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1. INTRODUCTION

The problem of testing equality of several distributions within a family of distributions arises in many practical situations. If independent
samples are available from different sources or collected from different life testing experiments, a homogeneity test may be used to check
if the samples can be modeled by a single distribution. For example, in a placebo controlled randomized clinical trial of gamma interferon
in chronic granulomatous disease (CGD), the data were collected on elapsed time (in days) from randomization to diagnosis of a serious
infection [1]. The samples were taken from three hospitals, and the Kolmogorov-Smirnov test indicates that all three samples satisfy the
model assumption of two-parameter exponential distribution. If a homogeneity test indicates that all three samples can be modeled by
a single exponential distribution, then better inferences can be made on the basis of the pooled sample. For two-parameter exponential
distributions, the problem of testing the equality of parameters of several distributions was considered by [2]. These authors have proposed
an exact iterated test procedures for testing the equality of the location parameters under some conditions and for testing the equality of the
scale parameters. Abebe [3] have addressed the problem of comparing several location parameters with more than one control. Li et al. [4]
have proposed parametric bootstrap simultaneous confidence intervals for pairs of means. Recently, Krishna and Goel [5] have proposed
some Bayesian solutions for estimating location parameters when the data are randomly censored.

To describe the problems that will be addressed in this paper and other related problems, we first note that the two-parameter exponential
distribution has the probability density function (pdf) given by

1 xX—a
f(x|a,b)=Eexp<—T>, x>a>0, b>0, (1)
where a is the location parameter (also called threshold parameter) and b is the scale parameter. If it is assumed that a = 0, then the
resulting distribution is referred to as the one-parameter exponential distribution with mean b. Let us denote the two-parameter exponential
distribution by exp(a, b).

In life testing, the experiments are often discontinued as soon as a fixed number of items fail, yielding a type II censored sample. Let
X, -, Xir, be a type II censored sample from a life test of n; items whose lifetimes follow an exp (a;, b;) distribution, i = 1,...,k. The
problems that we consider here are (i) testing the equality of the scale parameters b;s, (ii) testing the equality of the location parameters
a;’s and (iii) the homogeneity test, that is, testing (a;,b;) = ... = (ay, by). The LRTs that are proposed in the sequel are applicable to the
case where r; = n; for some or all i = 1, ..., k. In the following section we provide some preliminary results that are needed to derive the
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likelihood ratio tests (LRTs) for all three problems. In Section 3, we address the problem of testing the equality of scale parameters, derive
the LRT and describe another two tests available in the literature. The problem of testing equality of the location parameters is addressed
in Section 4, and the homogeneity test is described in Section 5. We also show that the null distributions of all three LRT statistics do not
depend on any unknown parameters, and the percentiles or p-values of the LRTs can be estimated using Monte Carlo simulation. So the
proposed LRTs are exact except for the simulation errors. For all three problems, we also propose convenient closed-form approximations
to the null distributions, and they are very satisfactory even for small samples. Power studies and comparison of tests are given in Section 6.
The proposed LRTs and other methods are illustrated using an example with real data in Section 7, and some concluding remarks are given
in Section 8.

2. PRELIMINARIES

Let X(;) < ... < X, be a type II censored sample obtained from a life test on # items whose lifetime have an exp (a, b) distribution, where a

is the threshold parameter and b is the scale parameter. Let X, denote the mean of the uncensored lifetimes in the sample.

The MLE:s (see [6]) based on the censored sample are given by
a= X(l) and l; = [f (Xr - X(1)> + (T’l - T) (X(r) - X(l))]/ r. (2)
Furthermore, the MLEs are independent with
. b ~ b
a~ E){% +a and b~ 2—7.)(%.,_2. (3)
For the uncensored case, that is, when r = n, the MLEs are given by
a= X(l) and E = )_(n - X(l)y (4)
and
, b s b
an~ ﬁ)(g +a and b~ ﬁ)(%n—Z'

Log-likelihood function

Leta = (aj,...,a;) and b = (b, ..., by). The log-likelihood function based on the k independent censored samples can be expressed as

k 5 Xigy — a; Xigry — a;
I(a,b) = Z §—r,» Inb; — Z % —(n; — ri)+§ +C,
j=1 i i

i=1
where C is a constant term. Following (2), the MLEs of a; and b; can be expressed as

a; = X and Bi = [Ti <)_(,i - Xm)) +(n;—r;) (Xi(r.) - Xi(l))]/ri,i =1,..,k, (5)

and I(a, b) at (a, b) = (4, b) can be simplified as

k
I@,b) = =Y r,In(b) — R+ C, (6)

i=1

k
whereR =3 _ ;.

3. TESTS FOR THE EQUALITY OF SCALE PARAMETERS

To test the equality of scale parameters, consider the hypotheses
Hy:by=..=b vs. H,:!b;#b; forsomei#j. (7)

In the following, we first describe the LRT followed by an iterative test by [2], and a test based on union-intersection principle proposed
in [7].
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3.1. The Likelihood Ratio Test

Let b denote the common unknown parameter under Hy in (7). Then the log-likelihood function under this null hypothesis can be
expressed as

k

o Xigy — a; Xigry — @i
l(a,b)=2(—r,—lnb—z(’)T—(n,-—r,-)%)+C,
j=1

i=1
and is maximized at

k
R 2 1 < i=
2. = Xj) and b, = = Z {ri (Xr,. - Xi(l)) +(n— 1) (Xi(r,) - Xi(l))} =7 7®r (8)

i=1

=

where R = Z:;l r, and b;’s are given in (5). Thus, letting A, to denote the —2 In(LRT statistic), it can be shown that

k ~
b.
A, = =2) r;ln d , 9
’ Zl PR ©
R
where b, is given in (5). We note that the distribution of A, under H;, : b; = ... = b, does not depend on any parameter, and
k
W,
Ay ~=2> rln : s 10
S Vi s (o)
R

where W;’s are independent )(%,1_2 /(2r;) random variables. Notice also that the null distribution does not depend on the sample sizes and
they depend only on (ry, ..., ). For a given (ry, ..., 7), the exact percentiles of A, can be estimated using Monte Carlo simulation as shown
in the following algorithm.

Algorithm 1

For a given (ry, ..., 7¢) and (?)1, s Bk),

—

Compute A, = —2 Zi;l riln| ——/— |,
2.  Generate W; = .5)(%,’_2/73, i=1,..,k
3. Compute A} = —2 Zi;l riln| ————1,

4. Repeat steps 2 and 3, for a large number of times, say, 100,000,
5. The proportion of Aj, that are greater than A, is a Monte Carlo estimate of the p-value,

6. The 100 (1 — a) percentile of these 100,000 Aj’s is a Monte Carlo estimate of the 100 (1 — «) percentile of A,.

The test statistic A, is very similar to the one for testing b; = ... = by of several one-parameter exponential distributions, except that b; in
our present problem is distributed as )(22,[_2/ (2r;) whereas in the one-parameter case it is distributed like )(22,[/ (2r;). This fact suggest that,
for large samples, the null distribution of A, can be approximated by y?_, distribution. For large samples, the null hypothesis of equal scale
parameters is rejected if A, > ¥;_,.,_q. A better approximation to the null distribution of A, can be obtained by the moment matching
method. Specifically, we determine the value of Q, so that E(A,) = E(Q, )(,%_1) so that

A
L~ )(13_1, approximately.

Qp
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Using the result that E(In y2,) = $(m/2) + In(2), where  is the digamma function, and the expression (10), we see that
k Eonw\ &
i=1 11
2E [; r;1ln (T) — ; r; In(W))

k k
2 [Z ri[p(R—k) = (i — D] + Z"i ln(ri/R)l . (11)

i=1 i=1

E(Ay)

Thus, Q, = E(A,) /(k — 1), and the null hypothesis of equal shape parameters is rejected if A, > Q,x2_ Ll-a

To judge the accuracy of the above approximation, we estimated the upper percentiles of A, in (10) using simulation with 1,000,000 runs
and the percentiles of Q, y7_, for k = 3and 5, and some small to large values of (r, ... , ;). Recall that the distribution of A;, does not depend
on sample sizes, and so percentiles were estimated only for some values of (7, ..., ). These percentiles are reported in Table 1. Comparison
of Monte Carlo estimates of the percentiles and those of Q, y7_, shows that the latter approximate percentiles are very close to those based
on simulation even when (r, ..., r5) = (3, 3, 3, 2, 2). Thus, the improved approximation can be safely used for any sample sizes with two or
more uncensored data. The usual y?_, approximation may be used if r; > 100 for all i; see the last row of Table 1.

3.2. An lterative Test

We shall now describe a test for equality of scale parameters proposed by [2], which is based on an iterative procedure. Consider a sequence
of nested hypotheses

H2 . bl :bz, H3 . bl = bz = b3,...,Hk . bl = ... = bk'

A test for H; is made if and only if H;_, is accepted for i = 3, ..., k. The null hypothesis (7) of equality scale parameters is accepted if and
only if H,, ..., Hy are accepted.

The test statistic for H; : b, = ... = b; is given by
r:b;/2r; =2
F = # (12)
2 nibilSa-n
where S;_) = Z;:(er —2),i=2,...,k. For a given level a, choose 0 < 7; < asothata =1 — H:;Z(l — 1;). The iterative test rejects
Hy : b, =..=bif
Fi<Fy_os ymn O Fi>Fy s opp foranyi € {2,...,k},

where F,, .., denotes the 100 g percentile of an F distribution with the numerator df m and the denominator df n. If we choose 7, = ... = 7,
thenn; = 1—(1—a)/*=V,i =2, ..., k. Notice that the individual test for H; has size 7,, but the overall test for H, : b; = ... = by, has size at.

Table 1 Exact percentiles of A, based on simulation and the percentiles of Q, ¥7_,.

k=3 Percentiles k=5 Percentiles

(r1,15,13) 99 95 90 (F15 eee s15) 99 95 90
(2,2,2) 21.53 (22.18) 14.23 (14.43) 11.03 (11.09) (2,..,2) 30.73 (31.46) 2221 (22.48) 18.29 (18.43)
(3,3,3) 15.12 (15.31) 9.92 (9.96) 7.63 (7.66) (3,3,3,2,2) 26.69 (26.71) 19.07 (19.08) 15.64 (15.65)
(4,3,4) 14.08 (14.10) 9.17 (9.17) 7.05 (7.05) (4,3,4,3,4) 20.30 (20.30) 14.51 (14.51) 11.91 (11.90)
(3,2,6) 18.90 (19.13) 12.40 (12.45) 9.55(9.57) (3,2,4,3,2) 26.63 (26.64) 19.06 (19.04) 15.65 (15.61)
(5,4,3) 13.97 (13.97) 9.08 (9.09) 6.99 (6.99) (5,4,3,6,2) 23.45 (23.07) 16.61 (16.48) 13.57 (13.52)
(8,7,10) 10.90 (10.90) 7.10 (7.09) 5.45 (5.45) (8,7,6,8,20) 16.06 (16.08) 11.48 (11.49) 9.41 (9.42)
(10, 10, 10) 10.46 (10.49) 6.82 (6.82) 5.24 (5.24) (4,3,2,5,6) 23.41 (23.07) 16.62 (16.48) 13.59 (13.52)
(20, 20, 20) 9.82 (9.81) 6.37 (6.38) 4.90 (4.90) (20, ..., 20) 14.14 (14.12) 10.09 (10.09) 8.27 (8.28)
(30, 30, 30) 9.62 (9.60) 6.25 (6.25) 4.80 (4.80) (30, ..., 30) 13.85 (13.83) 9.86 (9.88) 8.10 (8.10)
(50, 50, 50) 9.49 (9.44) 6.14 (6.14) 4.72 (4.72) (50, ..., 50) 13.62 (13.60) 9.74 (9.72) 7.97 (7.97)
(100, 100, 100) 9.33(9.32) 6.07 (6.07) 4.66 (4.66) (100, ..., 100) 13.43 (13.44) 9.61 (9.60) 7.88 (7.87)
X3, percentiles 9.21 5.99 4.61 X?_, percentiles 13.28 9.49 7.78

Note: Percentiles of Q, Y7_, are given in parentheses.
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3.3. Union-Intersection Test

Shah and Rathod [7] have proposed the following test based on the union-intersection principle. The test rejects the null hypothesis of
equality of scale parameters if

min {by, ..., b;}

where E,- is the MLE defined in (5) and u,_ is the 100 (1 — «) percentile of U.

Shah and Rathod have derived analytical expressions to the distribution function of U for k < 3 and r; = r, = r3. Even for these special
cases, calculation of the critical value u;_, is numerically involved. As the null distribution of the test statistic U does not depend on any
parameters, the critical value u;_, can be easily estimated using Monte Carlo simulation for any k > 2 and (ry, ..., 1;).

4. THE LRT FOR LOCATION PARAMETERS

Consider testing
Hy:ay=..=a vs. H,!a;#a; forsomei#j. (14)

Let a denote the common unknown parameter under the H,. Then the log-likelihood function under Hy in (14) can be expressed as

k i Xy —a Xiry—a
l(a,b):Z(—rilnb,-—Z (’; —(n,-—r,»)+>+(),

i=1 j=1 1 i

where Cis a constant term. The log-likelihood function is maximized at

a= X(l) = min {Xl(l)’ ""Xk(l)} (15)
and
1<
b, = - Z(Xi(j) — X)) + (n; = 1) Kigry — X))
i|i=1
1 A .
= r_ [ribi + ”i(Xi(l) —_ X(l))] , 1= 1, e ,k, (16)

where b;’s are as defined in (5). Letting b, = (b, ... , by,.), we have
k
1@,b) = = > r;In(b;) — R+ C. (17)
i=1

Let A, denote —2 In(LRT statistic). Then, using I(a, b) defined in (6), it can be easily verified that
A, = —2{la,b) — &, b)}

k
—22 r;1ln
i=1

b.
- ‘ ] . (18)
b; + n(Xiqy — Xa)/r;

As A, is invariant under the transformation X;; — ¢;X;; + d, where ¢;’s and d are positive constants, its null distribution does not depend on
any parameters. Specifically, the null distribution of A, can be evaluated empirically assuming thata;, = ... =g, =0and b, = ... = b, = 1.
Under this assumption, using the distributional results in (3), we see that

W;
(Wi + n;(U; — U(l)))

k
A, ~ —ZZ r;ln

i=1

) (19)

where W; = r,b; ~ )(%,i_z/Z, U; = x?/(2n;) and Uqgy = min{Uy, ..., Ui} and W)’s and U;’s are mutually independent. For an observed value
of the LRT statistic A,, the p-value and the percentiles of A, can be estimated using the following algorithm.
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Algorithm 2

1. For a given set of k samples, compute the LRT statistic A, in (18),
2. Generate Uf = x3/mand W} = 13, 5, i=1,...,k

3. Set UZ) = min{Uj, ..., U*k},

4. Compute A}, = =2 Z:;l r;In ( W )

[W +n,(U; — (1))]
5. Repeat steps 2 —4 for a large number of times, say, 100,000,
6. Proportion of A}’s that are greater than A, is an estimate of the p-value,

7. The 100 (1 — @) percentile of the 100,000 A%’s is a Monte Carlo estimate of the 100(1 — @) percentile of A,,.

In Table 2, we present the estimated percentiles of A, (based on 1,000,000 runs) for k = 3 and 5, and for some values for (1, ..., ;) ranging
from very small to large. Notice that these are exact percentiles, except for the simulation errors.

To find a closed-form approximate distribution for A,, we note that Wilks' theorem is not applicable to find an asymptotic 2 null distri-
bution, because the sample space of a two-parameter exponential distribution depends on an unknown parameter. However, our extensive
simulation studies indicated that, for large samples, the null distribution of A, is close to 3 _, distribution; see the last row in Table 2. This
X3, approximation is satisfactory only when all r;’s are 100 or more. This approximation can be improved along the lines of the preceding
section. Specifically, we determine Q, so that E(A,) = Q,E ( )(gk_z), and then approximate the distribution of A, by Q, x2,_,. Toward this,
we note that exact calculation of E(A,) seems to be difficult, and so we resort to use an approximation of E(A,). It is shown in Appendix that

2
1

E(A)N—ZZr P = 1) =In@6) + — | i + ———
; k
(Z;:l”f)

i=1

6

where 6, = r;,—n;/ Z i1 e Finally, letting Q, = E(A,)/(2k —2), we propose the distribution of Q, sz , as an approximate null distribution
of A,.

Monte Carlo estimates (based on one million runs) of the percentiles of A, based on Algorithm 2 and those based on the above approxi-
mation are given in Table 2 for k = 3 and 5 and for some sample sizes and (ry, ..., ;). Comparison of the percentiles based on Monte Carlo

Table2 Monte Carlo estimates of the percentiles of A, based on (19) and those of Q, X2 _,-

(n1,n,,n3) = (9, 10, 8) (n1,...,n5) =(20,...,20)
(r1,15,13) 99 95 920 (15 eens15) 99 95 90
(3,2,3) 22.43 (22.74) 15.89 (16.25) 12.96 (13.33) (3,4,3,2,4) 31.25(31.93) 23.93 (24.64) 20.58 (21.23)
(3,3,4) 19.21 (19.38) 13.69 (13.85) 11.21 (11.36) (5,4,6,5,8) 24.87 (25.19) 19.18 (19.44) 16.55 (16.75)
(4,5,4) 17.38 (17.44) 12.40 (12.46) 10.18 (10.22) (6,3,7,7,10) 24.93 (25.07) 19.16 (19.35) 16.46 (16.67)
(5,5,5) 16.68 (16.26) 11.88(11.88) 9.75 (9.74) (9,8,7,10,15) 22.57 (22.74) 17.41 (17.55) 14.99 (15.12)
(6,7,8) 15.59 (15.51) 11.12 (11.08) 9.11 (9.09) (10, ...,10) 22.32(22.47) 17.25 (17.34) 14.85 (14.94)
(9,10, 8) 14.99 (14.94) 10.69 (10.68) 8.77 (8.75) (5, 10, 15, 10, 15) 22.60 (22.73) 17.43 (17.55) 15.02 (15.12)
(ny, ny, 1) = (25, 30, 22) (1, ..., n5) = (60, 50, 50, 70, 60)
(10, 10, 10) 14.77 (14.72) 10.53 (10.52) 8.64 (8.63) (20, ...,20) 21.19 (21.21) 16.35 (16.37) 14.08 (14.11)
(15, 10, 20) 14.33 (14.26) 10.23 (10.19) 8.39 (8.35) (4,5,6,7,7) 24.60 (24.93) 18.98 (19.24) 16.34 (16.58)
(20, 20, 20) 14.00 (13.95) 9.98 (9.97) 8.17 (8.18) (30, ..., 30) 20.80 (20.82)  16.06 (16.07)  13.84 (13.85)
(ny, ny, n3) = (300, 200, 100) (ny, ... ,n5) = (200, ... ,200)

(30, 40, 50) 13.61 (13.58) 9.73 (9.71) 7.97 (7.96) (50, 40, 50, 40, 50) 20.61 (20.57) 15.87 (15.88) 13.68 (13.68)
(50, 50, 50) 13.56 (13.53) 9.68 (9.67) 7.93 (7.93) (50, ..., 50) 2045(2052)  15.82(15.84)  13.64 (13.65)
(100, 100, 100) 13.39 (13.40) 9.59 (9.58) 7.86 (7.85) (100, ..., 100) 2025 (20.30)  15.68 (15.67)  13.50 (13.50)
(120, 150, 100) 13.37 (13.38) 9.54 (9.56) 7.81 (7.84) (150, 130, 140, 130, 150) 2022 (2024)  15.61 (15.63)  13.46 (13.46)
X3, percentiles 13.28 9.49 7.78 X3, percentiles 20.09 15.51 13.36

Note: The numbers in parentheses are the approximate percentiles of A, based on Q, x3,_,-
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method and tho approximate ones are very close even for small sample such as (), 1,,73) = (3,2,3) and (ry, ..., 75) = (3,4,3,2,4). Onan
overall basis, we see that the approximate percentiles are very satisfactory and are safe to use in practical applications.

5. HOMOGENEITY TEST

For the homogeneity test, the hypotheses of interest are
H, : (a;,b)) = ...=(ar, b)) vs. H,: (a;,b;) # (aj bj) for some i # j. (20)

Let (a, b) denote the common unknown parameter under H, in (20). Then the log-likelihood function under the null hypothesis (20) can
be expressed as

L Xig)

i —a Xipy—a
I(a, b) =Z<—rilnb—2 b —(n,»—r,)%) +C,
j=1

i=1

where C is a constant term. The log-likelihood function is maximized at
a= X(l) = min {Xl(l)9 "'!Xk(l)} (21)

and

Ti

k
A 1
b= EZ DX — Xay) + (0 = 1) Kigry — X))
i=1|j=1

k
= %Z [riI;i + 1n;(Xiy — X(l))] ) (22)
i=1

where @,- is defined in (5) and R = Z:;l r;. Let Ay, denote the —2 In(LRT statistic). It can be easily verified that
k ~
b.
-2 Z r;ln <7’ )
i=1 b

k
—22 r;1n
i=1

Ay

bi

1wk 7 | Lk
2 2 Tibi 2 iy &y — X))

(23)

Since the above statistic is location-scale invariant, its null distribution does not depend on any parameters, and so the null distribution can
be evaluated empirically assuming, without loss of generality, that a; = ... = g, = 0 and b; = ... = b, = 1. Under this assumption and
using the distributional results in (3), we see that
Wi
k k
(Eizl Wi+ Y n(U; = U(l)))

k
Ay ~=2) rn 1 (24)
i=1 -

R

where W; = )(%,i_z/ @2r), U; = x3/(2n;) and Uyy = min{U, ..., Uy} and the random variables W;’s and U;s are mutually independent.
Thus, the percentiles of A;, can be estimated using Monte Carlo simulation as in Algorithms 1 and 2.

Alternatively, a closed-form approximation to the null distribution of A;, can be obtained along the lines of Section 3. As noted earlier,
Wilks” theorem is not applicable to find a large sample approximate y? distribution. On the basis of simulation studies we found that
Aj, ~ X34y, for large samples. This approximation can be improved along the lines of Section 3. That is, we determine the value of Q; so

that E(A;,) = E(Q,X3x—1)) and Ay, ~ QX3 1), approximately. To find E(A,,), we note the b; follows a X5y —2/(2r;) distribution and bin (22)
follows a y%_,/(2R). Using this distributional results in (23), it can be verified that

k
EM) =20 r PR = 1) = (r; — 1) + In (r,/R)]. (25)
i=1

Thus, Q, = E(A) /(3(k — 1)) and

Ay~ Qy )(32(k_1), approximately.
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To judge the accuracy of the above approximation, we estimated the upper percentiles of A;, in (24) using simulation with 1,000,000 runs
and the percentiles of Q x3_,, for k = 3 and 4, and some small to large values of sample sizes. These percentiles are reported in Table 3.
Comparison of Monte Carlo estimates of the percentiles and those of Q, x2, shows that the latter approximate percentiles are very close to
those based on simulation even when (r,, 1, 13) = (3, 2, 2). Thus, the improved approximation can be safely used for all values of r;’s greater
than or equal to three.

6. POWER STUDIES

6.1. Power Comparison of the Tests for Scale Parameters

To compare the LRT, iterative test (ITER) and the union-intersection test (UIT), we estimated the powers of these tests for k = 3 and 5,
and some moderate sample sizes using simulation. As all the tests are scale invariant, the powers were estimated assuming, without loss of
generality, that b, = 1and b; > ... > b;. The estimated powers at the level .05 are reported in Table 4. Examination of reported powers
indicates that the UIT performs better than others only when the sample sizes are equal, one of the parameters is maximum and only
one of the parameters is minimum; see the cases of (r,r,,7;) = (10, 10, 10), (b, b, b3) = (1,1, .4) and (1,1,.3), (ry, ..., 75) = (10, ..., 10),

Table 3 Monte Carlo estimates of the percentiles of A, in (9) and those of Q;, x%.

Percentiles Percentiles

(r1,1,,13) 99 95 90 (P15 eees?y) 99 95 90
(3,2,3) 28.10 (27.70) 20.92 (20.74) 17.62 (17.54) (3,2,3,2) 36.73 (36.19) 28.52 (28.26) 24.69 (24.53)
(3,3,4) 24.10 (24.04) 18.04 (18.00) 15.24 (15.22) (4,3,4,5) 28.73 (28.55) 22.38 (22.30) 19.40 (19.35)
(5,5, 5) 20.84 (20.86) 15.62 (15.63) 13.19 (13.21) (5,6,7,9) 25.37 (25.29) 19.78 (19.75) 17.16 (17.14)
(4,5,4) 21.80 (21.77) 16.29 (16.31) 13.77 (13.78) (9,8,10,9) 24.12 (24.12) 18.83 (18.84) 16.35 (16.35)
(5,4,5) 21.35(21.32) 15.98 (15.97) 13.50 (13.50) (10, ...,10) 23.79 (23.83) 18.60 (18.61) 16.14 (16.15)
(7,7,10) 19.26 (19.22) 14.42 (14.39) 12.17 (12.17) (15, 10, 15, 10) 23.43 (23.45) 18.30 (18.31) 15.90 (15.89)
(10, 10, 10) 18.62 (18.61) 13.94 (13.94) 11.77 (11.78) (15, 15, 15, 15) 23.06 (23.06) 18.03 (18.01) 15.65 (15.63)
(15, 15, 15) 17.94 (17.97) 13.46 (13.46) 11.37 (11.38) (20, 15, 20, 15) 22.89 (22.88) 17.84 (17.87) 15.49 (15.51)
(10, 15, 20) 18.11 (18.09) 13.55 (13.55) 11.46 (11.46) (20, 20, 20, 20) 22.67 (22.69) 17.73 (17.72) 15.38 (15.38)
(50, 50, 50) 17.11 (17.14) 12.83 (12.84) 10.85 (10.85) (50, ..., 50) 22.11 (22.06) 17.24 (17.23) 14.96 (14.95)
(100, 100, 100) 16.93 (16.98) 12.70 (12.71) 10.72 (10.75) (100, ..., 100) 21.86 (21.86) 17.09 (17.07) 14.82 (14.82)
)(g(k_l) percentiles 16.81 12.59 10.64 )(g(k_l) percentiles 21.67 16.92 14.68

Table 4 Powers of the iterative test (ITER), UIT and the LRT for testing the equality of the scale parameters.

Sample Sizes

(10, 10, 10) (10, 10, 20) (10, 10, 10, 10, 10) (5,15, 10, 5, 15)
(bi,by,b;) ITER  UIT LRT ITER UIT  LRT  (by, ..., bg) ITER  UIT LRT ITER  UIT LRT
(1,1,1) .050 050 050 050 050 050  (1,1,1,1,1) 050 .050 .050 .050 .050 050
(1, .8,.6) 121 134 138 182 108 311 (1,.9,1,.7,1) 082 .089 091 064 084 079
(1, .8, .5) 203 228 228 342 196 377 (1,.6,1,.9,.6) 153 168 193 189 047 132
(1, .5,.5) 265 287 310 311 293 375 (1,.6,1,.6]1) 173 .190 210 197 111 193
(1, 4, .6) 373 364 377 377 411 392 (1,.6,1,.5,.6) 207 253 292 185 141 .190
(1, 4,.7) 374 365 367 375 419 409 (1,.4,1,1,1) 367 419 384 505 .100 438
(1, 4, .8) 385 388 387 392 457 703 (1,.4,1,1,.6) 369 410 431 462 .090 347
(1, 4,.5) 391 395 422 409 424 504 (1,.5,1,.3,.5) 547 620 675 339 360 432
(1,1, 4) 443 463 453 703 473 614 (1,.6,1,.2,.6) 863 879 862 399 624 524
(1, 4, 4) 437 473 508 504 484 709 (1,.2,1,1,1) 874 945 917 954 633 964
(1,.3,.7) 611 615 601 614 677 917 (1,2,1,3,1) 910 949 972 959 706 978
(1, 4, 3) 556 627 655 709 652 937 (1,.2,5,.2,1) 934 959 979 952 745 973
(1,1,.3) 706 721 710 917 775 922 (1,2,4,2,1) 939 957 980 962 748 973
(1, 4,.2) 796 851 859 937 887 995  (1,.2,.7,.2,1) 937 966 985 948 768 979
(1,.3,.2) 819 870  .890 922 932 .89  (1,2,1,.2,1) 957 981 994 964 820 1990

(1,1,.2) .940 941 936 995 .989 969 (1,.2,1,.2,.2) 958 978 993 .948 970 990
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(by,....b5) = (1,.4,1,1,1), (1,.2,1,1,1). In these cases, the UIT has larger power than those of the other tests. However, for (1, ...,75) =
(5,15,10,5,15) and (by, ..., bs) = (1, .4,1,1,1), the power of the UIT is much smaller than those of other two tests. Specifically, we see
under the column of (4, ..., 75) = (5, 15, 10, 5, 15) the powers of UIT are much smaller than the powers of other two tests. Between the LRT
and ITER, the ITER is more powerful than the LRT in some cases; see the powers for the case (74, ..., 5) = (5,15, 10, 5, 15). However, the
LRT has appreciably larger powers than the ITER over larger parameter space, and so the LRT maybe preferred to other two tests.

6.2. Power of the LRT for Location Parameters

To judge the power properties of the LRT for the equality of location parameters, we estimated the powers by Monte Carlo simulation
and reported them in Table 5. The powers were estimated for (by, b,, b;) = (3,4, 5) and (2,2,2) and sample sizes (1, n,, n3) = (15,15, 15)
and (20,20,20). Given a set of sample sizes, we evaluated the powers at (11, 5, 73) = (5,4, 5) and (12,11,12) and for values of (a,, a,, as) so
that a;, = 4 > a, > a;. We first observe from Table 5 that the powers are increasing with increasing sample sizes. For example, see the
powers in the columns of (1, n,,n3) = (15,15,15) and (11,15, 73) = (5,4, 5), and (1, n,, n3) = (20,20,20) and (1, 15, 13) = (5,4,5). We
also observe that the powers for larger values of (1), r,, r3) are larger than those of smaller values of (r,, r,, ;) while the sample sizes and
other parameters are fixed. For example, see the powers in the columns of (1, n,, n3) = (15,15, 15), (11,15, 13) = (5,4,5) and (12,11,12);
(ny, ny, n3) = (20, 20, 20), (ry, 15, 73) = (5,4, 5) and (12,11,12). Finally, we also notice that the powers for the case of (b;, b,, b3) = (3,4,5)
are smaller than corresponding powers for (b;, b,, b3) = (2,2, 2). This is expected because the variance of an exp(a, b) distribution is b%, and
so the powers for the set of k populations with larger variances are expected to be smaller than those for populations with smaller variances
while all other parameters and sample sizes are fixed. Thus, the LRT for the equality of location parameters possess all natural properties of
an efficient test.

6.3. Powers of the Homogeneity Test

Powers of the LRT for testing H,, : (a;, b;) = ... = (ay, b;) were estimated for sample sizes (1, n,, n3) = (15, 15, 15) and (20,20,20), and for
each set of sample sizes, (1,15, 73) = (7,8, 11) and (14,13,10). The estimated powers are reported in Table 6. On the basis powers in Table 6,
we see that the power properties of the homogeneity test is very similar to the LRT for location parameters discussed in the preceding section.
In particular, the power is increasing with increasing sample sizes while other parameters are fixed and also increasing with increasing values
of r;’s while other values are fixed. For example, see the columns under (n,, n,, n3) = (15,15,15) (r1,7,,13) = (7,8,11) and (14, 13, 10) in
Table 6. We also notice that the power is increasing with increasing disparities among location parameters and/or scale parameters. Thus,
the LRT has all natural properties of an efficient test.

7. AN EXAMPLE

The data were collected from a placebo controlled randomized clinical trial of gamma interferon in CGD. The data were subsets of large
data given in Appendix D of [1]. They represent elapsed time (in days) from randomization to diagnosis of a serious infection. The samples
were taken from three hospitals with ID codes 238, 204 and 332. We applied Kolmogorov—Smirnov test for the exponential distribution by
[8], and the test indicates that all three samples satisfy the model assumption of two-parameter exponential distribution.

Table 5 Powers of the LRT for equality of location parameters.

(b1, b29 b3)=(3a4’ 5) (b1, bza h3)= (2,2,2)
(n1,n,,n5) (15, 15, 15) (20, 20, 20) (15, 15, 15) (20, 20, 20)

(r1, oY) 1’3) (r1, ox) "3)
(a1, a,,a;3) (5,4,5) (12,11, 12) (5,4,5) (12,11, 12) (5,4,5) (12,11,12) (5,4,5) (12,11,12)
(4,4,4) .049 .051 .050 .049 .051 .050 .050 .050
(4,3.8,4) .072 .080 .095 .104 164 195 270 341
(4,3.5,3.5) .140 151 .188 233 .308 453 444 .673
(4,3.6,4) .166 .195 268 .340 515 .683 741 .877
(4,4,3.6) 176 .198 401 518 532 677 731 .876
(4,3,3) 315 450 448 .681 .674 942 .823 994
(4,4,3.5) 249 301 .398 513 .689 .838 .879 952
(4,3,3.5) 459 .618 .679 .839 915 974 983 996

(4,4,3) .699 .836 875 953 985 996 998 999
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Table 6 Powers of the homogeneity test.

(ny, ny,13) (15,15, 15) (20, 20, 20)

(r1,15,13)

(a1, a5, a5) (b1, by, b3) (7,8,11) (14, 13, 10) (7,8,11) (14, 13, 10)
(2,2,2) (3,3,3) 049 048 049 048
(2,2,2) (3,3,2) 083 .094 .084 .097
(2,18,2) (3,3,3) 094 .090 129 133
(2,18,2) (3,3,2) 141 149 195 209
(2,1.8,1.7) (3,3,2) 202 218 285 301
(2,1.5,1.7) (3,3,2) 314 336 506 512
(2,1.5,1.7) (3,3,1.5) 498 520 680 699
(2,1.5,1.7) (3,3,1) 792 821 902 909
(2,1.3,1.7) (3,3,1) 920 928 974 975
(2,1.3,1.7) (3,1.5,1) 982 989 998 999

Table 7 Elapsed times.

Hospitals Time to Infection in Days MLEs (x’i,l;)
1 253 294 19 373 334 238 118 240 99 167 (19, 194.5)
2 373 26 152 241 322 350 211 307 82

114 337 18 267 104 (18, 189.4)
3 146 188 304 91 121 203 264 236 207 (91, 104.6)

Notice that the samples are uncensored with (1, 1, 13) = (10, 14, 9). The MLEs are 4; = X;;, and b, =X, - Xi1)1=1,2,3, and the MLEs
for the three samples are reported in Table 7.

For testing Hy : a; = a, = a3 vs. H, ! a; # a; for some i # j, the LRT statistic A, = 9.63 and the 95th percentile of the null distribution
is 10.51. To find the approximate 95th percentile, we evaluated Q, = E(A,)/(2k — 2) = 1.105 and 1.105 X 3.5 = 1.105 X 9.488 = 10.48.
Notice that the exact and the approximate percentiles are practically the same. Furthermore, we estimated the p-value using Algorithm 2
with 1000000 runs as .069 and the p-value based on the Q,y7 distribution is also .069. Thus, at 5% level, the location parameters are not
significantly different.

For testing H, : b, = b, = bs, the statistic A, is 2.17 and the p-value based on Algorithm 1 is .385. If we use the level of significance .05, then
the exact critical value is 6.83 and Q, ¥3.95 = 1.138 X 5.99 is 6.82, which is very close to the exact one. To apply the UIT, we estimated the
5% critical value as 3.056, and the test statistic max {b;, by, b3}/ min {b,, b,, b5} = 194.5/104.6 = 1.859. To apply the iterative test procedure,
we calculated the individual test statistics F, = .944 and F; = .563. We chose the levels for the individual test as 7, = 13 = 1, = .01266 so
that o = 1 — (1 — 2 X .01266)> = .05. For these levels, the (lower, upper) critical values are (.383, 2.84) for F, and (.349, 2.36) for F;. Note
that both test statistics F, and F; fall in their corresponding acceptance intervals, and so the null hypothesis of equality of scale parameters
is accepted. Thus, all three tests indicate that H, : b, = b, = bj; is tenable.

For testing Hy : (a,,b,) = (a,,b,) = (as, bs), the statistic Ay, in (23) is 9.68 and the p-value based on (24) is .187. If we use the level of
significance .05, then the exact critical value is 13.93; the approximate critical value Q3. 95 = 1.101 X 12.59 = 13.86. Thus, homogeneity
of exponential distributions is tenable. This means that all three samples may be pooled and the pooled sample can be modeled by a single
two-parameter exponential distribution.

8. CONCLUDING REMARKS

Although several tests for comparing parameters of several two-parameter exponential distributions were proposed in the literature, none
of them is based on the likelihood approach. As the sample space of a two-parameter exponential distribution depends on an unknown
parameter, it does not satisfy all the regularity conditions. So an LRT statistic for comparing parameters does not have the asymptotic chi-
square distribution with the degrees of freedom determined by the difference between the dimensions of the parameter spaces under the
alternative and null hypotheses. We have shown in this article that the null distributions of the LRT statistics for all three problems do not
depend on any unknown parameters, and so the LRTs are exact. However, calculation of the percentiles of the LRT statistics involves sim-
ulation. Even though calculation of percentiles based on Monte Carlo simulation is not difficult, we provided closed-form approximate
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chi-square distributions for all three problems. These approximate chi-square null distributions are not only simple, but also very accu-
rate even for small samples. These approximate null distributions maybe warranted in situations where the number of distributions to be
compared is large.
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APPENDIX

Let Z; = W; + n(U; — Uy, 6; = E(Z), i = 1, .., k and g(x) = In(x). Recall that W;’s and U;’s are independent with
W~ 13 nd U~——yd i=1,..k
i 2X2r,.—2 a i Znilz’ =1,k

To find an approximation to E In(Z;), we shall use the result (see Section 2.9, [9]) that

g'6)

Eln(Z)) ~ In(6)) + Var(Z,»)T.

Recall that 1;U; ~ x2/2, or n;U; follows a standard exponential distribution. So

k
PUy sw)=1- HP(n,Ui >nu) =1—exp (—Z niu) s
i

i=1

which is the distribution function of an exponential distribution with mean 1/ Zle n;. Thus,

1 1
EUy) = —— and Var(Uy) = VA (A.1)
i=1 M (Zizl ni>
Using the above expectation, we have
n.
E(Z)=EW) +nEU;—Uy) =1, — ———, i=1,....k
M
j=1""1
To find the variance,
Var(Z;) = Var(W)) + n? [Var(U,) + Var(Uy)) — 2 Cov(U;, Uyyy)] - (A.2)

To find the Cov(U;, Uy;,), we find the joint distribution of U; and Uy, as
FU,"U(I) (u,v) =P (Ui <u, Uy < v)
=P(U; <u)—P(U;<u,Uy 2v)
=PWU; <u)—PWU; L£u, U 2v,..,U, > v)
=P(U,<wy—P<U <w][]P(nU > nv)
i
=(1- e_”x”) _ (e_”xV _ e—n,u) e Z#,v ”;V_
By taking the derivative with respect to (u, v), we find the joint density as
— .MU . _Z#”,V
fU,,Um(“, V) =mne " Z n e “m
#i

which shows that U; and U, are independent. Using this fact in (A.2), we find

n?
Var(Z;)) =r; + —'2
k
(Zj:l ”f>
Thus,
Var(Z;)
Eln(Z)) ~ In(6)) — ——
n(Z;) =~ In(6,) 20
1 n;
= In(6) — 02| + ,
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where 6, = E(Z) =1, — ——,i=1,..., k. Using this approximation, we see that

ij=11j
k 2
)fzr,.—z/2
—E lz;riln< Z )l

k

=21 [$(r; — 1) — EIn(Z)]

i=1

E(A,)

k
=23 90— D =) + 5 —— (A3)

k 2
i=1 ! .
(Zj:l ”J)

o
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