we

write the data in our model notation as ðX, n,MÞ ¼ ð21, 201, 194Þ: Noting that all CIs
are invariant under the transformation ðX, n,MÞ ! ðX,M, nÞ, we can also take
ðX, n,MÞ ¼ ð21, 194, 201Þ: The Chapman estimate is calculated as

ðM þ 1Þðnþ 1Þ
X þ 1

� 1 ¼ 1789:

We calculated 95% CIs based on different methods and presented in Table 5. We first
observe from Table 5 that the approximate CI is the shortest and is quite different from
other CIs. The approximate score CI is a little narrower than the score CI. The admis-
sible CI is the widest among all five CIs. The left endpoints of the score and admissible
CIs are practically the same, but the right endpoint of the admissible CI is appreciably
larger than that of the score CI.

Example 2. Chartier et al. (2015) have analyzed the data on chronic kidney disease
(CKD) collected from residents of Manitoba as of April 1, 2012, who met the definition
for CKD at any point from April 1, 2004, to March 31, 2012. There are two sources of
recorded data: the administrative data and Diagnostic Services Manitoba (DSM)

Table 4. Coverage probabilities and (expected widths) of 95% CIs as functions of M.
n ¼ 20,N ¼ 400 n ¼ 40,N ¼ 400

M Admis. Likelihood A-Score Score M Admis. Likelihood A-Score Score

30 .988(6759) .988(6204) .946(3667) .946(3693) 60 .967(1470) .936(1469) .967(986) .967(1001)
35 .977(6829) .977(6265) .977(3563) .977(3589) 70 .954(1053) .954(1064) .954(793) .954(805)
40 .961(6694) .961(6145) .961(3393) .961(3418) 80 .962(823) .942(828) .942(669) .942(679)
45 .983(6409) .983(5893) .938(3183) .938(3207) 90 .953(689) .953(686) .950(584) .930(592)
50 .972(6022) .972(5549) .972(2953) .972(2976) 100 .967(603) .944(593) .942(522) .967(529)
55 .957(5570) .988(5150) .957(2718) .957(2740) 110 .961(540) .935(526) .961(475) .961(480)
60 .981(5088) .980(4724) .937(2488) .980(2509) 120 .956(491) .956(476) .956(436) .956(441)
65 .965(4601) .944(4291) .944(2269) .944(2288) 130 .951(451) .951(435) .951(403) .951(408)
70 .968(4126) .968(3869) .938(2065) .938(2083) 140 .963(418) .946(402) .946(375) .946(379)
75 .966(3677) .966(3468) .966(1878) .966(1894) 150 .959(389) .943(373) .943(351) .943(355)
80 .961(3262) .907(3096) .961(1708) .961(1723) 160 .957(363) .939(347) .939(329) .939(333)
85 .952(2885) .937(2757) .952(1556) .952(1570) 170 .955(341) .937(325) .937(310) .937(313)
90 .976(2548) .943(2452) .939(1421) .976(1433) 180 .953(320) .935(305) .935(292) .935(295)
95 .963(2250) .944(2180) .944(1301) .944(1312) 190 .952(302) .934(287) .934(276) .934(278)
100 .966(1989) .941(1941) .941(1195) .941(1206) 200 .952(285) .934(270) .934(261) .934(263)

Table 5. 95% Confidence intervals for the total number of PWID.
Method CI

Approx. Method (1139, 2440)
Likelihood (1311, 2827)
A-Score (1284, 2734)
Score (1295, 2755)
Adm. CI (1293, 2893)
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Laboratory Data. The administrative data covers virtually all Manitoba residents in the
province and the DSM laboratory data covers Winnipeg residents. The total number of
adult Manitoba residents (18 years or older) with CKD found in both administrative
data and laboratory data was 69,905. Of these, 32,371 were identified using administra-
tive data, 24,909 were found in the Diagnostic Services Manitoba (DSM) laboratory
data, and 12,625 people were found in both data.

To estimate the prevalence of CKD during the study period, we note that M ¼
32371þ 12625 ¼ 44996, n ¼ 24909þ 12625 ¼ 37534 and X ¼ 12625: The Chapman
estimate (2) is calculated as 133767. The 95% CIs for the prevalence of CKD in
Manitoba during the study period are estimated using different methods and are given
in Table 6. As the values of M and n are very large, the R code provided by Wang
(2015) to compute the admissible CI does not response for hours and so we are unable
to report the admissible CI for this data. Even for such large data, the CIs based on the
exact method is appreciably wider than the other CIs. The likelihood CI and the score
CI are practically the same, and they are not appreciably different from the approximate
score CI. The approximate CI is narrower than all other CIs, because it is too liberal.

5. Conclusion

In this article, we have used the score statistic that is used to obtain approximate CIs
for the proportion in finite populations to find a CI for population size. The proposed
score CIs are much shorter than the exact admissible CI and they are relatively easier to
compute than the admissible CI. Indeed, the approximate closed-form score CIs are
straightforward to calculate, and they are far better than the existing approximate CI in
terms of coverage probability. It is hoped that this present study will be beneficial to
researchers and practitioners in other areas of science.
Finally, we note that we have addressed the estimation problem based on single cap-

ture-recapture data or data from two sources. The capture-recapture methodology can
be applied to multiple data-sources, by the linkage of individuals across the multiple
lists. Estimation based on such multiple lists is often referred to as Multiple Systems
Estimation (MSE); see Bird and King (2018). We are currently investigating estimation
based on a multiple system.
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Table 6. 95% Confidence intervals for the adult population with CKD.
Method CI

Approx. Method (132155, 135380)
Likelihood (132180, 135404)
A-Score (132174, 135398)
Score (132179, 135403)
Exact CI (131949, 135647)
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