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Prediction intervals for hypergeometric distributions
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ABSTRACT
The problem of constructing prediction intervals (PIs) for a future
sample from a hypergeometric distribution is addressed. Simple
closed-form approximate PIs based on the Wald approach, the joint
sampling approach, and a fiducial approach are proposed and com-
pared in terms of coverage probability and precision. Construction of
the proposed PIs are illustrated using an example.
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1. Introduction

Predicting the values of a future random variable on the basis of the past and current
samples is an important problem in statistical applications. The prediction problem has
been well addressed for various continuous probability models and other parametric
models such as linear regression and mixed models. However, compared with the con-
tinuous distributions, only limited investigations for discrete distributions are available.
Prediction intervals (PIs) for a discrete distribution are used to predict the number of
events that may occur in the future. An exact PI for a binomial random variable was
proposed by Thatcher (1964). As the exact PI is not simple to compute and too conser-
vative, simple closed-form PI for a binomial random variable is proposed in Nelson
(1982) was widely used. Alternative closed-form PIs which are better than the one in
Nelson (1982) were proposed in Wang (2010) and Krishnamoorthy and Peng (2011).
In the context of estimating the proportion in a finite population, hypergeometric

distribution was used by many authors to develop confidence intervals (CIs). Recently,
Wang (2015) have proposed methods of obtaining exact one-sided confidence limits
and exact two-sided CIs for the number items with an attribute of interest in a finite
lot. He also addressed the problem of interval estimating the finite population size given
other parameters and a sample. Young (2015) has obtained one-sided as well as two-
sided tolerance intervals for a hypergeometric distribution. However, to the best of our
knowledge the prediction problem involving a hypergeometric distribution is never
addressed in the literature. One could use the binomial PI for the hypergeometric case
provided the population is sufficiently large. Burstein (1975) has noted that the bino-
mial-based results for a hypergeometric distribution could be inaccurate unless the
population size is around 5000 or more. The prediction problem that we shall address
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can be described as follows. Consider a hypergeometric distribution with a lot size Nx

and unknown number of defective items Mx. Let X be the number of defective items in
a sample of nx drawn from the lot without replacement. For convenience, we write
X�Hðnx;Mx;NxÞ: The probability mass function of X is given by

P X ¼ xjnx;Mx;Nxð Þ ¼
Mx

x

� �
Nx�Mx

nx�x

� �
Nx

nx

� � ; Lx � x � Ux (1)

where Lx ¼ maxf0;Mx�Nx þ nxg and Ux ¼ minfnx;Mxg: Let Y �Hðny;My;NyÞ inde-
pendently of X. For a given number of defective items X in a sample of size nx, the
problem is to find a PI for Y under the assumption that Mx=Nx ¼ My=Ny. Specifically,
for a given confidence level 1�a, the problem is to find two integer valued functions
LðX; nx;Nx; ny;Ny; aÞ and UðX; nx;Nx; ny;Ny; aÞ so that

PX;Y L X; nx;Nx; ny;Ny; að Þ � Y � U X; nx;Nx; ny;Ny; að Þð Þ � 1�a

for all Mx.
In the following section, we describe the PIs based on the Wald method, the joint

sampling approach and the generalized fiducial method introduced by Hannig (2009).
In Section 3, we compare all three PIs in terms of coverage probability and precision.
The methods are illustrated using a real life example in Section 4. Some concluding
remarks are given in Section 5.

2. Prediction intervals

To describe various prediction intervals in the sequel, let p ¼ Mx=Nx ¼ My=Ny and the

finite population correction factor Rx ¼ Nx�nx
Nx�1 so that VarðXÞ ¼ nxpð1�pÞRx and

VarðYÞ ¼ nypð1�pÞRy; where Ry is Rx with x replaced by y.

2.1. Wald prediction interval

Let bpx ¼ X=nx and bYx ¼ nybpx. The Wald-type CI for p is constructed on the basis of
the result that

bpx�pxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar bpx� �q ¼ bpx�pxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rxbpx 1�bpx� �

=nx
q

has the standard normal distribution for large nx. Similarly, we can find the Wald-type
PI on the basis of the asymptotic result that

Z ¼
bYx�YffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar bYx � Y
� �q ¼ nyX�nxYð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar nyX�nxYð Þ

q �N 0; 1ð Þ (2)

where dVarðnyX�nxYÞ ¼ nxnybpxð1�bpxÞðnyRx þ nxRyÞ. Let qa ¼ z1�a=2 denote the
100ð1�a=2Þ percentile of the standard normal distribution. The Wald PI is formed by
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the two roots of the equation jZj ¼ qa, and they can be expressed as

Lw;Uw½ � ¼ bYx6
qaffiffiffiffiffi
nx

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nybpx 1�bpx� �

nyRx þ nxRyð Þ
q

(3)

As Y assumes only non negative integers, Lw and Uw can be rounded to their nearest
integers to have a proper PI.

2.2. Joint sampling approach

This approach is based on the asymptotic joint sampling distribution of a quantity
which is a function of bpxy ¼ ðX þ YÞ=ðnx þ nyÞ. This type of approach was used by

Brown (1982) to obtain a solution to a statistical calibration problem, and
Krishnamoorthy and Peng (2011) used such joint sampling approach to find a PI for

the binomial case. To outline this approach, let bYxy ¼ nybpxy. Consider the quantity

bYxy�Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var bYxy�Y

� �r ¼ nyX�nxYffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var nyX�nxYð Þp (4)

where VarðnyX�nxYÞ ¼ nxnypð1�pÞðnyRx þ nxRyÞ: By replacing this variance by its

estimate gVarðnyX�nxYÞ ¼ nxnybpxyð1�bpxyÞðnyRx þ nxRyÞ; we can find a PI based on the

result that S ¼ ðnyX�nxYÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffigVarðnyX�nxYÞ

q
�Nð0; 1Þ asymptotically. Specifically, the

PI is determined by the roots (with respect to Y) of the equation S2 ¼ q2a, where qa is as
defined in Equation (3). Notice that the equation

S2 ¼ nyX�nxYð Þ2gVar nyX � nxYð Þ
¼ q2a (5)

is quadratic in Y, and the two roots of this equation form a PI for Y. After some alge-
braic manipulation and letting C ¼ ðnyRX þ nxRyÞ=ðnx þ nyÞ, the two roots of the
Equation (5), denoted by Lj and Uj, can be expressed as

Lj ¼
bYx 1� q2aC

nxþny

� �
þ q2anyC

2nx
�qa

Ry

nx
þ Rx

ny

� �bYx ny � bYx

� �
þ q2an

2
xC

2

4n2x

	 
1=2
1þ q2anyC

nx nxþnyð Þ
(6)

and

Uj ¼
bYx 1� q2aC

nxþny

� �
þ q2anyC

2nx
þ qa

Ry

nx
þ Rx

ny

� �bYx ny � bYx

� �
þ q2an

2
xC

2

4n2x

	 
1=2
1þ q2anyC

nx nxþnyð Þ
(7)

where bYx ¼ nybpx and q2a ¼ z21�a=2. To make the PI to be integer valued, we shall use

½dLje; bUjc�, where dxe is the ceiling function and bxc is the floor function, as a PI for
Y, and refer to this PI as JS-PI.
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Remark. To tackle the extreme cases of X¼ 0 and X ¼ nx, both Wald and the score PIs
are computed as follows. When X¼ 0 is observed, we compute both PIs using X¼ 0.5.
We also note that both PIs satisfy a natural property that if ½L;U� is a PI for Y based
on X, then ½ny�U; ny�L� is a PI for ny�Y . To satisfy this natural requirement at the
extreme outcomes, the PI when X ¼ nx is computed as ½ny�U0:5; ny�L0:5�, where
½L0:5;U0:5� is the PI at X¼ 0.5.

2.3. Fiducial prediction intervals

A fiducial distribution for a parameter is essentially a posterior distribution of the par-
ameter without assuming a prior on the parameter (Efron 1998). There are a few differ-
ent approaches of finding a fiducial distribution. A fiducial distribution for a parameter
can be obtained by inverting a hypothesis test as suggested by Fisher (1935), using a
functional model relationship between the statistics and the parameters (Dawid and
Stone 1982) or by deducing from a random number generating method (Hannig 2009).
A CI for Mx or a PI for a future sample can be obtained from a fiducial distribution of
Mx. To obtain a fiducial distribution for Mx, we shall use the general idea of Hannig
(2009) and Hannig et al. (2016) to develop a fiducial distribution for Mx, and then use
the approach of Wang et al. (2012) to find a fiducial PI. To identify the data generating
mechanism in a hypergeometric distribution, we note that x� is a pseudo random num-
ber from the Hðnx;Mx;NxÞ distribution if

P X � x��1jnx;Mx;Nxð Þ<U � P X � x�jnx;Mx;Nxð Þ
where U is a uniform(0,1) random variable (e.g., see Casella and Berger 2001, 249). Let
x be an observed value of X�Hðnx;Mx;NxÞ. For a given x, the fiducial distribution of
Mx is implicitly determined by

P X � x�1jnx;Mx;Nxð Þ<U � P X � xjnx;Mx;Nxð Þ (8)

where U has a uniform(0, 1) distribution. For a given x, a sample from the fiducial dis-
tribution of Mx can be obtained by generating U1; :::;UN and then finding the values of
Mx that satisfy the above inequality for each Ui. A confidence interval for Mx or a pre-
diction interval for a future observation can be obtained based on such fiducial samples.
To obtain a fiducial sample based on ðx; nx;NxÞ, we first note that the pmf in

Equation (1) is valid only when Mx 2 ½x; xþ Nx�nx�. Furthermore, for a given
ðx; nx;Nx;UÞ, more than one Mx 2 ½x; x þ Nx�nx� satisfy the inequality Equation (8).
As suggested by Hannig et al. (2016), we can select one of the values of Mx that satisfy
the inequality at random. Using these facts, the fiducial distribution of Mx can be
obtained empirically by generating uniform(0, 1) random numbers U1; :::;UN and Mx’s
as follows. For a generated uniform(0, 1) random number Ui, select one element from
the set

Mx : P X � x�1jnx;Mx;Nxð Þ<Ui � P X � xjnx;Mx;Nxð Þ� �
(9)

at random and refer to the selected element as M�
xi . Then the fiducial sample is given

by fM�
x1 ; :::;M

�
xNg: Following Wang et al. (2012), a predicting fiducial distribution for a

future random variable from Hðny;My;NyÞ is determined by the sample Y�
1 ;Y

�
2 ; :::;Y

�
N ,

where
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Y�
i �H ny;M

�
yi ;Ny

� �
; i ¼ 1; 2; :::;N

and M�
yi ¼ ðM�

xi=NxÞNy. The lower and upper 100a percentiles of the Y�
i ’s is a

100ð1�2aÞ% fiducial prediction interval for Y �Hðny;My;NyÞ: Our numerical investiga-
tion indicated that a stable PI for Y can be obtained by using N¼ 20, 000 runs or more.
That is, for a given ðx; nx;NxÞ, PIs based on different simulations will be similar if
N¼ 20, 000 or larger is used. For a given ðx; nx;Nx; ny;NyÞ and a nominal confidence
level 1�2a, the R code given in the Appendix can be used to find a fiducial PI
for Y �Hðny;My;NyÞ.

3. Coverage and precision studies

Let ½Lðx; nx;Nx; ny;Ny; aÞ;Uðx; nx;Nx; ny;Ny; aÞ� be a 100ð1�aÞ% PI for a future
Y �Hðny;My;NyÞ. For some assumed values of Mx, the exact coverage probability of
the PI can be evaluated using the following expression.

XUx

x¼Lx

XUy

y¼Ly

f xjnx;Mx;Nxð Þf yjny;My;Ny
� �

I L x;nx;Nx;ny;Ny;að Þ;U x;nx;Nx;ny;Ny;að Þ½ � yð Þ (10)

where My is the nearest integer to ðMx=NxÞNy and IAðyÞ is the indicator function. The
expected width of the PI can be evaluated using the above expression with the indicator
function replaced by Uðx; nx;Nx; ny;Ny; aÞ�Lðx; nx;Nx; ny;Ny; aÞ. The coverage prob-
ability of a good PI should be close to the nominal level 1�a:
The coverage probabilities of the Wald PI, PI based on the joint sampling approach

(JS-PI) and the fiducial PI are evaluated as a function of p ¼ Mx=Nx and for various
combinations of ðnx;Nx; ny;NyÞ. The calculated coverage probabilities are plotted in the
left panel of Figure 1 and the expected widths corresponding to the same combination
of ðnx;Nx; ny;NyÞ are plotted in the right panel of Figure 1. Examination of the plots in
Figure 1 clearly indicates that the fiducial PI is in general conservative having coverage
probabilities greater than or equal to the nominal level.95 in all cases. The Wald PI could
be very liberal if nx is smaller than ny (see the plots for ðnx;Nx; ny;NyÞ ¼ ð6; 300; 10; 300Þ
and ð10; 200; 50; 200Þ) and conservative if nx is larger than ny (see the plots for
ðnx;Nx; ny;NyÞ ¼ ð30; 200; 6; 400Þ and ð50; 200; 10; 200Þ). We also notice that all three PIs
are too conservative when p ¼ Mx=Nx is near boundaries. On the basis of all six coverage
plots, we see that the JS-PI is the only PI which is neither too conservative nor too liberal,
having coverage probabilities closer to the nominal level than other two PIs.
Regarding precisions of the PIs, we see from the plots on the right column of Figure 1

that the expected widths of the JS-PI and the fiducial PI are in agreement with their
coverage properties. The expected widths of these two PIs are approximately the same
when their coverage probabilities are approximately the same; see the plots for
ðnx;Nx; ny;NyÞ ¼ ð30; 500; 50; 500Þ. In other situations where the fiducial CI is conserva-
tive, it is wider than the JS-PI when p 2 ½:25; :75� for some cases and for all p in other
cases; for example, see the plot for ðnx;Nx; ny;NyÞ ¼ ð6; 300; 10; 300Þ, (10,300,10,300) and
(30,200,6,400). The Wald PI appears to be shorter than the other two PIs when p is near
boundary. This Wald PI has a peculiar property; for some values of p, it is too liberal
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having coverage probabilities appreciably smaller than the nominal level, but its expected
widths for the same values of p are larger than those of other two PIs; see the plots for
ðnx;Nx; ny;NyÞ ¼ ð6; 300; 10; 300Þ and (10, 200, 50, 200).
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Figure 1. Coverage probabilities and expected widths 95% prediction intervals as a function
of p ¼ Mx=Nx .
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On an overall basis, the JS-PI is the one having coverage probabilities close to the
nominal level with shorter expected widths in most cases. The fiducial PI appears to
guarantee coverage probabilities in most cases.
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Figure 1. Continued.
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4. An example

To illustrate the prediction interval methods in the preceding sections, we shall adapt
the example in Krishnamoorthy and Thomson (2002). This example involves the prob-
lem of estimating/predicting the the number of unacceptable cans produced by canning
machines which are identical with respect to manufacturer and model. A can is deter-
mined to be unacceptable (for sale) if the content of the can weighs less than 95% of
the labeled weight. Inspection of a sample nx ¼ 20 cans from a lot of Nx ¼ 200 cans
produced by Machine 1 revealed x¼ 2 unacceptable cans.
Suppose it is desired to predict the number of unacceptable cans Y in a future sample

of size ny ¼ 40 cans from a lot of Ny ¼ 500 cans produced by Machine 2. For this case,
the 95% Wald PI is [0, 10] and the 95% JS-PI is [1, 12] and the 95% fiducial PI is [0,
13]. Notice that the Wald PI could be very liberal and so it produced a shorter PI
whereas the fiducial method is conservative and produced a PI that is wider than the
other two PIs.

5. Summary and conclusions

In this article, we have investigated the PIs for a future random variable from a hyper-
geometric distribution based on the Wald approach, the joint sampling approach and
the fiducial approach. For interval estimation of parameters of discrete distributions, it
is known that the Wald approach produces confidence intervals that are too liberal
even for somewhat large samples (Brown, Cai, and DasGupta, 2001). On the other
hand, the joint sampling approach produces PIs that are very satisfactory in terms of
coverage probability and precision. Even though calculation of the fiducial PIs is some-
what involved, it appears to guarantee coverage probabilities for all cases. Our R code
can be used to calculate fiducial PI in an easy manner. We also note that this fiducial
PI is too conservative at the boundaries like other interval estimates for discrete distri-
butions such as the exact CI for a binomial proportion (see Agresti and Coull 1988).
Nevertheless, an exact PI with the coverage probabilities very close to the nominal level
is still desirable.
In general, fiducial PI maybe recommended for applications if the coverage require-

ment is important. The JS-PI is recommended for simplicity and precision despite being
a little liberal in some cases.
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Appendix

R code for computing the fiducial prediction intervals based on ðx; nx;Nx; ny;NyÞ and the nom-
inal confidence level 1�2a.

R code
---------------------------------------------------------
mn¼x; mx¼xþNx-nx; Mxu¼c()
sq¼seq(mn, mx,1) # support of the fiducial distribution of Mx
ps0¼phyper(x-1, sq, Nx-sq, nx); ps1¼phyper(x, sq, Nx-sq, nx)
u¼runif(N) # N¼number of uniform variates
for(j in 1:N){
ind¼which(ps0<u[j] & u[j] <¼ ps1)
if(length(ind) ¼¼ 1){
Mxu[j] ¼ sq[ind]}else{
Mxu[j] ¼ sample(sq[ind],1)}}
Myu ¼ (Mxu/Nx)�Ny
PI¼quantile(rhyper(N, Myu, Ny-Myu, ny), c(alpha,1-alpha))
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