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ABSTRACT
The problems of interval estimating the parameters and the mean
of a two-parameter Rayleigh distribution are considered. We pro-
pose pivotal-based methods for constructing confidence intervals
for themean, quantiles, survival probability and for constructing pre-
diction intervals for the mean of a future sample. Pivotal quantities
based on the maximum likelihood estimates (MLEs), moment esti-
mates (MEs) and the L-moments estimates (L-MEs) are proposed.
Interval estimates based on them are compared viaMonte Carlo sim-
ulation. Comparison studies indicate that the results based on the
MEs and the L-MEs are very similar. The results based on the MLEs
are slightly better than those based on the MEs and the L-MEs for
small tomoderate sample sizes. Themethods are illustrated using an
example involving lifetime data.
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1. Introduction

The Rayleigh distribution with a single scale parameter has received much attention in
the literature and it has been used in physics and engineering. Siddiqui [13] has noted
that the one-parameter Rayleigh distribution arises as an asymptotic distribution in some
two-dimensional random walk problems. Inference on the scale parameter is routinely
obtained on the basis of square transformed data which can be regarded as a sample from
an exponential distribution with a rate parameter [14]. For a Rayleigh distribution with
a single scale parameter, Dey and Dey [2,3], Prakash [10] and Kotb and Raqab [7] have
proposed inferential methods under different sampling designs such as ranked set sam-
pling and progressively type II censored samples. Recently, there has been interest among
researchers in developing inferential methods for Rayleigh distributions with an additional
location or threshold parameter. Dey, Dey and Kundu [4] have noted the applicability of a
two-parameter Rayleigh distribution to model failure time data. In particular, they noted
that the hazard function is an increasing function of time, as a result, the distribution has
attracted several researchers as such hazard functions commonly occur in failure time data
analysis.

To describe some available estimates, we note that the probability density function
(pdf) of a two-parameter Rayleigh distribution with location parameter a and the scale

CONTACT K. Krishnamoorthy krishna@louisiana.edu

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02664763.2019.1634681&domain=pdf&date_stamp=2019-11-11
mailto:krishna@louisiana.edu


JOURNAL OF APPLIED STATISTICS 161

parameter b is given by

f (x | a, b) = (x − a)
b2

e−(1/2)((x−a)/b)2 , x > a, b > 0. (1)

The cumulative distribution function (cdf) is given by

F(x | a, b) = 1 − e−(1/2)((x−a)/b)2 , x > a, b > 0. (2)

We shall denote the above distribution by Rayleigh (a, b).
Regarding inference on two-parameter Rayleigh distributions, Dey, Dey and Kundu [4]

have derived the maximum likelihood estimates, moment estimates, and L-moment esti-
mates, and evaluated their merits via Monte Carlo simulation. These authors have also
proposed credible sets for a function of the location and scale parameters using a gamma
prior and a non-proper uniform prior. It should be noted that the credible set is not in
closed-form and it has to be obtained using the importance sampling method. Dey, Dey
and Kundu [5] have extended these results when the data are progressively type II cen-
sored. Seo et al. [12] have developed exact confidence intervals (CIs) for the parameters a
and b based on the upper record values. The exact CIs were obtained on the basis of some
pivotal quantities (involving upper record values) whose distributions are known.

In failure time data analysis, it is of importance to find interval estimates for the mean,
quantile, and survival probability, and prediction intervals (PIs) for the mean of a future
sample. In this regard, we investigate the interval estimates based on the pivotal quanti-
ties involving equivariant estimators. The moment estimates (MEs), L-moments estimates
(L-MEs) and the MLEs are all equivariant. Among these three equivariant estimates, the
MLEs can not be expressed in closed-form and they can be obtained only by numerically
while theMEs are some simple functions of the sample mean and variance, and the L-MEs
are also some simple functions of order statistics. As the MEs and the L-MEs are easy to
obtain, it is of interest to compare the results based on the pivotal quantities involving dif-
ferent equivariant estimates for various aforementioned problems. Furthermore, we noted
that the derivation of the MLEs that is available in the literature is in error. Note that the
pdf is defined only for a< x, and so the MLE of a should maximize the profile likelihood
function subject to the constraint that a is less than the smallest order statistic. However,
the proposed method in Dey, Dey and Kundu [4] could produce the MLE of the threshold
parameter a that is greater than the smallest order statistic and/or is not the maxima of
the profile likelihood function. Our derivation in this paper produce the MLE of a that is
always less than the smallest order statistics andmaximizes the profile likelihood function.

The rest of the article is organized as follows. In the following section, we provide the
calculation of theMEs, L-MEs and theMLEs, and present pivotal quantities based on them.
In Section 3, we consider interval estimation of the mean by proposing CIs based on the
different pivotal quantities and compare them in terms of precision. As the distributions of
the pivotal quantities are not in closed-form, the CIs can be obtained only by Monte Carlo
simulation. In Section 4, we address the problems of constructing one-sided tolerance lim-
its and constructing confidence limits for a survival probability. The problemof finding a PI
for themean of a future sample is considered in Section 5. For all the problems, we compare
the results on the basis of different equivariant estimators. Our comparison studies indicate
that the results based on the MEs and the L-MEs are very similar, and interval estimates
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based on theMLEs are slightly better than those based on theMEs. In Section 6, we briefly
outline pivotal-based approach for type II censored case, and illustrate themethod for find-
ing confidence intervals for the mean. All the interval estimation methods are illustrated
using a data set of lifetimes of drills in Section 7. Some concluding remarks are given in
Section 8.

2. Point estimates and pivotal quantities

Let X1, . . . ,Xn be a sample from a two-parameter Rayleigh distribution. Let X̄ denote the
sample mean and define the sample variance as S2 = (1/(n − 1))

∑n
i=1(Xi − X̄)2.

2.1. Moment estimates

To obtain moment estimates (MEs) for a and b, we note that

μ′
k = E(Xk) and μk,a = E(X − a)k = 2k/2bk�(k/2 + 1), k = 1, 2, ..

Using the above results, it is easy to check that

E(X) = a +
√

π

2
b and Var(X) = E(X2) − (E(X))2 = 4 − π

2
b2. (3)

Replacing E(X) by X̄ and Var(X) by the sample variance S2 in the above equation and then
solving the equations for a and b, Dey et al. [4] have obtained moment estimates as

â = X̄ −
√

π

4 − π
S and b̂ =

√
2

4 − π
S. (4)

Dey et al. have also noted that theMEs are consistent to the corresponding estimators, and
they are asymptotically bivariate normally distributed.

2.2. L-Moments estimates

Dey et al. [4] have also derived L-moments estimates using the method of Hosking [6]. To
write these estimates, let Xi:n denotes the ith order statistic for a sample of size n. Let

l1 = 1
n

n∑
i=1

Xi:n and l2 = 2
n(n − 1)

n∑
i=1

(i − 1)Xi:n − l1.

In terms of l1 and l2 the L-moments estimates can be written as

âl = l1 −
√
2√

2 − 1
l2 and b̂l = l2

�(3/2)(
√
2 − 1)

.

In the sequel, we shall denote the L-moments estimates by L-MEs.
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2.3. Maximum likelihood estimates

For a given data X1, . . . ,Xn, the likelihood function can be expressed as

L(a, b |X) = 1
b2n

n∏
i=1

(Xi − a) exp

[
−1
2

(
Xi − a

b

)2
]
I[X(1) > a], (5)

where I[x] is the indicator function and X(1) = min{X1, . . . ,Xn}. Letting θ = b2, the
log-likelihood function, without the indicator function, can be expressed as

l(a, θ |X) = −n ln θ +
n∑
i=1

ln(Xi − a) − 1
2θ

n∑
i=1

(Xi − a)2.

The partial derivative ∂ l(a, θ |X)/∂θ = 0 yields θ = ∑n
i=1(Xi − a)2/(2n). After replacing

θ in l(a, θ)with this expression,we obtain the profile log-likelihood function, after omitting
the constant term, as

l(a |X) =
n∑
i=1

ln

[
(Xi − a)∑n
j=1(Xj − a)2

]
. (6)

Using ∂ l(a |X)/∂a = 0, we see that the MLE of a is the root of the equation

h(a |X) = 2n2(X̄ − a)∑n
i=1(Xi − a)2

−
n∑

i=1
(Xi − a)−1 = 0. (7)

To solve the above equation numerically, Dey, Dey and Kundu [4] have proposed a fixed
point scheme. Our investigation, however, indicates that the fixed point scheme does not
converge. Alternatively, we find the MLE of a by maximizing the profile log-likelihood
function l(a) in (6) over a < X(1). As shown in the Appendix 1,

P
(
X(1) − 12b̂/

√
n ≤ a ≤ X(1)

)
≈ 1, for n ≥ 3, (8)

where b̂ is themoment estimate of b given in (4). So theMLE of a lies in the interval (X(1) −
12b̂/

√
n, X(1)), and by optimizing l(a |X) in (6) over a ∈ (X(1) − 12b̂/

√
n, X(1)), theMLE

of a can be obtained (e.g. R function optimize()). Equivalently, the MLE of a can also be
obtained as the root of the equation h(a |X) = 0 using the interval (X(1) − 12b̂/

√
n, X(1))

as a root bracketing interval (e.g. R function uniroot()). Let ã denote the MLE of a thus
obtained. Then the MLE of θ is given by

θ̃ = b̃2 = 1
2n

n∑
i=1

(Xi − ã)2.
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2.4. Pivotal quantities

Let âe and b̂e be equivariant estimators of a and b, respectively. Then (âe − a)/b and b̂e/b
are pivotal quantities (see [9], Theorem E2). As a consequence,

âe − a
b

∼ â∗
e and

b̂e
b

∼ b̂∗
e , (9)

where the notation ‘∼ ’ means ‘distributed as’ and â∗
e and b̂∗

e are the equivariant estimates
based on a sample of size n from the Rayleigh distribution with a=0 and b=1.

It can be easily verified that the MEs, L-MEs and theMLEs are the location-scale equiv-
ariant, and the pivotal quantities based on them can be used to find confidence intervals
for the parameters, mean and population quantiles. Let us refer to the pivotal quantities
based on theMEs, L-MEs and theMLEs as the ‘ME-pivot,’ ‘L-ME-pivot,’ and ‘MLE-pivot,’
respectively.

3. Confidence interval for themean

The mean of the Rayleigh(a, b) distribution (see (3)) is given by

a + cb, where c =
√

π

2
. (10)

The quantity

un = a + cb − âe
b̂e

= a − âe
b̂e

+ c
b

b̂e
∼ c − â∗

e

b̂∗
e

,

where â∗
e and b̂∗

e are as defined in (9), is a pivotal quantity. If un;α denotes the 100α
percentile of un, then (

âe + un;α b̂e, âe + un;1−α b̂e
)

(11)

is a 100(1 − 2α)% CI for the mean.
As all the proposed estimates are equivariant, the CIs for the mean based on the MLE-

pivot, L-ME-pivot, and the ME-pivot are exact in the sense that the coverage probabilities
are equal to the nominal level for all parameter values. However, the precisions of these
three CIs could be different.We estimated the expected widths of the CIs based on all three
pivots and reported them in Table 1. As the expected width of an equivariant CI does not
depend on the location parameter a, without loss of generality, we can assume a to be zero
when comparing CIs with respect to expected width. Examination of the expected widths
clearly indicates that the ME-CIs and the L-ME CIs have practically the same expected
width for all the cases considered in Table 1. Furthermore, the expected widths of MLE
CIs are slightly shorter than the other two CIs.

Even though ME CIs and the L-ME CIs are simple to compute, the expected widths of
theMLECIs are very less than or equal to those of the other twoCIs, and sowe provide per-
centiles to compute 90, 95 and 99 percent MLE CIs for the mean of a Rayleigh distribution
in Table 2. Details of calculation along with R code are given in Appendix 2.
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Table 1. Expectedwidths of 95%CIs based on theME-pivot, L-ME pivot and theMLE-pivot for themean.

n= 5 n= 10 n= 20 n= 30

b ME L-ME MLE ME L-ME MLE ME L-ME MLE ME L-ME MLE

1 1.62 1.62 1.60 0.94 0.94 0.93 0.61 0.62 0.60 0.48 0.48 0.48
2 3.25 3.25 3.20 1.90 1.90 1.85 1.24 1.24 1.20 0.98 0.98 0.96
3 4.85 4.85 4.82 2.81 2.80 2.75 1.88 1.87 1.81 1.47 1.47 1.44
4 6.50 6.49 6.36 3.78 3.78 3.69 2.49 2.46 2.40 1.97 1.97 1.92
5 8.05 8.05 7.93 4.66 4.70 4.60 3.07 3.08 2.99 2.44 2.44 2.39

Table 2. Percentiles for computing 90%, 95% and 99% CIs for the mean based on the MLE-pivot.

n 5% 95% 2.5% 97.5% .5% 99.5%

4 .472 2.43 .219 2.90 −.642 4.42
5 .635 2.14 .452 2.44 −.046 3.25
6 .728 1.98 .595 2.22 .246 2.86
7 .790 1.88 .679 2.07 .398 2.55
8 .832 1.81 .735 1.97 .506 2.37
9 .863 1.76 .778 1.90 .579 2.24
10 .892 1.72 .817 1.84 .648 2.13
11 .913 1.69 .840 1.80 .678 2.06
12 .931 1.65 .865 1.76 .720 2.00
13 .945 1.63 .882 1.73 .746 1.95
14 .962 1.61 .905 1.70 .784 1.91
15 .971 1.60 .916 1.68 .801 1.87
16 .982 1.58 .930 1.66 .818 1.83
17 .992 1.57 .941 1.65 .831 1.82
18 .999 1.55 .950 1.63 .849 1.79
19 1.01 1.55 .960 1.62 .865 1.77
20 1.02 1.53 .972 1.60 .878 1.75
25 1.04 1.50 1.00 1.55 .919 1.67
30 1.06 1.48 1.02 1.52 .950 1.63
35 1.07 1.45 1.04 1.49 .977 1.59
40 1.09 1.43 1.06 1.48 .998 1.56
45 1.10 1.43 1.07 1.47 1.01 1.55
50 1.11 1.42 1.08 1.45 1.03 1.52
60 1.12 1.40 1.09 1.43 1.05 1.50
70 1.13 1.39 1.11 1.42 1.06 1.48
80 1.14 1.38 1.12 1.41 1.08 1.46
90 1.14 1.37 1.12 1.40 1.09 1.45
100 1.15 1.36 1.13 1.39 1.09 1.43

4. One-sided tolerance limits and survival probability

One-sided tolerance limits (TLs) are the one-sided confidence intervals for a population
quantile. For example, a p content – γ coverage one-sided upper TL is the 100γ% upper
confidence limit for the pth quantile of the population. From the cdf (2), it can be easily
checked that the pth quantile of a two-parameter Rayleigh distribution is given by

qp(a, b) = a + b
√

−2 ln(1 − p).

Since the above quantile is the same form as themean in (10) with c = qp(0, 1), (qp(a, b) −
âe)/b̂e ∼ (qp(0, 1) − â∗

e )/b̂∗
e , where â∗ and b̂∗ are equivariant estimators based on a sam-

ple of size n from a Rayleigh(0, 1) distribution. If kp,γ denotes the 100γ percentile of
(qp(0, 1) − â∗)/b̂∗ and p> .5, then

âe + kp,γ b̂e (12)
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Table 3. Average values of (.90, .95) one-sided tolerance limits based on the MLE-pivot, ME-pivot and
L-ME pivot.

a= 3

n= 10 n= 20

MLE ME L-ME MLE ME L-ME

b LTL UTL LTL UTL LTL UTL LTL UTL LTL UTL LTL UTL

1 3.02 5.98 2.97 6.02 2.98 6.01 3.20 5.66 3.15 5.68 3.17 5.67
1.5 3.02 7.46 2.95 7.51 2.96 7.51 3.31 6.98 3.24 7.02 3.25 7.00
2 3.03 8.95 2.91 9.04 2.95 9.03 3.41 8.32 3.32 8.34 3.33 8.36
2.5 3.04 10.5 2.95 10.5 2.94 10.5 3.51 9.64 3.39 9.69 3.41 9.68
3 3.04 11.9 2.92 12.0 2.92 12.0 3.61 10.9 3.48 11.0 3.48 11.0

is a (p, γ ) one-sided upper TL for the Rayleigh distribution. The R code for computing
CI for the mean (see Appendix 2), with a slight modification, can be used to estimate the
percentiles of (qp(0, 1) − â∗)/b̂∗. Similarly, a (p, γ ) lower TL can be expressed as

âe + k1−p,1−γ b̂e, (13)

where k1−p,1−γ is the 100(1 − γ ) percentile of (q1−p(0, 1) − â∗
e )/b̂∗

e and q1−p(0, 1) =√−2 ln p.
To choose among the MEs, L-MEs and MLEs to compute the TLs, we estimated the

average values of the (.90, .95) one-sided TLs obtained using these three estimates. These
estimated expected values are reported in Table 3 for different sample sizes. We observe
from the table that the lower TLs based on the MLEs are larger (larger is better) than those
based on the MEs and L-MEs, and the upper TLs based on the MLEs are smaller (smaller
is better) than those based on the MEs and L-MEs. The expected values in the table also
indicate that TLs based on the MEs and L-MEs are practically the same. Thus, TLs based
on the MLEs are preferable to those based on the MEs or L-MEs.

Since the TLs based on the MLEs are better than those based on the MEs and L-MEs,
we provide factors for computing (p, .95) one-sided TLs on the basis of MLEs in Table 4.
The factors are given for sample sizes ranging from 5 to 100 and p= .80,.90,.95 and .99. As
an example, the factor for computing one-sided (.90,.95) lower TL based on a sample of
size 15 is .042 and the factor for computing one-sided upper TL is 2.87.

4.1. Survival probability

For a given t>a, the survival probability is given by

τ = P(X > t | a, b) = exp
(−(t − a)2/(2b2)

)
.

In applications, a lower confidence limit for τ is used to assess the reliability, and it can
be found using a lower tolerance limit as follows. The lower tolerance limit in (13) is
determined so that

Pâe,b̂e

{
PX

(
X ≥ âe + k1−p,1−γ b̂e | âe, b̂e

)
≥ p

}
= γ . (14)
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Table 4. Factors for computing (p, .95) one-sided tolerance limits based on the MLE-pivot.

lower tolerance factor upper tolerance factor

p p

n .80 .90 .95 .99 .80 .90 .95 .99

5 −.425 −.896 −1.22 −1.67 3.43 4.35 5.18 6.73
6 −.197 −.599 −.878 −1.26 3.11 3.89 4.57 5.93
7 −.059 −.416 −.665 −1.01 2.90 3.60 4.23 5.43
8 .031 −.299 −.531 −.849 2.76 3.41 3.98 5.10
9 .115 −.209 −.430 −.729 2.66 3.27 3.82 4.86
10 .167 −.144 −.355 −.635 2.58 3.16 3.69 4.70
11 .208 −.091 −.293 −.565 2.52 3.09 3.58 4.54
12 .239 −.047 −.247 −.508 2.47 3.02 3.49 4.44
13 .266 −.012 −.207 −.459 2.42 2.96 3.43 4.33
14 .289 .018 −.168 −.423 2.39 2.92 3.37 4.26
15 .312 .042 −.134 −.386 2.35 2.87 3.31 4.19
16 .330 .067 −.115 −.355 2.33 2.84 3.28 4.14
17 .348 .089 −.095 −.331 2.31 2.81 3.23 4.09
18 .361 .100 −.069 −.306 2.29 2.79 3.21 4.03
19 .373 .119 −.057 −.286 2.27 2.75 3.17 3.99
20 .385 .133 −.044 −.269 2.25 2.73 3.14 3.96
21 .395 .145 −.025 −.252 2.23 2.71 3.12 3.93
22 .404 .158 −.014 −.240 2.22 2.69 3.10 3.91
23 .413 .167 −.001 −.227 2.21 2.67 3.07 3.87
24 .419 .177 .008 −.214 2.20 2.66 3.06 3.84
25 .428 .185 .016 −.203 2.19 2.64 3.04 3.82
30 .458 .220 .056 −.154 2.14 2.59 2.96 3.72
35 .478 .246 .085 −.126 2.11 2.54 2.92 3.66
40 .496 .265 .109 −.097 2.08 2.51 2.88 3.60
45 .506 .280 .124 −.079 2.06 2.49 2.84 3.55
50 .520 .293 .139 −.063 2.05 2.46 2.82 3.52
60 .535 .313 .160 −.038 2.02 2.43 2.78 3.46
70 .548 .327 .177 −.019 2.00 2.40 2.75 3.43
80 .557 .338 .190 −.005 1.98 2.38 2.73 3.40
90 .565 .347 .200 .007 1.97 2.37 2.71 3.37
100 .571 .355 .208 .015 1.96 2.35 2.69 3.35

Suppose p is determined so that â + k1−p,1−γ b̂ = t. Then (14) implies that

PX(X > t) ≥ p with probability γ ,

and so p is the 100γ% lower confidence limit for τ = P(X > t). To find the value of p such
that âe + k1−p,1−γ b̂e = t, recall that k1−p,1−γ is the 100(1 − γ ) percentile of (

√−2 ln p −
â∗
e )/b̂∗

e , so p is to be determined so that

100(1 − γ ) percentile of
√−2 ln p − â∗

e

b̂∗
e

= t − âe
b̂e

. (15)

The value of p that satisfies (15) can be estimated using Monte Carlo simulation and a
bisection method as shown in the following algorithm.

Algorithm 4.1:

(1) For a given sample of size n, compute the MLEs ã and b̃ and compute the estimate of
τ = P(X > t) as p0 = exp(−.5(t − ã)2/b̃2) and the value of t0 = (t − ã)/b̃.
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(2) Generate, say, 100, 000 samples each of size n from the Rayleigh distribution with a = 0
and b = 1.

(3) Calculate the MLEs ã∗
i and b̃∗

i based on the ith sample generated in the preceding step,
i = 1, . . . , 100, 000

(4) Denote the 100(1 − γ ) percentile of (
√−2 ln p − ã∗)/b̃∗ by Qp and set f (p) = Qp − t0.

Note that for a given p, Qp can be estimated using the simulated estimates ã∗ and b̃∗ in
Step 3.

(5) Using the p0 in Step 1 and p1 = .001, say, as the root bracketing values, the solution to
the equation f (p) = 0 can be found using a bisection method. The root of the equation
is a 100γ lower confidence limit for τ = P(X > t).

Note that to compute f (p) defined in the above algorithm at various values of p, we need
to carry out the calculation in Step 4 only. The bisection scheme converges in a fewer steps
with the aforementioned bracketing values in Step 5 of Algorithm 4.1.

5. Prediction intervals for themean of a future sample

To find a prediction interval (PI) for the mean of a future sample of size m from a
Rayleigh(a, b) distribution, let âe and b̂e denote the equivariant estimators based on a back-
ground sample of size n from a Rayleigh(a, b) distribution and let Ȳ denote the mean of a
future sample from the same Rayleigh(a, b) distribution. To find a PI for Ȳ , we note that

Ȳ − âe
b̂e

= (Ȳ − a)/b − (âe − a)/b

b̂e/b
∼ Ȳ∗ − â∗

e

b̂∗
e

,

where, as defined earlier, â∗
e and b̂∗

e are equivariant estimators based on a sample of size
n from the Rayleigh(0,1) distribution and Ȳ∗ is the mean of a sample of size m from the
Rayleigh(0,1) distribution. If Pα denotes 100α percentile of (Ȳ∗ − â∗

e )/b̂∗
e , then(

âe + Pα b̂e, âe + P1−α b̂e
)

is a 1 − 2α PI for a future sample mean Ȳ . Note that the percentiles of (Ȳ∗ − â∗
e )/b̂∗

e can
be estimated by Monte Carlo simulation.

To compare the PIs based on theMEs, L-MEs andMLEs, we estimated expected widths
of all three PIs for some values of n and future sample sizem, and reported them in Table 5.
We see from this table that all three PIs have some desired properties; their expectedwidths
decreasing with increasing sample sizes n and/or m. We once again see that the PIs based
on theMEs and L-MEs are very similar. Furthermore, the expected widths of the PIs based
on the MLEs are slightly smaller than those based on the MEs and L-MEs for all the cases
considered. Thus, there is a slight improvement in the precision of the MLE prediction
intervals over the other two prediction intervals.

As the PI based on theMLEs is better than other two PIs, we estimated percentiles (using
the MLE-pivot) required to compute the 95% PIs for the mean of a future sample of sizem
based on a background sample of size n for a few values of n and m and reported them in
Table 6. As an example, when n=15 andm=10, the 95% PI is given by (ã + 0.723 b̃, ã +
1.93 b̃), where ã and b̃ are the MLEs based on a background sample of size 15.
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Table 5. Expected widths of 95% PIs for the mean of a future sample of size m based on background
sample of size n.

a= 0

n = 10, m = 5 n = 10, m = 10 n = 15, m = 7 n = 15, m = 10

b MLE ME L-ME MLE ME L-ME MLE ME L-ME MLE ME L-ME

1 1.57 1.60 1.58 1.28 1.31 1.32 1.25 1.27 1.27 1.11 1.13 1.14
1.5 2.36 2.40 2.39 1.92 1.96 1.95 1.88 1.91 1.92 1.67 1.70 1.71
2 3.14 3.20 3.20 2.58 2.63 2.62 2.52 2.56 2.55 2.24 2.28 2.28
2.5 3.92 3.99 4.00 3.21 3.27 3.27 3.13 3.18 3.18 2.78 2.83 2.83
3 4.69 4.77 4.77 3.83 3.90 3.91 3.75 3.81 3.82 3.34 3.40 3.41

Table 6. Lower and upper percentiles for computing 95% PIs for the mean of a future sample of sizem
based on the background sample of size n using the MLEs.

n= 10 n= 15 n= 20 n= 25

m L U m L U m L U m L U

1 −.050 3.21 1 .054 3.01 1 .100 2.93 1 .130 2.89
3 .358 2.44 5 .583 2.11 3 .487 2.23 5 .642 2.00
5 .495 2.24 8 .683 1.97 6 .664 1.99 10 .781 1.82
7 .573 2.14 10 .723 1.93 8 .720 1.91 15 .837 1.75
9 .611 2.09 15 .779 1.85 15 .820 1.79 20 .874 1.71
11 .647 2.04 17 .790 1.84 20 .848 1.75 30 .909 1.66
15 .692 2.01 20 .802 1.82 30 .885 1.71 40 .931 1.64

6. Inference based on a type II censored sample

If the samples are type II censored, then the pivotal quantities based on equivariant estima-
tors are still valid, and so the pivotal-based inference can be obtained in a straightforward
manner. The properties of pivot-based procedures for type II censored samples should be
similar to those of the complete sample case. In type I censoring, failures are recorded
until a mission time, and so the number of failed items r in a random sample is a random
variable. Because the distribution of r depends on the parameters, the pivotal quantities
given earlier are no longer valid for the type I censored samples. However, we can use the
pivotal quantities for type II censored samples as approximations for the type I censored
samples [11].

In the following, we shall provide a method of obtaining the MLEs based on a type II
censored sample. Let X(1) < · · · < X(r) be a set of failure times recorded from a sample of
n test items. After omitting the indicator function I[X(1) > a], the log-likelihood function
can be expressed as

ln L = −r ln θ +
r∑

i=1
ln(X(i) − a) − 1

2θ

n∑
i=1

(X∗
i − a)2,

where θ = b2, X∗
i = X(i) for i = 1, . . . , r and X∗

i = X(r) for i = r + 1, . . . , n.
The equation ∂ ln L/∂θ = 0 yields θ = ∑n

i=1(X
∗
i − a)2/(2r). Using this expression for

θ in ∂ ln L/∂a = 0, we see that the MLE of a is the solution of the equation

g(a) = 2r
∑n

i=1(X
∗
i − a)∑n

i=1(X
∗
i − a)2

−
r∑

i=1

1
X∗
i − a

= 0.
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Table 7. Percentiles to compute 90% CIs for the mean based on censored samples.

n = 10 n = 15 n = 20 n = 30

r 5% 95% r 5% 95% r 5% 95% r 5% 95%

3 .898 5.24 3 .936 5.88 4 .955 3.75 10 1.02 1.91
5 .894 2.50 5 .945 2.71 7 .981 2.18 13 1.03 1.74
7 .893 1.98 8 .962 1.95 10 .995 1.83 17 1.04 1.62
9 .892 1.78 10 .967 1.78 13 1.02 1.68 20 1.05 1.57

13 .972 1.65 15 1.02 1.62 23 1.06 1.53
17 1.01 1.58 27 1.06 1.49

As shown in the uncensored case, it can be shown that

P
(
X(1) − 12b̂r/

√
r ≤ a ≤ X(1)

)
≈ 1, for r ≥ 3, (16)

where b̂r is the moment estimate of b given in (4) based on the r uncensored data.
The MLE of a can be found as the root of the equation g(a) = 0 using the interval
(X(1) − 12b̂r/

√
r, X(1)) as the root bracketing interval. The MLE of θ can be obtained as

θ̃ = ∑n
i=1(X

∗
i − ã)2/(2r), where ã is the MLE of a. The R code given in Appendix 2 can

used to find the MLEs based on a censored/uncensored sample.
Pivotal quantities for all the problems considered for the uncensored case can be readily

obtained using the above MLEs for the censored case. For the sake of completeness, in the
following, we shall describe the pivotal-based method for finding CI for the mean based
on a type II censored sample.

6.1. Confidence interval for themean based on a type II censored sample

As in the case of uncensored sample, the quantity

ur,n = a + √
π/2b − ãr
b̃r

∼
√

π/2 − ã∗
r

b̃∗
r

, (17)

where ã∗
r and b̃∗

r are the MLEs based on a censored sample of size n with r uncensored
observations from a Rayleigh(0, 1) distribution. If ur,n;α denote the 100α percentile of the
above pivotal quantity, then (ãr + ur,n;α b̃r, ãr + ur,n;1−α b̃r) is an exact 1 − 2α CI for the
mean.

For easy verification by a reader, we estimated the 5th and 95th percentiles of the quan-
tity ur,n in (17) for some values of r and n and presented them in Table 7. These percentiles
were estimated using simulation consisting of 100,000 runs. As an example, to compute a
90% CI for the mean based on a sample of size 15 with 10 uncensored observations, the
5th percentile is 0.967 and the 95th percentile is 1.78, and (ãr + 0.967b̃r, ãr + 1.78b̃r) is a
90% CI for the mean.

7. An example

In the production process of a manufacturing factory cutting machines are commonly
used, and drill is one of the important components in cutting machines. Drills of differ-
ent sizes are needed in the production process and the factory purchases the 1.88-mm
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Table 8. Lifetime (in minutes) of a sample of 1.8-mm drills.

105 105 95 87 112 80 95 97 77 103 78 87 107 96 79
91 108 97 80 76 92 85 76 96 77 80 100 94 82 104
91 95 93 99 99 94 84 99 91 85 86 79 89 89 100

Figure 1. Q-Q plot of drill lifetime data.

drills from a supplier. Lifetime data for the drills are collected during the production pro-
cess and reported in Table 1 of Chen, Wang and Ye [1]. The data are reproduced here in
Table 8. Rayleigh quantile-quantile (Q-Q) plot of the data in Figure 1 is approximately lin-
ear. The p-value of the Kolmogorov-Smirnov test for checking a Rayleigh distribution is
0.642. Thus, the data fit a Rayleigh distribution quite well.

In the following, we shall use the lifetime data in Table 8 to illustrate the construction
of various statistical intervals described earlier.

Confidence Intervals for the Mean Lifetime: The 95% CIs for the mean life of 1.88-mm
drills based on different pivotal quantities are given in the following table.

Methods est of a and b lower and upper percentiles CIs

MLE 72.84 and 14.79 1.068 and 1.466 (88.64, 94.52)
ME 72.82 and 14.84 1.069 and 1.466 (88.68, 94.58)
L-ME 72.19 and 15.34 1.071 and 1.465 (88.62, 94.66)

As the sample size of 45 is considerably large, the CIs based on all three pivots are
practically the same.

Tolerance Limits: In the following table, we provide (.90, .95) one-sided tolerance limits.
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Methods est of a and b lower and upper factors lower and upper TLs

MLE 72.84 and 14.79 .280 and 2.49 77.0 and 109.7
ME 72.82 and 14.84 .267 and 2.49 76.8 and 109.8
L-ME 72.19 and 15.34 .279 and 2.46 76.5 and 109.9

Notice that the one-sided upper TLs based on all threemethods are essentially the same.
The lower TL based on the MLEs is larger than the other two TLs. The MLE TL is 77.0
can be interpreted as follows: at least 90% of the drills will last at least 77 minutes with
confidence 95%.

Confidence Bounds for P(X > LSL): The lower specification limit (LSL) set by the factory
is 80 minutes, and it is desired to estimate the percentage of drills whose lifetime exceeds
the LSL. One could assess this percentage by finding a 95% lower confidence limit for
P(X > 80). Using Algorithm 1 with N=100,000 and MLEs, we estimated the 95% lower
confidence bound as 0.812. That is, about 81.2% of drills will last 80 minutes or more with
confidence 95%. The lower confidence bound on the basis of MEs is 0.806 and the one on
the basis of the L-moment estimates is 0.799. Notice that lower bounds based on the MEs
and L-MEs are smaller than the lower bound based on the MLEs.

Prediction Intervals: To illustrate the method of finding a PI for the mean of a future
sample, we found 95% PIs for the mean lifetime in a future sample of size m=15 drills
using different methods and presented them in the following table.

Methods est of a and b lower and upper factors PIs

MLE 72.84 and 14.79 0.880 and 1.679 (85.86, 97.67)
ME 72.82 and 14.84 0.884 and 1.676 (85.94, 97.69)
L-ME 72.19 and 15.34 0.890 and 1.672 (85.84, 97.84)

The PIs based on the MLEs, MEs and L-MEs are very close to each other. For example,
theMLEPI can be interpreted as ‘themean lifetime of a future sample of 15 drills is between
85.86 and 97.67 minutes with confidence 95%.’

It should be noted that the solutions to all of the above problems by different methods
are practically the same because the sample size 45 is considerably large.

Censored Case: To illustrate the pivotal-based approach for the censored case, we assume
that the largest 14 observations out of these 45 measurements were censored. That is,
n=45, r=31 and x(31) = 96. We computed the MLEs as âr = 72.35 and b̂r = 15.74. To
construct a 95% CI for the mean, we estimated the 2.5th percentile as 1.06 and the 97.5th
percentile as 1.54. The 95% CI for the mean is

(72.35 + 1.06 × 15.74, 72.35 + 1.54 × 15.74) = (89.03, 96.59).

The above CI is in slightly wider than the MLE-pivot CI (88.64, 94.52), which is based on
all 45 measurements.
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8. Conclusion

We have described the methods of obtaining CIs, PIs and one-sided tolerance limits on
the basis of ME-pivotal, L-ME-pivotal and MLE-pivotal quantities. For all the problems
considered, the results based on the ME- and L-ME-pivotal quantities are similar and are
easy to obtain. The results based on the MLE-pivotal quantities are slightly better than
those based on theME- and L-ME-pivotal quantities. Although, proposedmethods involve
Monte Carlo simulation, the results are exact except for the simulation errors. A simulation
consisting of 100,000 runs would suffice to obtain accurate estimates for practical applica-
tions. For example, the R code provided in Appendix 2 takes less than two seconds for
computing a 95% CI for the mean (for the example in Section 7) using simulation with
N=100,000 runs.

Solutions to two-sample problems, such as finding aCI for the difference betweenmeans
of two Rayleigh distributions or finding a lower confidence limit for a stress-strength reli-
ability parameter, can be readily obtained using the fiducial approach along the lines of
Krishnamoorthy and Xia [8] who obtained solutions to various two-sample problems
involving two-parameter exponential distributions. We are currently working on such
problems and plan to publish elsewhere.

Acknowledgements

The authors are grateful to two reviewers for providing valuable comments and suggestions which
enhanced the first version of the paper.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] P. Chen, B.X.Wang, andZ-S. Ye,Yield-based process capability indices for nonnormal continuous
data, J. Qual. Technol. 51 (2019), pp. 171–180.

[2] S. Dey and T. Dey, Rayleigh distribution revisited via extension of Jeffreys prior information and
new loss function, REVSTAT 9 (2011), pp. 213–226.

[3] S. Dey and T. Dey, Statistical inference for the Rayleigh distribution under progressively type-II
censoring with binomial removal, Appl. Math. Model. 38 (2014), pp. 974–982.

[4] S. Dey, T. Dey, and D. Kundu, Two-parameter Rayleigh distribution: Different methods of
estimation, Amer. J. Math. Management Sci. 33 (2014), pp. 55–74.

[5] T. Dey, S. Dey, and D. Kundu, On progressively type II censored two-parameter Rayleigh
distribution, Comm. Statist. Simulation Comput. 45 (2016), pp. 438–455.

[6] J.R.M. Hosking, L-moment: Analysis and estimation of distributions using linear combinations
of order statistics, J. R. Stat. Soc. Ser. B 52 (1990), pp. 105–124.

[7] M.S. Kotb and M.Z. Raqab, Bayesian inference and prediction of the Rayleigh distribution based
on ordered ranked set sampling, Comm. Statist. Simulation Comput. 47 (2018), pp. 905–923.

[8] K. Krishnamoorthy and Y. Xia, Confidence intervals for a two-parameter exponential dis-
tribution: One- and two-sample problems, Comm. Statist. Theory Methods 47 (2018), pp.
935–952.

[9] J.F. Lawless, Statistical Models and Methods for Lifetime Data, John Wiley & Sons, Hoboken,
NJ, 2003.

[10] G. Prakash, Progressively censored Rayleigh data under Bayesian estimation, Int. J. Intell.
Technol. Appl. Statist. 8 (2015), pp. 257–273.



174 K. KRISHNAMOORTHY ET AL.

[11] J. Schmee, D. Gladstein, and W. Nelson, Confidence limits of a normal distribution from singly
censored samples using maximum likelihood, Technometrics 27 (1985), pp. 119–128.

[12] J.-I. Seo, J.-W. Jeon, and S.-B. Kang, Exact interval inference for the two-parameter Rayleigh
distribution based on the upper record values, J. Probab. Statist. (2016). Available at
http://dx.doi.org/10.1155/2016/8246390.

[13] M.M. Siddiqui, Some problems connected with Rayleigh distributions, J. Res. Natl. Bur. Stand. D
Radio Propagation 66D (1962), pp. 167–174.

[14] M.M. Siddiqui, Statistical inference for Rayleigh distributions, Radio Sci. J. Res. NBS/USNC-
URSI 68D (1964), pp. 1005–1010.

Appendix 1

To prove (8), we first note that the pdf of X(1) = min{X1, . . . ,Xn} is given by

fX(1) (x) = n(x − a)
b2

exp

[
−n
2

(
x − a
b

)2
]
, x > a.

For a t> 0,

P
(
X(1) − t ≤ a ≤ X(1)

) = P
(
a ≤ X(1) ≤ a + t

)
=

∫ a+t

a
fX(1) (x) dx

=
∫ nt2/2b2

0
e−y dy

= 1 − exp
(

−1
2
nt2/b2

)
.

As 1 − e−u is practically close to unity for u ≥ 20, we see that

P
(
X(1) − t ≤ a ≤ X(1)

) ≈ 1 for t = b
√
40
n
.

Since b is usually unknown, we can find an interval of the form (X(1) − c∗b̂/
√
n ≤ a ≤ X(1)), where

b̂ is the moment estimate in (4) and c∗ is a positive constant, so that

P
(
X(1) − c∗b̂/

√
n ≤ a ≤ X(1)

)
≈ 1.

It is difficult to calculate the above probability numerically, but it can estimated as follows. Noting
that b̂ is a function of

∑n
i=1(Xi − X̄)2, it can be readily verified that the above probability, when n

is fixed, remains the same for all a and b> 0. Using simulation, we find the value c∗ = 12 for which
the probability is close to one for all n ≥ 3. For example, when c∗ = 12, the probability is .976 for
n= 3, .997 when n= 5 and .9995 when n= 7. Thus, we conclude that

P
(
X(1) − 12b̂/

√
n ≤ a ≤ X(1)

)
≈ 1, for n ≥ 3.

Appendix 2

To compute a CI for the mean on the basis of the MLEs, we shall briefly outline the computational
details on estimating the percentiles of (

√
π/2 − ã∗)/b̃∗, where ã∗ and b̃∗ are the MLEs based on

a sample of size n from a Rayleigh(0,1) distribution, using R. Applying the inverse probability inte-
gral transform to the cdf in (2), it can be easily verified that if U ∼ uniform(0, 1) distribution,
then

√−2 lnU ∼ Rayleigh(0, 1) distribution. The following R code can be used to estimate the
percentiles of (

√
π/2 − ã∗)/b̃∗ based on simulation with N runs.

http://dx.doi.org/10.1155/2016/8246390
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****************************************************
# N = number of simulation runs
u = runif(N*n)
xm = matrix(sqrt(-2*log(u)), N, n)
mle = apply(xm, 1, function(x) MLES(x))
pivot = (sqrt(pi/2)-mle[1,])/mle[2,]
perc = quantile(pivot, c(alpha,1-alpha))

*****************************************************

The interval (ã + perc[1] b̃, ã + perc[2] b̃), where ã and b̃ are the MLEs based on a sample of
size n from a Rayleigh(a, b) distribution, is a 1 − 2α CI for the mean a + √

π/2b. The MLEs can be
computed using the following R function.

****************************************************
MLES = function(x){
n = length(x)
xb = mean(x); s = sd(x)
b.hat = sqrt(2/(4-pi))*s
fn = function(a){
ssq = sum((x-a)^2)
y = 2*n*sum(x-a)/ssq-sum(1/(x-a))
return(y)
}
a0 = x[1]-12*b.hat/sqrt(n); a1 = x[1]
a.mle = uniroot(fn, interval = c(a0,a1), tol = 10^-5,

maxiter = 20)$root
b.mle = sqrt(.5*sum((x-a.mle)^2)/n)
return(c(a.mle,b.mle))
}

****************************************************
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