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ABSTRACT
The problems of comparing several exponential distributions based on type II censored samples are considered. Likelihood
ratio tests (LRTs) for comparing several location parameters, comparing several scale parameters and for homogeneity of dis-
tributions are derived. The LRTs for all three problems are exact as their null distributions do not depend on any unknown
parameters. Algorithms are provided to estimate the exact p-values or the percentiles of null distributions. Approximations to
the null distributions that are accurate even for small sample sizes are provided. For testing the equality of scale parameters, the
proposed LRT is compared with the tests based on union-intersection method and an iterative procedure. Comparison studies
indicate that the LRT is more powerful than the existing ones for most parameter values. The methods are illustrated using an
example involving elapsed times from randomization to diagnosis of a serious infection of chronic granulomatous disease that
were collected from three different hospitals.
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1. INTRODUCTION

The problem of testing equality of several distributions within a family of distributions arises in many practical situations. If independent
samples are available from different sources or collected from different life testing experiments, a homogeneity test may be used to check
if the samples can be modeled by a single distribution. For example, in a placebo controlled randomized clinical trial of gamma interferon
in chronic granulomatous disease (CGD), the data were collected on elapsed time (in days) from randomization to diagnosis of a serious
infection [1]. The samples were taken from three hospitals, and the Kolmogorov–Smirnov test indicates that all three samples satisfy the
model assumption of two-parameter exponential distribution. If a homogeneity test indicates that all three samples can be modeled by
a single exponential distribution, then better inferences can be made on the basis of the pooled sample. For two-parameter exponential
distributions, the problem of testing the equality of parameters of several distributions was considered by [2]. These authors have proposed
an exact iterated test procedures for testing the equality of the location parameters under some conditions and for testing the equality of the
scale parameters. Abebe [3] have addressed the problem of comparing several location parameters with more than one control. Li et al. [4]
have proposed parametric bootstrap simultaneous confidence intervals for pairs of means. Recently, Krishna and Goel [5] have proposed
some Bayesian solutions for estimating location parameters when the data are randomly censored.

To describe the problems that will be addressed in this paper and other related problems, we first note that the two-parameter exponential
distribution has the probability density function (pdf) given by

f (x|a, b) = 1
b
exp

(
−x − a

b

)
, x > a > 0, b > 0, (1)

where a is the location parameter (also called threshold parameter) and b is the scale parameter. If it is assumed that a = 0, then the
resulting distribution is referred to as the one-parameter exponential distributionwithmean b. Let us denote the two-parameter exponential
distribution by exp(a, b).
In life testing, the experiments are often discontinued as soon as a fixed number of items fail, yielding a type II censored sample. Let
Xi1, … ,Xiri be a type II censored sample from a life test of ni items whose lifetimes follow an exp (ai, bi) distribution, i = 1, … , k. The
problems that we consider here are (i) testing the equality of the scale parameters bi’s, (ii) testing the equality of the location parameters
ai’s and (iii) the homogeneity test, that is, testing (a1, b1) = ... = (ak, bk). The LRTs that are proposed in the sequel are applicable to the
case where ri = ni for some or all i = 1, … , k. In the following section we provide some preliminary results that are needed to derive the
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likelihood ratio tests (LRTs) for all three problems. In Section 3, we address the problem of testing the equality of scale parameters, derive
the LRT and describe another two tests available in the literature. The problem of testing equality of the location parameters is addressed
in Section 4, and the homogeneity test is described in Section 5. We also show that the null distributions of all three LRT statistics do not
depend on any unknown parameters, and the percentiles or p-values of the LRTs can be estimated using Monte Carlo simulation. So the
proposed LRTs are exact except for the simulation errors. For all three problems, we also propose convenient closed-form approximations
to the null distributions, and they are very satisfactory even for small samples. Power studies and comparison of tests are given in Section 6.
The proposed LRTs and other methods are illustrated using an example with real data in Section 7, and some concluding remarks are given
in Section 8.

2. PRELIMINARIES

Let X(1) < ... < X(r) be a type II censored sample obtained from a life test on n items whose lifetime have an exp (a, b) distribution, where a
is the threshold parameter and b is the scale parameter. Let Xr denote the mean of the uncensored lifetimes in the sample.

The MLEs (see [6]) based on the censored sample are given by

â = X(1) and b̂ = [r
(
Xr − X(1)

)
+ (n − r)

(
X(r) − X(1)

)
]/ r. (2)

Furthermore, the MLEs are independent with

â ∼ b
2n𝜒

2
2 + a and b̂ ∼ b

2r𝜒
2
2r−2. (3)

For the uncensored case, that is, when r = n, the MLEs are given by

â = X(1) and b̂ = Xn − X(1), (4)

and

â ∼ b
2n𝜒

2
2 + a and b̂ ∼ b

2n𝜒
2
2n−2.

Log-likelihood function

Let a = (a1, … , ak) and b = (b1, … , bk). The log-likelihood function based on the k independent censored samples can be expressed as

l(a, b) =
k

∑
i=1

{−ri ln bi −
ri
∑
j=1

Xi(j) − ai
bi

− (ni − ri)
Xi(ri) − ai

bi
} + C,

where C is a constant term. Following (2), the MLEs of ai and bi can be expressed as

âi = Xi(1) and b̂i = [ri
(
Xri − Xi(1)

)
+ (ni − ri)

(
Xi(ri) − Xi(1)

)
]/ ri, i = 1, … , k, (5)

and l(a, b) at (a, b) = (â, b̂) can be simplified as

l(â, b̂) = −
k

∑
i=1

ri ln(b̂i) − R + C, (6)

where R = ∑k
i=1 ri.

3. TESTS FOR THE EQUALITY OF SCALE PARAMETERS

To test the equality of scale parameters, consider the hypotheses

H0 ∶ b1 = ... = bk vs. Ha ∶ bi ≠ bj for some i ≠ j. (7)

In the following, we first describe the LRT followed by an iterative test by [2], and a test based on union-intersection principle proposed
in [7].Pdf_Folio:249
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3.1. The Likelihood Ratio Test

Let b denote the common unknown parameter under H0 in (7). Then the log-likelihood function under this null hypothesis can be
expressed as

l(a, b) =
k

∑
i=1

(
−ri ln b −

ri
∑
j=1

Xi(j) − ai
b

− (ni − ri)
Xi(ri) − ai

b

)
+ C,

and is maximized at

âic = Xi(1) and b̂c =
1
R

k

∑
i=1

{ri
(
Xri − Xi(1)

)
+ (ni − ri)

(
Xi(ri) − Xi(1)

)
} =

∑k
i=1 rib̂i
R , (8)

where R = ∑k
i=1 ri and b̂i’s are given in (5). Thus, letting Λb to denote the −2 ln(LRT statistic), it can be shown that

Λb = −2
k

∑
i=1

ri ln
⎡
⎢
⎢
⎣

b̂i
∑k

i=1 ri b̂i
R

⎤
⎥
⎥
⎦
, (9)

where b̂i is given in (5). We note that the distribution of Λb under H0 ∶ b1 = ... = bk does not depend on any parameter, and

Λb ∼ −2
k

∑
i=1

ri ln
⎡
⎢
⎢
⎣

Wi

∑k
i=1 riWi

R

⎤
⎥
⎥
⎦
, (10)

where Wi’s are independent 𝜒2
2ri−2/(2ri) random variables. Notice also that the null distribution does not depend on the sample sizes and

they depend only on (r1, … , rk). For a given (r1, … , rk), the exact percentiles of Λb can be estimated using Monte Carlo simulation as shown
in the following algorithm.

Algorithm 1

For a given (r1, … , rk) and (b̂1, … , b̂k),

1. Compute Λb = −2∑k
i=1 ri ln[

b̂i
∑k

i=1 ri b̂i
R

],

2. GenerateWi = .5𝜒2
2ri−2/ri, i = 1, … , k,

3. Compute Λ∗b = −2∑k
i=1 ri ln[

Wi

∑k
i=1 riWi

R

],

4. Repeat steps 2 and 3, for a large number of times, say, 100,000,

5. The proportion of Λ∗b that are greater than Λb is a Monte Carlo estimate of the p-value,

6. The 100 (1 − 𝛼) percentile of these 100,000 Λ∗b’s is a Monte Carlo estimate of the 100 (1 − 𝛼) percentile of Λb.

The test statistic Λb is very similar to the one for testing b1 = ... = bk of several one-parameter exponential distributions, except that b̂i in
our present problem is distributed as 𝜒2

2ri−2/(2ri) whereas in the one-parameter case it is distributed like 𝜒2
2ri/(2ri). This fact suggest that,

for large samples, the null distribution ofΛb can be approximated by 𝜒2
k−1 distribution. For large samples, the null hypothesis of equal scale

parameters is rejected if Λb > 𝜒2
k−1;1−𝛼. A better approximation to the null distribution of Λb can be obtained by the moment matching

method. Specifically, we determine the value of Qb so that E(Λb) = E(Qb𝜒2
k−1) so that

Λb
Qb

∼ 𝜒2
k−1, approximately.

Pdf_Folio:250
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Using the result that E(ln𝜒2
m) = 𝜓(m/2) + ln(2), where 𝜓 is the digamma function, and the expression (10), we see that

E (Λb) = 2E [
k

∑
i=1

ri ln

(
∑k

i=1 riWi

R

)
−

k

∑
i=1

ri ln(Wi)]

= 2 [
k

∑
i=1

ri [𝜓(R − k) − 𝜓(ri − 1)] +
k

∑
i=1

ri ln(ri/R)] . (11)

Thus, Qb = E (Λb) /(k − 1), and the null hypothesis of equal shape parameters is rejected if Λb > Qb𝜒2
k−1;1−𝛼.

To judge the accuracy of the above approximation, we estimated the upper percentiles of Λb in (10) using simulation with 1,000,000 runs
and the percentiles ofQb𝜒2

k−1 for k = 3 and 5, and some small to large values of (r1, … , rk). Recall that the distribution ofΛb does not depend
on sample sizes, and so percentiles were estimated only for some values of (r1, … , rk). These percentiles are reported in Table 1. Comparison
of Monte Carlo estimates of the percentiles and those of Qb𝜒2

k−1 shows that the latter approximate percentiles are very close to those based
on simulation even when (r1, … , r5) = (3, 3, 3, 2, 2). Thus, the improved approximation can be safely used for any sample sizes with two or
more uncensored data. The usual 𝜒2

k−1 approximation may be used if ri ≥ 100 for all i; see the last row of Table 1.

3.2. An Iterative Test

We shall now describe a test for equality of scale parameters proposed by [2], which is based on an iterative procedure. Consider a sequence
of nested hypotheses

H2 ∶ b1 = b2, H3 ∶ b1 = b2 = b3, ...,Hk ∶ b1 = ... = bk.

A test for Hi is made if and only if Hi−1 is accepted for i = 3, … , k. The null hypothesis (7) of equality scale parameters is accepted if and
only if H2, … ,Hk are accepted.

The test statistic for Hi ∶ b1 = ... = bi is given by

Fi =
rib̂i/(2ri − 2)

∑i−1
j rjb̂j/S(i−1)

, (12)

where S(i−1) = ∑i−1
j=1(2rj − 2), i = 2, … , k. For a given level 𝛼, choose 0 < 𝜂i < 𝛼 so that 𝛼 = 1 −∏k

i=2(1 − 𝜂i). The iterative test rejects
H0 ∶ b1 = ... = bk if

Fi < F2ri−2,S(i−1);𝜂i/2 or Fi > F2ri−2,S(i−1);1−𝜂i/2 for any i ∈ {2, … , k},

where Fm,n;q denotes the 100 q percentile of an F distribution with the numerator dfm and the denominator df n. If we choose 𝜂2 = ... = 𝜂k,
then 𝜂i = 1− (1−𝛼)1/(k−1), i = 2, … , k. Notice that the individual test forHi has size 𝜂i, but the overall test forH0 ∶ b1 = ... = bk has size 𝛼.

Table 1 Exact percentiles ofΛb based on simulation and the percentiles of Qb𝜒2
k−1.

k= 3 Percentiles k= 5 Percentiles

(r1, r2, r3) 99 95 90 (r1,… ,r5) 99 95 90

(2, 2, 2) 21.53 (22.18) 14.23 (14.43) 11.03 (11.09) (2, …, 2) 30.73 (31.46) 22.21 (22.48) 18.29 (18.43)
(3, 3, 3) 15.12 (15.31) 9.92 (9.96) 7.63 (7.66) (3, 3, 3, 2, 2) 26.69 (26.71) 19.07 (19.08) 15.64 (15.65)
(4, 3, 4) 14.08 (14.10) 9.17 (9.17) 7.05 (7.05) (4, 3, 4, 3, 4) 20.30 (20.30) 14.51 (14.51) 11.91 (11.90)
(3, 2, 6) 18.90 (19.13) 12.40 (12.45) 9.55 (9.57) (3, 2, 4, 3, 2) 26.63 (26.64) 19.06 (19.04) 15.65 (15.61)
(5, 4, 3) 13.97 (13.97) 9.08 (9.09) 6.99 (6.99) (5, 4, 3, 6, 2) 23.45 (23.07) 16.61 (16.48) 13.57 (13.52)
(8, 7, 10) 10.90 (10.90) 7.10 (7.09) 5.45 (5.45) (8, 7, 6, 8, 20) 16.06 (16.08) 11.48 (11.49) 9.41 (9.42)
(10, 10, 10) 10.46 (10.49) 6.82 (6.82) 5.24 (5.24) (4, 3, 2, 5, 6) 23.41 (23.07) 16.62 (16.48) 13.59 (13.52)
(20, 20, 20) 9.82 (9.81) 6.37 (6.38) 4.90 (4.90) (20, …, 20) 14.14 (14.12) 10.09 (10.09) 8.27 (8.28)
(30, 30, 30) 9.62 (9.60) 6.25 (6.25) 4.80 (4.80) (30, …, 30) 13.85 (13.83) 9.86 (9.88) 8.10 (8.10)
(50, 50, 50) 9.49 (9.44) 6.14 (6.14) 4.72 (4.72) (50, …, 50) 13.62 (13.60) 9.74 (9.72) 7.97 (7.97)
(100, 100, 100) 9.33 (9.32) 6.07 (6.07) 4.66 (4.66) (100, …, 100) 13.43 (13.44) 9.61 (9.60) 7.88 (7.87)
𝜒2

k−1 percentiles 9.21 5.99 4.61 𝜒2
k−1 percentiles 13.28 9.49 7.78

Note: Percentiles of Qb𝜒2
k−1 are given in parentheses.
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3.3. Union-Intersection Test

Shah and Rathod [7] have proposed the following test based on the union-intersection principle. The test rejects the null hypothesis of
equality of scale parameters if

U = max {b̂1, … , b̂k}
min {b̂1, … , b̂k}

> u1−𝛼, (13)

where b̂i is the MLE defined in (5) and u1−𝛼 is the 100 (1 − 𝛼) percentile of U.
Shah and Rathod have derived analytical expressions to the distribution function of U for k ≤ 3 and r1 = r2 = r3. Even for these special
cases, calculation of the critical value u1−𝛼 is numerically involved. As the null distribution of the test statistic U does not depend on any
parameters, the critical value u1−𝛼 can be easily estimated using Monte Carlo simulation for any k ≥ 2 and (r1, … , rk).

4. THE LRT FOR LOCATION PARAMETERS

Consider testing

H0 ∶ a1 = ... = ak vs. Ha ∶ ai ≠ aj for some i ≠ j. (14)

Let a denote the common unknown parameter under the H0. Then the log-likelihood function under H0 in (14) can be expressed as

l(a, b) =
k

∑
i=1

(
−ri ln bi −

ri
∑
j=1

Xi(j) − a
bi

− (ni − ri)
Xi(ri) − a

bi

)
+ C,

where C is a constant term. The log-likelihood function is maximized at

â = X(1) = min {X1(1), ...,Xk(1)} (15)

and

b̂ic =
1
ri
[

ri
∑
j=1

(Xi(j) − X(1)) + (ni − ri)(Xi(ri) − X(1))]

= 1
ri
[rib̂i + ni(Xi(1) − X(1))] , i = 1, … , k, (16)

where b̂i’s are as defined in (5). Letting b̂c = (b̂1c, … , b̂kc), we have

l(â, b̂c) = −
k

∑
i=1

ri ln(b̂ic) − R + C. (17)

Let Λa denote −2 ln(LRT statistic). Then, using l(â, b̂) defined in (6), it can be easily verified that

Λa = −2 {l(â, b̂c) − l(â, b̂)}

= −2
k

∑
i=1

ri ln [
b̂i

b̂i + ni(Xi(1) − X(1))/ri
] . (18)

AsΛa is invariant under the transformation Xij → ciXij + d, where ci’s and d are positive constants, its null distribution does not depend on
any parameters. Specifically, the null distribution ofΛa can be evaluated empirically assuming that a1 = ... = ak = 0 and b1 = ... = bk = 1.
Under this assumption, using the distributional results in (3), we see that

Λa ∼ −2
k

∑
i=1

ri ln [
Wi(

Wi + ni(Ui − U(1))
)] , (19)

whereWi = rib̂i ∼ 𝜒2
2ri−2/2, Ui = 𝜒2

2/(2ni) and U(1) = min {U1, … ,Uk} andWi’s and Ui’s are mutually independent. For an observed value
of the LRT statistic Λa, the p-value and the percentiles of Λa can be estimated using the following algorithm.Pdf_Folio:252
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Algorithm 2
1. For a given set of k samples, compute the LRT statistic Λa in (18),

2. Generate U∗
i = 𝜒2

2/ni andW∗
i = 𝜒2

2ri−2, i = 1, … , k,
3. Set U∗

(1) = min{U∗
1 , … ,U∗

k },

4. Compute Λ∗a = −2∑k
i=1 ri ln

(
W∗

i

[W∗
i +ni(U∗

i −U∗
(1)
)]

)
,

5. Repeat steps 2 –4 for a large number of times, say, 100,000,

6. Proportion of Λ∗a’s that are greater than Λa is an estimate of the p-value,

7. The 100 (1 − 𝛼) percentile of the 100,000 Λ∗a’s is a Monte Carlo estimate of the 100(1 − 𝛼) percentile of Λa.

In Table 2, we present the estimated percentiles of Λa (based on 1,000,000 runs) for k = 3 and 5, and for some values for (r1, … , rk) ranging
from very small to large. Notice that these are exact percentiles, except for the simulation errors.

To find a closed-form approximate distribution for Λa, we note that Wilks’ theorem is not applicable to find an asymptotic 𝜒2 null distri-
bution, because the sample space of a two-parameter exponential distribution depends on an unknown parameter. However, our extensive
simulation studies indicated that, for large samples, the null distribution ofΛa is close to 𝜒2

2k−2 distribution; see the last row in Table 2. This
𝜒2
2k−2 approximation is satisfactory only when all ri’s are 100 or more. This approximation can be improved along the lines of the preceding

section. Specifically, we determine Qa so that E(Λa) = QaE
(
𝜒2
2k−2

)
, and then approximate the distribution of Λa by Qa𝜒2

2k−2. Toward this,
we note that exact calculation of E(Λa) seems to be difficult, and so we resort to use an approximation of E(Λa). It is shown in Appendix that

E(Λa) ≈ −2
k

∑
i=1

ri
⎡
⎢
⎢
⎣
𝜓(ri − 1) − ln(𝜃i) +

1
2𝜃2i

⎛⎜⎜⎜⎝ri +
n2i(

∑k
j=1 nj

)2

⎞⎟⎟⎟⎠
⎤
⎥
⎥
⎦
,

where 𝜃i = ri−ni/∑k
j=1 nj. Finally, lettingQa = E(Λa)/(2k−2), we propose the distribution ofQa𝜒2

2k−2 as an approximate null distribution
of Λa.

Monte Carlo estimates (based on one million runs) of the percentiles of Λa based on Algorithm 2 and those based on the above approxi-
mation are given in Table 2 for k = 3 and 5 and for some sample sizes and (r1, … , rk). Comparison of the percentiles based on Monte Carlo

Table 2 Monte Carlo estimates of the percentiles ofΛa based on (19) and those of Qa𝜒2
2k−2.

(n1, n2, n3) = (9, 10, 8) (n1,… , n5)= (20,…, 20)

(r1, r2, r3) 99 95 90 (r1,…, r5) 99 95 90

(3, 2, 3) 22.43 (22.74) 15.89 (16.25) 12.96 (13.33) (3, 4, 3, 2, 4) 31.25 (31.93) 23.93 (24.64) 20.58 (21.23)
(3, 3, 4) 19.21 (19.38) 13.69 (13.85) 11.21 (11.36) (5, 4, 6, 5, 8) 24.87 (25.19) 19.18 (19.44) 16.55 (16.75)
(4, 5, 4) 17.38 (17.44) 12.40 (12.46) 10.18 (10.22) (6, 3, 7, 7, 10) 24.93 (25.07) 19.16 (19.35) 16.46 (16.67)
(5, 5, 5) 16.68 (16.26) 11.88 (11.88) 9.75 (9.74) (9, 8, 7, 10, 15) 22.57 (22.74) 17.41 (17.55) 14.99 (15.12)
(6, 7, 8) 15.59 (15.51) 11.12 (11.08) 9.11 (9.09) (10, …, 10) 22.32 (22.47) 17.25 (17.34) 14.85 (14.94)
(9, 10, 8) 14.99 (14.94) 10.69 (10.68) 8.77 (8.75) (5, 10, 15, 10, 15) 22.60 (22.73) 17.43 (17.55) 15.02 (15.12)

(n1, n2, n3) = (25, 30, 22) (n1, … , n5) = (60, 50, 50, 70, 60)

(10, 10, 10) 14.77 (14.72) 10.53 (10.52) 8.64 (8.63) (20, …, 20) 21.19 (21.21) 16.35 (16.37) 14.08 (14.11)
(15, 10, 20) 14.33 (14.26) 10.23 (10.19) 8.39 (8.35) (4, 5, 6, 7, 7) 24.60 (24.93) 18.98 (19.24) 16.34 (16.58)
(20, 20, 20) 14.00 (13.95) 9.98 (9.97) 8.17 (8.18) (30, …, 30) 20.80 (20.82) 16.06 (16.07) 13.84 (13.85)

(n1, n2, n3) = (300, 200, 100) (n1, … , n5) = (200, … , 200)

(30, 40, 50) 13.61 (13.58) 9.73 (9.71) 7.97 (7.96) (50, 40, 50, 40, 50) 20.61 (20.57) 15.87 (15.88) 13.68 (13.68)
(50, 50, 50) 13.56 (13.53) 9.68 (9.67) 7.93 (7.93) (50, …, 50) 20.45 (20.52) 15.82 (15.84) 13.64 (13.65)
(100, 100, 100) 13.39 (13.40) 9.59 (9.58) 7.86 (7.85) (100, …, 100) 20.25 (20.30) 15.68 (15.67) 13.50 (13.50)
(120, 150, 100) 13.37 (13.38) 9.54 (9.56) 7.81 (7.84) (150, 130, 140, 130, 150) 20.22 (20.24) 15.61 (15.63) 13.46 (13.46)
𝜒2

2k−2 percentiles 13.28 9.49 7.78 𝜒2
2k−2 percentiles 20.09 15.51 13.36

Note: The numbers in parentheses are the approximate percentiles of Λa based on Qa𝜒2
2k−2.Pdf_Folio:253
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method and tho approximate ones are very close even for small sample such as (r1, r2, r3) = (3, 2, 3) and (r1, … , r5) = (3, 4, 3, 2, 4). On an
overall basis, we see that the approximate percentiles are very satisfactory and are safe to use in practical applications.

5. HOMOGENEITY TEST

For the homogeneity test, the hypotheses of interest are

H0 ∶ (a1, b1) = ... = (ak, bk) vs. Ha ∶ (ai, bi) ≠ (aj, bj) for some i ≠ j. (20)

Let (a, b) denote the common unknown parameter under H0 in (20). Then the log-likelihood function under the null hypothesis (20) can
be expressed as

l(a, b) =
k

∑
i=1

(
−ri ln b −

ri
∑
j=1

Xi(j) − a
b

− (ni − ri)
Xi(ri) − a

b

)
+ C,

where C is a constant term. The log-likelihood function is maximized at

â = X(1) = min {X1(1), ...,Xk(1)} (21)

and

b̂ = 1
R

k

∑
i=1

[
ri
∑
j=1

(Xi(j) − X(1)) + (ni − ri)(Xi(ri) − X(1))]

= 1
R

k

∑
i=1

[rib̂i + ni(Xi(1) − X(1))] , (22)

where b̂i is defined in (5) and R = ∑k
i=1 ri. Let Λh denote the −2 ln(LRT statistic). It can be easily verified that

Λh = −2
k

∑
i=1

ri ln
(
b̂i
b̂

)

= −2
k

∑
i=1

ri ln [
b̂i

1
R
∑k

i=1 rib̂i +
1
R
∑k

i=1 ni(Xi(1) − X(1))
] . (23)

Since the above statistic is location-scale invariant, its null distribution does not depend on any parameters, and so the null distribution can
be evaluated empirically assuming, without loss of generality, that a1 = ... = ak = 0 and b1 = ... = bk = 1. Under this assumption and
using the distributional results in (3), we see that

Λh ∼ −2
k

∑
i=1

ri ln[
Wi

1
R

(
∑k

i=1 riWi +∑k
i=1 ni(Ui − U(1))

)] (24)

where Wi = 𝜒2
2ri−2/(2ri), Ui = 𝜒2

2/(2ni) and U(1) = min {U1, … ,Uk} and the random variables Wi’s and Ui’s are mutually independent.
Thus, the percentiles of Λh can be estimated using Monte Carlo simulation as in Algorithms 1 and 2.

Alternatively, a closed-form approximation to the null distribution of Λh can be obtained along the lines of Section 3. As noted earlier,
Wilks’ theorem is not applicable to find a large sample approximate 𝜒2 distribution. On the basis of simulation studies we found that
Λh ∼ 𝜒2

3(k−1) for large samples. This approximation can be improved along the lines of Section 3. That is, we determine the value of Qh so
that E(Λh) = E(Qh𝜒2

3(k−1)) andΛh ∼ Qh𝜒2
3(k−1), approximately. To find E(Λh), we note the b̂i follows a 𝜒2

2ri−2/(2ri) distribution and b̂ in (22)
follows a 𝜒2

2R−2/(2R). Using this distributional results in (23), it can be verified that

E (Λh) = 2
k

∑
i=1

ri [𝜓(R − 1) − 𝜓(ri − 1) + ln (ri/R)] . (25)

Thus, Qh = E (Λh) /(3(k − 1)) and

Λh ∼ Qh𝜒2
3(k−1), approximately.
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To judge the accuracy of the above approximation, we estimated the upper percentiles of Λh in (24) using simulation with 1,000,000 runs
and the percentiles of Qh𝜒2

3(k−1) for k = 3 and 4, and some small to large values of sample sizes. These percentiles are reported in Table 3.
Comparison of Monte Carlo estimates of the percentiles and those of Qh𝜒2

2k shows that the latter approximate percentiles are very close to
those based on simulation even when (r1, r2, r3) = (3, 2, 2). Thus, the improved approximation can be safely used for all values of ri’s greater
than or equal to three.

6. POWER STUDIES

6.1. Power Comparison of the Tests for Scale Parameters

To compare the LRT, iterative test (ITER) and the union-intersection test (UIT), we estimated the powers of these tests for k = 3 and 5,
and some moderate sample sizes using simulation. As all the tests are scale invariant, the powers were estimated assuming, without loss of
generality, that b1 = 1 and b1 > ... > bk. The estimated powers at the level .05 are reported in Table 4. Examination of reported powers
indicates that the UIT performs better than others only when the sample sizes are equal, one of the parameters is maximum and only
one of the parameters is minimum; see the cases of (r1, r2, r3) = (10, 10, 10), (b1, b2, b3) = (1, 1, .4) and (1,1,.3), (r1, … , r5) = (10, … , 10),

Table 3 Monte Carlo estimates of the percentiles ofΛh in (9) and those of Qh𝜒2
2k.

Percentiles Percentiles

(r1, r2, r3) 99 95 90 (r1,…, r4) 99 95 90

(3, 2, 3) 28.10 (27.70) 20.92 (20.74) 17.62 (17.54) (3, 2, 3, 2) 36.73 (36.19) 28.52 (28.26) 24.69 (24.53)
(3, 3, 4) 24.10 (24.04) 18.04 (18.00) 15.24 (15.22) (4, 3, 4, 5) 28.73 (28.55) 22.38 (22.30) 19.40 (19.35)
(5, 5, 5) 20.84 (20.86) 15.62 (15.63) 13.19 (13.21) (5, 6, 7, 9) 25.37 (25.29) 19.78 (19.75) 17.16 (17.14)
(4, 5, 4) 21.80 (21.77) 16.29 (16.31) 13.77 (13.78) (9, 8, 10, 9) 24.12 (24.12) 18.83 (18.84) 16.35 (16.35)
(5, 4, 5) 21.35 (21.32) 15.98 (15.97) 13.50 (13.50) (10, …, 10) 23.79 (23.83) 18.60 (18.61) 16.14 (16.15)
(7, 7, 10) 19.26 (19.22) 14.42 (14.39) 12.17 (12.17) (15, 10, 15, 10) 23.43 (23.45) 18.30 (18.31) 15.90 (15.89)
(10, 10, 10) 18.62 (18.61) 13.94 (13.94) 11.77 (11.78) (15, 15, 15, 15) 23.06 (23.06) 18.03 (18.01) 15.65 (15.63)
(15, 15, 15) 17.94 (17.97) 13.46 (13.46) 11.37 (11.38) (20, 15, 20, 15) 22.89 (22.88) 17.84 (17.87) 15.49 (15.51)
(10, 15, 20) 18.11 (18.09) 13.55 (13.55) 11.46 (11.46) (20, 20, 20, 20) 22.67 (22.69) 17.73 (17.72) 15.38 (15.38)
(50, 50, 50) 17.11 (17.14) 12.83 (12.84) 10.85 (10.85) (50, …, 50) 22.11 (22.06) 17.24 (17.23) 14.96 (14.95)
(100, 100, 100) 16.93 (16.98) 12.70 (12.71) 10.72 (10.75) (100, …, 100) 21.86 (21.86) 17.09 (17.07) 14.82 (14.82)

𝜒2
3(k−1) percentiles 16.81 12.59 10.64 𝜒2

3(k−1) percentiles 21.67 16.92 14.68

Table 4 Powers of the iterative test (ITER), UIT and the LRT for testing the equality of the scale parameters.

Sample Sizes

(10, 10, 10) (10, 10, 20) (10, 10, 10, 10, 10) (5, 15, 10, 5, 15)

(b1, b2, b3) ITER UIT LRT ITER UIT LRT (b1, …, b5) ITER UIT LRT ITER UIT LRT

(1, 1, 1) .050 .050 .050 .050 .050 .050 (1, 1, 1, 1, 1) .050 .050 .050 .050 .050 .050
(1, .8, .6) .121 .134 .138 .182 .108 .311 (1, .9, 1, .7, 1) .082 .089 .091 .064 .084 .079
(1, .8, .5) .203 .228 .228 .342 .196 .377 (1, .6, 1, .9, .6) .153 .168 .193 .189 .047 .132
(1, .5, .5) .265 .287 .310 .311 .293 .375 (1, .6, 1, .6,1) .173 .190 .210 .197 .111 .193
(1, .4, .6) .373 .364 .377 .377 .411 .392 (1, .6, 1, .5, .6) .207 .253 .292 .185 .141 .190
(1, .4, .7) .374 .365 .367 .375 .419 .409 (1, .4, 1, 1, 1) .367 .419 .384 .505 .100 .438
(1, .4, .8) .385 .388 .387 .392 .457 .703 (1, .4, 1, 1, .6) .369 .410 .431 .462 .090 .347
(1, .4, .5) .391 .395 .422 .409 .424 .504 (1, .5, 1, .3, .5) .547 .620 .675 .339 .360 .432
(1, 1, .4) .443 .463 .453 .703 .473 .614 (1, .6, 1, .2, .6) .863 .879 .862 .399 .624 .524
(1, .4, .4) .437 .473 .508 .504 .484 .709 (1, .2, 1, 1, 1) .874 .945 .917 .954 .633 .964
(1, .3, .7) .611 .615 .601 .614 .677 .917 (1, .2, 1, .3, 1) .910 .949 .972 .959 .706 .978
(1, .4, .3) .556 .627 .655 .709 .652 .937 (1, .2, .5, .2, 1) .934 .959 .979 .952 .745 .973
(1, 1, .3) .706 .721 .710 .917 .775 .922 (1, .2, .4, .2, 1) .939 .957 .980 .962 .748 .973
(1, .4, .2) .796 .851 .859 .937 .887 .995 (1, .2, .7, .2, 1) .937 .966 .985 .948 .768 .979
(1, .3, .2) .819 .870 .890 .922 .932 .896 (1, .2, 1, .2, 1) .957 .981 .994 .964 .820 .990
(1, 1, .2) .940 .941 .936 .995 .989 .969 (1, .2, 1, .2, .2) .958 .978 .993 .948 .970 .990
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(b1, … , b5) = (1, .4, 1, 1, 1), (1,.2,1,1,1). In these cases, the UIT has larger power than those of the other tests. However, for (r1, … , r5) =
(5, 15, 10, 5, 15) and (b1, … , b5) = (1, .4, 1, 1, 1), the power of the UIT is much smaller than those of other two tests. Specifically, we see
under the column of (r1, … , r5) = (5, 15, 10, 5, 15) the powers of UIT are much smaller than the powers of other two tests. Between the LRT
and ITER, the ITER is more powerful than the LRT in some cases; see the powers for the case (r1, … , r5) = (5, 15, 10, 5, 15). However, the
LRT has appreciably larger powers than the ITER over larger parameter space, and so the LRT maybe preferred to other two tests.

6.2. Power of the LRT for Location Parameters

To judge the power properties of the LRT for the equality of location parameters, we estimated the powers by Monte Carlo simulation
and reported them in Table 5. The powers were estimated for (b1, b2, b3) = (3, 4, 5) and (2,2,2) and sample sizes (n1, n2, n3) = (15, 15, 15)
and (20,20,20). Given a set of sample sizes, we evaluated the powers at (r1, r2, r3) = (5, 4, 5) and (12,11,12) and for values of (a1, a2, a3) so
that a1 = 4 > a2 > a3. We first observe from Table 5 that the powers are increasing with increasing sample sizes. For example, see the
powers in the columns of (n1, n2, n3) = (15, 15, 15) and (r1, r2, r3) = (5, 4, 5), and (n1, n2, n3) = (20, 20, 20) and (r1, r2, r3) = (5, 4, 5).We
also observe that the powers for larger values of (r1, r2, r3) are larger than those of smaller values of (r1, r2, r3) while the sample sizes and
other parameters are fixed. For example, see the powers in the columns of (n1, n2, n3) = (15, 15, 15), (r1, r2, r3) = (5, 4, 5) and (12,11,12);
(n1, n2, n3) = (20, 20, 20), (r1, r2, r3) = (5, 4, 5) and (12,11,12). Finally, we also notice that the powers for the case of (b1, b2, b3) = (3, 4, 5)
are smaller than corresponding powers for (b1, b2, b3) = (2, 2, 2). This is expected because the variance of an exp(a, b) distribution is b2, and
so the powers for the set of k populations with larger variances are expected to be smaller than those for populations with smaller variances
while all other parameters and sample sizes are fixed. Thus, the LRT for the equality of location parameters possess all natural properties of
an efficient test.

6.3. Powers of the Homogeneity Test

Powers of the LRT for testingH0 ∶ (a1, b1) = ... = (ak, bk) were estimated for sample sizes (n1, n2, n3) = (15, 15, 15) and (20,20,20), and for
each set of sample sizes, (r1, r2, r3) = (7, 8, 11) and (14,13,10). The estimated powers are reported in Table 6. On the basis powers in Table 6,
we see that the power properties of the homogeneity test is very similar to the LRT for location parameters discussed in the preceding section.
In particular, the power is increasingwith increasing sample sizes while other parameters are fixed and also increasingwith increasing values
of ri’s while other values are fixed. For example, see the columns under (n1, n2, n3) = (15, 15, 15) (r1, r2, r3) = (7, 8, 11) and (14, 13, 10) in
Table 6. We also notice that the power is increasing with increasing disparities among location parameters and/or scale parameters. Thus,
the LRT has all natural properties of an efficient test.

7. AN EXAMPLE

The data were collected from a placebo controlled randomized clinical trial of gamma interferon in CGD. The data were subsets of large
data given in Appendix D of [1]. They represent elapsed time (in days) from randomization to diagnosis of a serious infection. The samples
were taken from three hospitals with ID codes 238, 204 and 332. We applied Kolmogorov–Smirnov test for the exponential distribution by
[8], and the test indicates that all three samples satisfy the model assumption of two-parameter exponential distribution.

Table 5 Powers of the LRT for equality of location parameters.

(b1, b2, b3)= (3, 4, 5) (b1, b2, b3)= (2, 2, 2)

(n1, n2, n3) (15, 15, 15) (20, 20, 20) (15, 15, 15) (20, 20, 20)

(r1, r2, r3) (r1, r2, r3)

(a1, a2, a3) (5, 4, 5) (12, 11, 12) (5, 4, 5) (12, 11, 12) (5, 4, 5) (12, 11, 12) (5, 4, 5) (12, 11, 12)

(4, 4, 4) .049 .051 .050 .049 .051 .050 .050 .050
(4, 3.8, 4) .072 .080 .095 .104 .164 .195 .270 .341
(4, 3.5, 3.5) .140 .151 .188 .233 .308 .453 .444 .673
(4, 3.6, 4) .166 .195 .268 .340 .515 .683 .741 .877
(4, 4, 3.6) .176 .198 .401 .518 .532 .677 .731 .876
(4, 3, 3) .315 .450 .448 .681 .674 .942 .823 .994
(4, 4, 3.5) .249 .301 .398 .513 .689 .838 .879 .952
(4, 3, 3.5) .459 .618 .679 .839 .915 .974 .983 .996
(4, 4, 3) .699 .836 .875 .953 .985 .996 .998 .999
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Table 6 Powers of the homogeneity test.

(n1, n2, n3) (15, 15, 15) (20, 20, 20)

(r1, r2, r3)

(a1, a2, a3) (b1, b2, b3) (7, 8, 11) (14, 13, 10) (7, 8, 11) (14, 13, 10)

(2, 2, 2) (3, 3, 3) .049 .048 .049 .048
(2, 2, 2) (3, 3, 2) .083 .094 .084 .097
(2, 1.8, 2) (3, 3, 3) .094 .090 .129 .133
(2, 1.8, 2) (3, 3, 2) .141 .149 .195 .209
(2, 1.8, 1.7) (3, 3, 2) .202 .218 .285 .301
(2, 1.5, 1.7) (3, 3, 2) .314 .336 .506 .512
(2, 1.5, 1.7) (3, 3, 1.5) .498 .520 .680 .699
(2, 1.5, 1.7) (3, 3, 1) .792 .821 .902 .909
(2, 1.3, 1.7) (3, 3, 1) .920 .928 .974 .975
(2, 1.3, 1.7) (3, 1.5, 1) .982 .989 .998 .999

Table 7 Elapsed times.

Hospitals Time to Infection in Days MLEs (â,b̂)

1 253 294 19 373 334 238 118 240 99 167 (19, 194.5)
2 373 26 152 241 322 350 211 307 82

114 337 18 267 104 (18, 189.4)
3 146 188 304 91 121 203 264 236 207 (91, 104.6)

Notice that the samples are uncensored with (n1, n2, n3) = (10, 14, 9). The MLEs are âi = Xi(1) and b̂i = Xi −Xi(1), i = 1, 2, 3, and the MLEs
for the three samples are reported in Table 7.

For testing H0 ∶ a1 = a2 = a3 vs. Ha ∶ ai ≠ aj for some i ≠ j, the LRT statistic Λa = 9.63 and the 95th percentile of the null distribution
is 10.51. To find the approximate 95th percentile, we evaluated Qa = E(Λa)/(2k − 2) = 1.105 and 1.105 × 𝜒2

4;.95 = 1.105 × 9.488 = 10.48.
Notice that the exact and the approximate percentiles are practically the same. Furthermore, we estimated the p-value using Algorithm 2
with 1000000 runs as .069 and the p-value based on the Qa𝜒2

4 distribution is also .069. Thus, at 5% level, the location parameters are not
significantly different.

For testingH0 ∶ b1 = b2 = b3, the statisticΛb is 2.17 and the p-value based onAlgorithm 1 is .385. If we use the level of significance .05, then
the exact critical value is 6.83 and Qb𝜒2

2;.95 = 1.138 × 5.99 is 6.82, which is very close to the exact one. To apply the UIT, we estimated the
5% critical value as 3.056, and the test statistic max {b̂1, b̂2, b̂3}/min {b̂1, b̂2, b̂3} = 194.5/104.6 = 1.859. To apply the iterative test procedure,
we calculated the individual test statistics F2 = .944 and F3 = .563. We chose the levels for the individual test as 𝜂2 = 𝜂3 = 𝜂4 = .01266 so
that 𝛼 = 1 − (1 − 2 × .01266)2 = .05. For these levels, the (lower, upper) critical values are (.383, 2.84) for F2 and (.349, 2.36) for F3. Note
that both test statistics F2 and F3 fall in their corresponding acceptance intervals, and so the null hypothesis of equality of scale parameters
is accepted. Thus, all three tests indicate that H0 ∶ b1 = b2 = b3 is tenable.

For testing H0 ∶ (a1, b1) = (a2, b2) = (a3, b3), the statistic Λh in (23) is 9.68 and the p-value based on (24) is .187. If we use the level of
significance .05, then the exact critical value is 13.93; the approximate critical value Qh𝜒2

6;.95 = 1.101 × 12.59 = 13.86. Thus, homogeneity
of exponential distributions is tenable. This means that all three samples may be pooled and the pooled sample can be modeled by a single
two-parameter exponential distribution.

8. CONCLUDING REMARKS

Although several tests for comparing parameters of several two-parameter exponential distributions were proposed in the literature, none
of them is based on the likelihood approach. As the sample space of a two-parameter exponential distribution depends on an unknown
parameter, it does not satisfy all the regularity conditions. So an LRT statistic for comparing parameters does not have the asymptotic chi-
square distribution with the degrees of freedom determined by the difference between the dimensions of the parameter spaces under the
alternative and null hypotheses. We have shown in this article that the null distributions of the LRT statistics for all three problems do not
depend on any unknown parameters, and so the LRTs are exact. However, calculation of the percentiles of the LRT statistics involves sim-
ulation. Even though calculation of percentiles based on Monte Carlo simulation is not difficult, we provided closed-form approximatePdf_Folio:257
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chi-square distributions for all three problems. These approximate chi-square null distributions are not only simple, but also very accu-
rate even for small samples. These approximate null distributions maybe warranted in situations where the number of distributions to be
compared is large.
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APPENDIX

Let Zi = Wi + ni(Ui − U(1)), 𝜃i = E(Zi), i = 1, .., k and g(x) = ln(x). Recall thatWi’s and Ui’s are independent with

Wi ∼
1
2𝜒

2
2ri−2 and Ui ∼

1
2ni

𝜒2
2 , i = 1, … , k.

To find an approximation to E ln(Zi), we shall use the result (see Section 2.9, [9]) that

E ln(Zi) ≈ ln(𝜃i) + Var(Zi)
g″(𝜃i)
2 .

Recall that niUi ∼ 𝜒2
2/2, or niUi follows a standard exponential distribution. So

P(U(1) ≤ u) = 1 −
k

∏
i
P(niUi ≥ niu) = 1 − exp

(
−

k

∑
i=1

niu

)
,

which is the distribution function of an exponential distribution with mean 1/∑k
i=1 ni. Thus,

E(U(1)) =
1

∑k
i=1 ni

and Var(U(1)) =
1(

∑k
i=1 ni

)2 (A.1)

Using the above expectation, we have

E(Zi) = E(Wi) + niE(Ui − U(1)) = ri −
ni

∑k
j=1 nj

, i = 1, … , k.

To find the variance,

Var(Zi) = Var(Wi) + n2i [Var(Ui) + Var(U(1)) − 2 Cov(Ui,U(1))] . (A.2)

To find the Cov(Ui,U(1)), we find the joint distribution of Ui and U(1) as

FUi,U(1) (u, v) = P
(
Ui ≤ u,U(1) ≤ v

)
= P (Ui ≤ u) − P

(
Ui ≤ u,U(1) ≥ v

)
= P (Ui ≤ u) − P (Ui ≤ u,U1 ≥ v, … ,Uk ≥ v)

= P (Ui ≤ u) − P (v ≤ Ui ≤ u)∏
j≠i

P
(
njUj ≥ njv

)
= (1 − e−niu) − (e−niv − e−niu) e−∑j≠i njv.

By taking the derivative with respect to (u, v), we find the joint density as

fUi,U(1)
(u, v) = nie−niu

(
∑
j≠i

nj

)
e−∑j≠i njv,

which shows that Ui and U(1) are independent. Using this fact in (A.2), we find

Var(Zi) = ri +
n2i(

∑k
j=1 nj

)2 .

Thus,

E ln(Zi) ≈ ln(𝜃i) −
Var(Zi)
2𝜃2i

= ln(𝜃i) −
1
2𝜃2i

⎛⎜⎜⎜⎝ri +
n2i(

∑k
j=1 nj

)2

⎞⎟⎟⎟⎠ ,
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where 𝜃i = E(Zi) = ri −
ni

∑k
j=1 nj

, i = 1, … , k. Using this approximation, we see that

E(Λa) = −E [2
k

∑
i=1

ri ln

(
𝜒2
2ri−2/2
Zi

)
]

= −2
k

∑
i=1

ri [𝜓(ri − 1) − E ln(Zi)]

≈ −2
k

∑
i=1

ri
⎡
⎢
⎢
⎣
𝜓(ri − 1) − ln(𝜃i) +

1
2𝜃2i

⎛⎜⎜⎜⎝ri +
n2i(

∑k
j=1 nj

)2

⎞⎟⎟⎟⎠
⎤
⎥
⎥
⎦
. (A.3)
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