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Testing equality of two normal covariance matrices with
monotone missing data
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ABSTRACT
The problem of testing equality of two multivariate normal covari-
ance matrices is considered. Assuming that the incomplete data are
of monotone pattern, a quantity similar to the Likelihood Ratio Test
Statistic is proposed. A satisfactory approximation to the distribution
of the quantity is derived. Hypothesis testing based on the approxi-
mate distribution is outlined. The merits of the test are investigated
using Monte Carlo simulation. Monte Carlo studies indicate that the
test is very satisfactory even for moderately small samples. The pro-
posed methods are illustrated using an example.
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1. Introduction

The problem of Missing data arises very commonly in many practical situations. It
arises, for example, during data gathering and recording, when the experiment involves
a group of individuals over a period of time like in clinical trials or in a planned experi-
ment which collects variables that are expensive to measure are collected only from a
subset of a sample. The causes for missing data are not our concern, but to ignore the
process that causes missing data, it is assumed that the data are missing at random
(MAR). Lu and Copas (2004) pointed out that inference from the likelihood method
ignoring the missing data mechanism is valid if and only if the missing data mechanism
is MAR. For formal definition and exposition of MAR we refer to Little and Rubin
(1987) or Little (1988).
There are a few missing patterns considered in the literature, but the incomplete data

with monotone pattern (see display 1) not only occurs frequently in practice but also it
is convenient for making inference. Moreover, if multivariate normality is assumed then
the monotone pattern allows the exact calculation of the maximum likelihood estima-
tors (MLEs), the likelihood ratio statistics and relevant distributions. Several authors
have considered the monotone missing pattern under the normality assumption, and
provided asymptotic as well as approximate test procedures about the normal mean vec-
tor. Anderson (1957), one of the earliest papers in this area, gives a simple approach to
derive the MLEs and present them for a special case of monotone pattern and some
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other patterns. Kanda and Fujikoshi (1998) studied some basic properties of the MLEs
based on monotone data. Many authors, like Bhargava (1962), Morrison and Bhoj
(1973) and Naik (1975), developed asymptotic inferential procedures based on the likeli-
hood ratio approach for the multivariate normal distribution. Krishnamoorthy and
Pannala (1998, 1999) provided an accurate, simple approach to construct a confidence
region for a normal mean vector. Hao and Krishnamoorthy (2001) developed an infer-
ential procedure on a normal covariance matrix. Yu, Krishnamoorthy, and Pannala
(2006) considered the problem of testing equality of two normal mean vectors with the
assumption that the two covariance matrices are equal, while Krishnamoorthy and Yu
(2012) considered the same problem of testing equality of two normal mean vectors
without that assumption. Hence, an interesting problem arises: how to tell whether or
not two normal covariance matrices are equal with monotone missing data. This is just
the problem we considered in this article.
To formulate the problem, let x follow a p-variate normal distribution with mean

vector l and covariance matrix R: We write this as x�Npðl;RÞ: Let y�Npðb;DÞ inde-
pendently of x. Suppose that we have a sample of N1 observations available on x, and a
sample of M1 observations available on y. Assume that the samples have the following
monotone pattern:

x11; :::; x1Nk ; :::; x1N2 ; :::; x1N1 y11; :::; y1Mk ; :::; y1M2 ; :::; y1M1

x21; :::; x2Nk ; :::; x2N2 y21; :::; y2Mk ; :::; y2M2

:::::: ::::::
xk1; :::; xkNk yk1; :::; ykMk

(1)

where xij is a pi � 1 vector, j ¼ 1; :::Ni; while yij is a qi � 1 vector, j ¼ 1; :::Mi; i ¼
1; :::; k: In other words, in the x-sample, there are N1 observations available on the first
p1 components, N2 observations available on the first p1 þ p2 components, and so on.
Notice that N1 � N2 � ::: � Nk;M1 � M2 � ::: � Mk; and p1 þ :::þ pk ¼ q1 þ :::þ qk ¼ p:
We want to test

H0 : R ¼ D vs: Ha : R 6¼ D (2)

In the following section, we present first some preliminaries in the notations of
Krishnamoorthy and Pannala (1998) for the data matrices in (1) with k¼ 2 and pi ¼ qi,
i¼ 1, 2. We present the MLEs of the relevant parameters in terms of these notations.
As pointed in Yu, Krishnamoorthy and Pannala (2006), we do not need to consider the
case of unequal monotone pattern, i.e, pi 6¼ qi; i¼ 1, 2, since for any type of unequal
monotone pattern the data can be rearranged to form an equal monotone pattern.
In Section 3, we developed inferential procedure for testing the equality of two nor-

mal covariance matrices with monotone missing pattern in (1) with k¼ 2. We present a
quantity similar to the Likelihood Ratio Test Statistic, and derive an approximation to
its distribution. Then, the procedures for the hypothesis testing is outlined.
The accuracies of the approximation are verified by Monte Carlo simulation in

Section 4. In Section 5, power comparisons between the test based on incomplete data
and the test based on complete data obtained by discarding the extra data are made to
demonstrate the advantage of keeping the extra data. Simulation studies show that the
former is more powerful than the latter in all cases considered. The methods are illus-
trated using an example in Section 6.
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2. Preliminaries

Consider the data matrices in (1) with k¼ 2, pi ¼ qi, i¼ 1, 2, and partition the data
matrices as follows:

x1 ¼ x11; :::; x1N2 ; :::; x1N1ð Þp1�N1

x2 ¼ x11; ::: ; x1N2

x21; ::: ; x2N2

� �
p�N2

(3)

That is, xl is the submatrix of x in (1) formed by the first Nl columns and the first
p1 þ :::þ pl rows, l ¼ 1; 2: Partition the matrix y similarly. That is,

y1 ¼ y11; :::; y1M2 ; :::; y1M1ð Þp1�M1

y2 ¼
y11; ::: ; y1M2

y21; ::: ; y2M2

� �
p�M2

(4)

Let �x l and Sl denote respectively the sample mean vector and the sums of squares
and products matrix based on xl; l¼ 1, 2. Similarly, let yl and Vl denote, respectively,
the sample mean vector and the sums of squares and products matrix based on yl;
l¼ 1, 2. We partition these means and matrices accordingly as follows:

�x1 ¼ �x 1ð Þ
1 ; �x2 ¼ �x 1ð Þ

2

�x 2ð Þ
2

 !
; S1 ¼ S 1;1ð Þ

1 and S2 ¼ S 1;1ð Þ
2 S 1;2ð Þ

2

S 2;1ð Þ
2 S 2;2ð Þ

2

 !

Notice that �xðiÞl is the mean of the ith block of the data matrix xl; i ¼ 1; :::; l and l ¼
1; 2: We also read Sði;jÞl as the (i, j)th component of Sl based on the data
matrix xl; l ¼ 1; 2:
The statistics yl and Vl based on the data matrix yl in (4) are also partitioned like �x l

and Sl. That is, �y
ðiÞ
l is the mean of the ith block of data matrix yl; i ¼ 1; :::; l and l ¼

1; 2; and Vði;jÞ
l is the (i, j)th component of Vl, i; j ¼ 1; :::; l and l¼ 1, 2.

Finally, we partition the parameters as follows:

l ¼ l1
l2

� �
; b ¼ b1

b2

� �
; R ¼ R11 R12

R21 R22

� �
and D ¼ D11 D12

D21 D22

� �

We have the following well known results:

�x1 ¼ �x 1ð Þ
1 �Np1 l1;

1
N1

R11

� �
; y1 ¼ �y 1ð Þ

1 �Np1 b1;
1
M1

D11

� �

S1 ¼ S 1;1ð Þ
1 �Wp1 N1�1;R11ð Þ and V1 ¼ V 1;1ð Þ

1 �Wp1 M1�1;D11ð Þ:

�x2 ¼
�x 1ð Þ
2

�x 2ð Þ
2

0
@

1
A�Np l;

1
N2

R

� �
; �y2 ¼

�y 1ð Þ
2

�y 2ð Þ
2

0
@

1
A�Np b;

1
M2

D

� �

S2 ¼ S 1;1ð Þ
2 S 1;2ð Þ

2

S 2;1ð Þ
2 S 2;2ð Þ

2

0
@

1
A�Wp N2�1;Rð Þ; V2 ¼ V 1;1ð Þ

2 V 1;2ð Þ
2

V 2;1ð Þ
2 V 2;2ð Þ

2

0
@

1
A�Wp M2�1;Dð Þ
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Let

S2:1 ¼ S 2;2ð Þ
2 �S 2;1ð Þ

2 S 1;1ð Þ
2

� ��1

S 1;2ð Þ
2 ;R2:1 ¼ R22�R21R

�1
11 R12

V2:1 ¼ V 2;2ð Þ
2 �V 2;1ð Þ

2 V 1;1ð Þ
2

� ��1

V 1;2ð Þ
2 ;D2:1 ¼ D22�D21D

�1
11 D12

and

fi ¼ Ni�1; gi ¼ Mi�1; i ¼ 1; 2

P ¼ S2 þ V2;P2:1 ¼ P22�P21P
�1
11 P12

The statistics that we use to test H0 : R ¼ D vs: Ha : R 6¼ D is given by

K ¼ �2 1�c1ð ÞlogT1�2 1�c2ð ÞlogT2 ¼ K1 þ K2

where

c1 ¼
2p21 þ 3p1�1
� � 1

f1
þ 1
g1
� 1

f1 þ g1ð Þ
� �

6 p1 þ 1ð Þ

c2 ¼
2p2 þ 3p�1
� � 1

f2
þ 1
g2
� 1

f2 þ g2ð Þ
� �
6 pþ 1ð Þ

T1 ¼ jS 1;1ð Þ
1 jf1=2jV 1;1ð Þ

1 jg1=2 f1 þ g1ð Þp1 f1þg1ð Þ=2��� S 1;1ð Þ
1 þ V 1;1ð Þ

1

� ���� f1þg1ð Þ=2
f p1f1=21 gp1g1=21

T2 ¼ jS2:1jf2=2jV2:1jg2=2 f2 þ g2ð Þp f2þg2ð Þ=2

jP2:1j f2þg2ð Þ=2f pf2=22 gpg2=22

The idea behind K is like this: if there are no additional observations on the first p1
components, that is, there are only N2ðM2Þ observations on the first p1 components of
X(Y), the appropriate test statistic should be (see Seber 1984, p. 449)

�2 1�c2ð ÞlogT
with

T ¼ jS2jf2=2jV2jg2=2 f2 þ g2ð Þp f2þg2ð Þ=2

j S2 þ V2ð Þj f2þg2ð Þ=2f pf2=22 gpg2=22

Since

jS2j ¼ jS 1;1ð Þ
2 j � jS2:1j

jV2j ¼ jV 1;1ð Þ
2 j � jV2:1j

j S2 þ V2ð Þj ¼ j S 1;1ð Þ
1 þ V 1;1ð Þ

1

� �
j � jP2:1j

T can be decomposed as product of two parts

jS 1;1ð Þ
2 jf2=2jV 1;1ð Þ

2 jg2=2 f2 þ g2ð Þp f2þg2ð Þ=2��� S 1;1ð Þ
2 þ V 1;1ð Þ

2

� ���� f2þg2ð Þ=2
f pf2=22 gpg2=22

� T2 ¼ T�
1 � T2; say
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It is easy to see that T�
1 is the appropriate statistic for testing H0 : Rð1;1Þ ¼

Dð1;1Þ vs: Ha : Rð1;1Þ 6¼ Dð1;1Þ if we have only N2ðM2Þ observations on the first p1 compo-
nents. Now we have more observations on the first p1 components, T�

1 should be
replaced by T1:

3. Test for equal covariance matrices

To test H0 : R ¼ D vs: Ha : R 6¼ D; we need to find the null distribution of K: Though
the expression for K suggests that it is difficult to derive the exact null distribution of
K; we could find out an approximate distribution for it.
From the well known properties of Wishart matrices we have the following results:
Let

W ¼ W11 W12

W21 W22

� �
�Wp n;Rð Þ; n>p>1

where W11 is of order p1 � p1 and W22 is of order p2 � p2: Let R partitioned the same
way and R2:1 ¼ R22�R21R�1

11 R12; then

W2:1 ¼ W22�W21W
�1
11 W12�Wp2 n�p1;R2:1ð Þ

and W2:1 is independnt of W11, W12

Proof See Seber (1984, Lemma 2.10, p. 50).

Firstly, it can be deduced from the above results that Sð1;1Þ2 is independent of

S2:1;V
ð1;1Þ
2 is independent of V2:1: Hence, ðSð1;1Þ2 þ Vð1;1Þ

2 Þ is independent of S2:1 and V2:1:

It is obvious that ðSð1;1Þ1 þ Vð1;1Þ
1 Þ is also independent of S2:1 and V2:1: Secondly, under

H0 : R ¼ D;P ¼ S2 þ V2�Wpðf2 þ g2;RÞ: Thus ðSð1;1Þ2 þ Vð1;1Þ
2 Þ ¼ Pð1;1Þ is independent

of P2:1: Then again, it is obvious that ðSð1;1Þ1 þ Vð1;1Þ
1 Þ is also independent of P2:1: So, we

can conclude that ðSð1;1Þ1 þ Vð1;1Þ
1 Þ are independent of S2:1;V2:1; and P2:1: Hence, under

the null hypothesis, T�
1 and T1 are independent of T2.

Thirdly, we have approximately (See G.A.E Seber ([13], p. 449)

�2 1�c2ð ÞlogT�v2 �ð Þ
�2 1�c1ð ÞlogT1�v2 �1ð Þ

with

c1 ¼
2p21 þ 3p1�1
� � 1

f1
þ 1
g1
� 1

f1 þ g1ð Þ
� �

6 p1 þ 1ð Þ

c2 ¼
2p2 þ 3p�1
� � 1

f2
þ 1
g2
� 1

f2 þ g2ð Þ
� �
6 pþ 1ð Þ

� ¼ 1
2
p pþ 1ð Þ; �1 ¼ 1

2
p1 p1 þ 1ð Þ
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Since �2ð1�c2ÞlogT ¼ ð�2ð1�c2ÞlogT0
1Þ þ ð�2ð1�c2ÞlogT2Þ; and ð�2ð1�c2ÞlogT0

1Þ is
independent of ð�2ð1�c2ÞlogT2Þ; we have

�2 1�c2ð ÞlogT2�v2 ���1ð Þ
Hence,

K ¼ �2 1�c1ð ÞlogT1�2 1�c2ð ÞlogT2�v2 �1 þ ���1ð Þ ¼ v2 �ð Þ
Thus, for a given level a and an observed value K0 of K, the null hypothesis that R ¼

D will be rejected whenever the p-value Pðv2ð�Þ>K0Þ<a:

4. Accuracy of the approximations

We have used two approximations, one for approximating the distribution of T1 and
another for the distribution of T2. So, to understand the accuracy of the approximation,
we estimated the sizes of the test for hypotheses in (1) when nominal level is 0.05 or
0.01 using Monte Carlo simulation. Each simulation result is based on 100,000 runs.
To select the parameter configurations for Monte Carlo simulation, we note that the

test is affine invariant, and so without loss of generality, we can assume that l ¼ b ¼ 0
and R ¼ D ¼ I to estimate the sizes.
The estimated sizes are presented in Table 1 for two cases and a few selected sample

sizes. One case is p1 ¼ 2 and p2 ¼ 1; and another case is p1 ¼ p2 ¼ 2: The sample sizes
are chosen so that the number of data missing is relatively small in some cases, and
large in other cases. It is clear from Table 1 that the estimated sizes are very close to
nominal level for all the cases considered. But for very small samples, the sizes are not
that accurate. In the worst situations, the estimated sizes are around 0.072 while the
nominal level is 0.05.

5. Power study

To understand the nature of the powers of the test and the advantage of keeping add-
itional data, we estimate the powers of the test based on incomplete data and powers
based on” partially complete data” (the data obtained after deleting the last N1�N2 and
M1�M2 observations on the first p1 components) using simulation. The powers of the
test based on partially complete data are given in parentheses. The powers are computed
when H0 : R ¼ D and presented in Table 2.

Table 1. Critical values v21�að�Þ and Monte Carlo estimates of the size of the test with nominal level
a (in parenthesis).

ðp1 ¼ 2; p2 ¼ 1Þ ðp1 ¼ 2; p2 ¼ 2Þ
ðN1;N2;M1;M2Þ a ¼ 0:05 a ¼ 0:01 a ¼ 0:05 a ¼ 0:01

(18,13,12,8) 12.592 (0.0622) 16.811 (0.0134) 18.307 (0.0720) 23.209 (0.0164)
(18,13,20,15) 12.592 (0.0567) 16.811 (0.0120) 18.307 (0.0591) 23.209 (0.0128)
(25,17,25,18) 12.592 (0.0559) 16.811 (0.0111) 18.307 (0.0569) 23.209 (0.0122)
(30,20,35,20) 12.592 (0.0550) 16.811 (0.01205) 18.307 (0.0568) 23.209 (0.0164)
(40,25,30,10) 12.592 (0.0587) 16.811 (0.0124) 18.307 (0.0648) 23.209 (0.0149)
(40,15,30,10) 12.592 (0.0572) 16.811 (0.0126) 18.307 (0.0650) 23.209 (0.0144)
(40,30,40,32) 12.592 (0.0521) 16.811 (0.0102) 18.307 (0.0560) 23.209 (0.0113)
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We observe from Table 2 that the powers of the tests are increasing as sample sizes
increase; they are also increasing as D moves away from R: Thus, our proposed test
possesses some natural power properties. Moreover, the powers of the test based on
incomplete data are always larger than the corresponding powers based on partially
complete data. This situation illustrates the advantage of keeping the extra data.

6. An illustrative example

We shall now illustrate the methods using the ‘Fishers Iris Data’ which represent meas-
urements of the sepal length and width, and petal length and width in centimeters of
fifty plants for each of three types of iris: Iris setosa, Iris versicolor and Iris virginica.
The data sets are posted in many websites, and we downloaded them from http://jav-
eeh.net/sasintro/intro151.html. For illustrative purposes, we use the data on virginica (x)
and setosa (y).
Firstly, we created monotone patterns by discarding the last 18 measurements on x3

(petal length of virginica) and x4 (petal width of virginica), the last 20 measurements on
y3 (petal length of setosa) and y4 (petal width of setosa). That is, we have p1 ¼ 2; p2 ¼
2; ðN1;N2Þ ¼ ð50; 32Þ; andðM1;M2Þ ¼ ð50; 30Þ: Let R be covariance matrix of virginica,
and D be covariance matrix of setosa. We want to test

H0 : R ¼ D vs: Ha : R 6¼ D

After careful calculation, we get logT1 ¼ �71:602; logT2 ¼ �25:582; and K ¼
187:532: The critical value v20:95ð�Þ ¼ 23:209: Since K is much larger than the critical
value, we have sufficient evidence to reject H0 at 95% confidence level.
Secondly, we use only the partially complete data, that is, we delete the last 18 obser-

vations of virginica and 20 observations of setosa. Then, we get the �2ð1�c2ÞlogT ¼

Table 2. Powers of the test based on incomplete data and on partially complete data (in
parentheses):H0 : R ¼ D:

ðp1 ¼ 2; p2 ¼ 1Þ (p1 ¼ 2; p2 ¼ 2Þ
ðN1;N2;M1;M2Þ a¼ 0.05 a¼ 0.01 a¼ 0.05 a ¼ 0:01

Ha : R ¼ Ip;D ¼ diagð0:8; 0:6; 0:5Þ Ha : R ¼ Ip;D ¼ diagð0:5; 0:4; 0:2Þ
(12,7,13,8) 0.110 (0.0765) 0.0284 (0.0169) 0.296 (0.221) 0.104 (0.0631)
(15,10,16,11) 0.129 (0.102) 0.0342 (0.0238) 0.468 (0.422) 0.213 (0.175)
(20,10,20,12) 0.146 (0.105) 0.0439 (0.0267) 0.549 (0.458) 0.284 (0.205)
(25,15,23,13) 0.179 (0.134) 0.0553 (0.0358) 0.685 (0.619) 0.413 (0.337)
(30,20,28,19) 0.235 (0.198) 0.0833 (0.0639) 0.866 (0.854) 0.668 (0.643)
(40,30,38,29) 0.355 (0.333) 0.153 (0.136) 0.981 (0.980) 0.921 (0.920)

Ha : R ¼ Ip;D ¼
2 0:4 0
0:4 1:5 0
0 0 1:3

0
@

1
A Ha : R ¼ Ip;D ¼

2 0:4 �0:3
0:4 1:5 0
�0:3 0 1:3

0
@

1
A

(12,7,13,8) 0.160 (0.0745) 0.0475 (0.0168) 0.166 0.0780) 0.0492 (0.0180)
(15,10,16,11) 0.193 (0.0981) 0.0595 (0.0228) 0.196 (0.101) 0.0631 (0.0247)
(20,10,20,12) 0.264 (0.100) 0.0961 (0.0248) 0.268 (0.106) 0.0995 (0.0258)
(25,15,23,13) 0.326 (0.134) 0.134 (0.0369) 0.335 (0.144) 0.141 (0.0400)
(30,20,28,19) 0.393 (0.196) 0.181 (0.0636) 0.409 (0.206) 0.189 (0.0685)
(40,30,38,29) 0.527 (0.322) 0.285 (0.131) 0.547 (0.345) 0.300 (0.143)
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69:365: Since the critical value is also v20:95ð�Þ ¼ 23:209; we have the same conclusion:
to reject H0 at 95% confidence level.
Also, as expected, the value of the test statistics based on incomplete data (187.532) is

much larger than the one based on partially complete data (69.365). This illustrates the
advantage of keeping the additional data too.
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