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Tests and Confidence Intervals for the Mean of a
Zero-Inflated Poisson Distribution

Dustin Waguespacka, K. Krishnamoorthya, and Meesook Leeb

aDepartment of Mathematics, University of Louisiana at Lafayette, Lafayette, LA, USA; bDepartment of
Mathematical Sciences, McNeese State University, Lake Charles, LA, USA

ABSTRACT
The zero-inflated Poisson (ZIP) model is often postulated for count
data that include excessive zeros. This ZIP distribution can be
regarded as the mixture of two distributions, one that degenerate at
zero and another is Poisson. Unlike the Poisson mean, the mean of
the ZIP distribution is product of the mixture parameter and the
Poisson parameter, and is not simple to make inference on the ZIP
mean. In this article, the problem of making inference on the mean
of a ZIP distribution is addressed. Confidence intervals based on the
likelihood approach and bootstrap approach are provided. Signed
likelihood ratio test for one-sided hypothesis is also developed.
Proposed methods are evaluated for their properties by Monte Carlo
simulation. Methods are illustrated using two examples.
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1. Introduction

The zero-inflated Poisson (ZIP) distribution is used to model data that fit a regular
Poisson distribution with the exception of the presence of excess zero values. The ZIP
distribution may be considered as a mixture of a distribution degenerate at zero with
probability n and a Poisson distribution with parameter k. The probability mass func-
tion (pmf) of the ZIP distribution is given by

f xjn, kð Þ ¼ nþ 1� nð Þe�k, x ¼ 0

1� nð Þ e�kkx

x! , x ¼ 1, 2, ::::

(
(1)

The mean of the distribution with the above pmf is given by 1� nð Þk: The ZIP model
was first described by Singh (1963) via a biological model in which the category “no off-
spring” combined the categories of “sterile” and “fertile with no offspring.” This situ-
ation occurs commonly in biological systems where Poisson counts only appear when
the system works properly, and additional zero counts are observed when the system
fails (Thas & Rayner, 2005). ZIP model has been routinely used for the analysis of such
data; see Leroux and Puterman (1992), Bohning et al. (1999) and Dietz and
Bohning (2000).
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Several author have addressed the problem of estimating the parameters using the
likelihood approach and the large sample theory. For example, see Gupta et al. (1996)
and the references therein. In general, the Wald approach with the maximum likelihood
estimates and their asymptotic variances was used to find confidence intervals (CIs) for
the parameters n and k. Such approach depends on the model assumption that the data
are ZIP distributed. However, there are situations where some tests indicate that the
data are ZIP distributed while other rigorous approaches indicate that the data are not
ZIP distributed. For example, Douglas et al. (1994) fitted the fetal lamb data of Leroux
and Puterman (1992), which is also given in Example 2 of this paper, to several distri-
butions and based on goodness-of-fit tests, they found that the ZIP distribution fits the
data substantially better than the Poisson distribution. The score test of Van den Broeck
(1995) also indicated that the fetal lamb data are not Poisson distributed and the
hypothesis of ZIP distribution is tenable. Thas and Rayner (2005) developed several
one-sample goodness-of-fit tests for testing ZIP against a large class of alternatives.
They have applied their three new goodness-of-fit tests to fetal lamb data with a class of
alternatives. Their tests clearly indicated that the data are not ZIP distributed. Thus, a
method of finding a CI for the mean when the model assumption is somewhat violated
is needed.
In this article, we investigate the CIs for the mean of a ZIP distribution based on the

Wald approach and the signed-likelihood ratio test. As an alternative approach, we also
propose CIs based on the bootstrap approach which are valid even when model
assumption is violated. We describe all three methods in the following sections and
compare them with respect to the coverage probabilities and expected widths. On the
basis of our simulation studies, we find that the bootstrap is not only simple to imple-
ment, but also provide CIs that are narrower than the likelihood CIs. Furthermore, the
bootstrap approach can be used to find CI on the basis of a frequency table that sum-
marizes a count data set. The methods are illustrated using two real count data.

2. Likelihood Approach

Let ni denote the observed frequency on the count i, i ¼ 0, 1, 2, :::: Let n ¼P ni denote
the sample size. Let �x ¼P ini=n denote the sample mean. The log-likelihood function
based on the data can be expressed as

ln LFð Þ / n0 ln nþ 1� nð Þe�k
� �

þ n� n0ð Þ ln 1� nð Þ � k½ � þ n�x ln kð Þ: (2)

The partial derivative @ ln LFð Þ=@n ¼ 0 yields the equation

nþ 1� nð Þe�k ¼ n0=n: (3)

Using this equation in @ ln LFð Þ=@k ¼ 0, it can be easily checked that

1� nð Þk ¼ �x: (4)

Notice that the MLE of the mean 1� nð Þk is simply the sample mean. Solving (4) for n,
and substituting the expression for n in (3), we arrive at the equation

k 1� n0
n

� �
þ �x e�k � 1ð Þ ¼ 0: (5)
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The MLE k̂ of k is the root of the above equation, which can be obtained iteratively
using the Newton-Raphson scheme

k 1ð Þ ¼ k 0ð Þ � k 0ð Þ 1� n0
n

� �� �x 1� e�k 0ð Þ� �
1� n0

n

� �� �xe�k 0ð Þ (6)

using k 0ð Þ ¼ �x= 1� n0=nð Þ as the initial value. It then follows that n̂, the MLE for n, can

be computed using k̂ in (4) as n̂ ¼ 1� �x=k̂:

2.1. Likelihood-Based Confidence Interval for the Mean

An estimate of the variance of 1� n̂
� �

k̂ can be obtained from the Fisher information

matrix. Let �̂ n̂, k̂
� �

denote the estimate of the variance of 1� n̂
� �

k̂ based on the Fisher
information matrix; see the appendix. Then an asymptotic 100 1� að Þ confidence inter-
val for the mean is given by

�x6 z1�a=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�̂ n̂, k̂
� �q

, (7)

where zp denote the pth quantile of the standard normal distribution.

2.2. Signed Likelihood Ratio Test

Let l ¼ 1� nð Þk, and consider testing the mean

H0 : l ¼ l0 vs: Ha : l > l0, (8)

where l0 is a specified value. To derive the likelihood ratio test (LRT) for the above
hypotheses, we write the log-likelihood function under H0 as

l kjl0, �xð Þ ¼ n0 ln 1� l0=kþ l0e
�k=k

� �
þ n� n0ð Þ ln l0=kð Þ � k½ � þ n�x ln kð Þ: (9)

The partial derivative @l kjl0, �xð Þ=@k ¼ 0 yields

fc kð Þ ¼ n k� l0 þ l0e
�k

� �
�x � k� 1ð Þ þ n0k k� l0 þ 1ð Þ ¼ 0:

Using

f 0c kð Þ ¼ n �x � kð Þ 1� l0e
�k

� �
þ l0 � k� 1ð Þ

h i
þ n0 2k� l0 þ 1ð Þ,

the following Newton-Raphson scheme

k 1ð Þ ¼ k 0ð Þ � fc k 0ð Þ� �
=f 0c k 0ð Þ� �

,

can be used to solve the equation fc kð Þ ¼ 0: On the basis of our extensive simulation

studies we find the initial value k 0ð Þ ¼ maxfk̂, l0= 1� n0=nð Þg makes the above scheme

converge faster. The root of the equation, denoted by k̂c, is the constrained MLE of k.

The constrained MLE of n is given by n̂c ¼ 1� l0=k̂c:
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The signed likelihood ratio test (SLRT) statistic is defined by

T ¼ sign �x � l0ð Þ �2 l k̂cjn0, �x
� �

� l k̂, n̂jn0, �x
� �� �� �1=2

, (10)

which follows a standard normal distribution for large n.

A CI for the mean can be obtained by inverting the SLRT numerically. In particular,
for a given data and the confidence level 1� að Þ, the right endpoint of the CI is deter-
mined by the value of l0 for which the test statistic T in (10) is equal to �z1�a=2 and
the left endpoint is the value of l0 for which T ¼ z1�a=2, where zp is the 100pth per-
centile of the standard normal distribution. See Examples 1 and 2.

Remark. In a general setup, DiCiccio et al. (2001) have proposed a modification to the
SLRT statistic so that the test based on the modified statistic is third-order accurate in
the sense that the approximation to the standard normal distribution is in the order

O n�3=2ð Þ: Specifically, for our present problem the modification is to standardize the

SLRT statistic T in (10) as T � dE Tð Þ
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar Tð Þ
q

, where dE Tð Þ and dVar Tð Þ are esti-

mates of the mean and variance of the statistic T, respectively. Specifically, E(T) and

Var Tð Þ are estimated using the simulated samples from the ZIP k̂c, n̂c
� �

, where k̂c and

n̂c are the constrained MLEs under the hypothesis that 1� nð Þk ¼ l0: However, in our
present problem such modification has offered a little or no improvement over the
SLRT, and so we have not pursued modification in our study.

3. Bootstrap Approach

The bootstrap inference is based on bootstrap samples, drawn with replacement, from the
given sample from a population. The bootstrap inference does not depend on the model
assumption. From the original sample of n observations, we sample with replacement a large
number of samples, each of size n. Such samples are usually referred to as the bootstrap sam-
ples. Inference on a population parameter can be obtained from the collection of statistics cal-
culated from the set of bootstrap samples. For example, appropriate percentiles of the means
of the bootstrap samples can be used to interval estimate the population mean.

3.1. Bootstrap Confidence Interval

The algorithm for implementing the bootstrap method to find a confidence interval for
the mean of a ZIP distribution is described below.

Bootstrap Algorithm

1. Arrange the data as shown below:

S ¼ 0, 0, :::, 0,|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n0

1, 1, :::, 1,|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n1

2, 2, :::, 2,|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n2

::::

2. Select a bootstrap sample (with replacement) of size n ¼P ni from the above ori-
ginal sample. For example, use sample(S, n, replace¼T) in R to select
bootstrap samples of size n
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3. Compute the mean, say, �x� of the bootstrap sample.
4. Repeat steps 2 – 3 for a large number of times, say, 10,000

The lower and upper 100a=2 percentiles of 10,000 �x�’s form a 100 1� að Þ percent confi-
dence interval for the mean 1� nð Þk:

4. Simulation Study

To judge the accuracy of the proposed CIs and to compare them, we estimated the
coverage probabilities and expected widths of the CIs for k ¼ 1, 2, :::, 5, n ¼
:1, :2, :3, :4, :5 and for some sample sizes of 30 or more. For our simulation studies, sam-
ples from a ZIP distribution were generated using the R function “rzip” which is
included in R package ZIM. The results for the likelihood CI (L-CI) and the bootstrap
CI (B-CI) are reported in Table 1. Examination of the coverage probabilities and the
expected widths clearly indicates that both CIs are very similar in terms of coverage
probabilities, having minimum coverage probability of 0.93. Coverage probabilities of
these CIs increase to the nominal level 0.95 with increasing k and/or n. Comparison of
these two CIs on the basis of expected width shows that the bootstrap CIs are shorter
than the likelihood CIs for all the cases considered. We also notice that the difference
between expected widths decreasing with increasing sample size or parameter k. As the
bootstrap CI does not depend on the model assumption, easy to compute and better
than the likelihood CI in terms of coverage probability and precision, the bootstrap CI
could be recommended for applications whether or not the data are ZIP distributed.

Table 1. Coverage probabilities and [expected widths] of 95% likelihood CIs for the mean.

n

k¼ 1 k¼ 2 k¼ 3 k¼ 4 k¼ 5

L-CI B-CI L-CI B-CI L-CI B-CI L-CI B-CI L-CI B-CI

n¼ 30
.1 .928[.709] .942[.687] .944[1.04] .940[1.02] .944[1.35] .940[1.30] .924[1.58] .941[1.56] .919[1.80] .942[1.81]
.2 .934[.705] .939[.672] .943[1.10] .942[1.04] .949[1.44] .939[1.36] .951[1.74] .949[1.67] .945[2.02] .942[1.97]
.3 .933[.692] .937[.659] .947[1.10] .945[1.04] .940[1.46] .940[1.39] .947[1.79] .940[1.74] .951[2.11] .946[2.06]
.4 .926[.667] .934[.629] .942[1.08] .940[1.02] .943[1.45] .942[1.39] .943[1.79] .938[1.74] .945[2.14] .947[2.09]
.5 .920[.631] .933[.587] .938[1.04] .943[.977] .938[1.40] .940[1.35] .935[1.75] .936[1.71] .943[2.10] .944[2.05]

n¼ 40
.1 .944[.619] .943[.600] .941[.927] .952[.887] .954[1.19] .942[1.14] .943[1.40] .944[1.36] .943[1.60] .949[1.58]
.2 .936[.616] .947[.590] .951[.961] .944[.903] .950[1.25] .942[1.19] .946[1.50] .948[1.46] .946[1.76] .944[1.72]
.3 .937[.603] .940[.574] .946[.963] .945[.905] .948[1.27] .949[1.21] .946[1.55] .945[1.50] .943[1.83] .934[1.79]
.4 .932[.581] .938[.549] .946[.946] .945[.887] .948[1.26] .944[1.20] .944[1.56] .949[1.52] .943[1.85] .940[1.83]
.5 .924[.551] .936[.517] .947[.910] .949[.853] .945[1.22] .946[1.17] .939[1.52] .945[1.48] .938[1.82] .946[1.79]

n¼ 50
.1 .942[.554] .941[.539] .947[.834] .946[.798] .953[1.06] .952[1.03] .951[1.26] .946[1.22] .946[1.45] .952[1.42]
.2 .942[.552] .948[.530] .954[.862] .946[.815] .953[1.12] .943[1.07] .947[1.35] .945[1.31] .945[1.57] .945[1.54]
.3 .943[.541] .943[.516] .952[.864] .946[.815] .952[1.14] .946[1.09] .948[1.39] .949[1.36] .946[1.64] .949[1.62]
.4 .938[.522] .950[.495] .949[.849] .948[.801] .948[1.13] .949[1.09] .944[1.40] .950[1.36] .944[1.66] .940[1.64]
.5 .940[.495] .941[.462] .947[.815] .947[.766] .946[1.10] .944[1.06] .945[1.36] .943[1.33] .942[1.64] .947[1.61]

n¼ 70
.1 .948[.470] .946[.457] .951[.707] .949[.681] .953[.903] .952[.868] .954[1.07] .947[1.04] .949[1.23] .952[1.20]
.2 .945[.468] .945[.451] .959[.730] .947[.691] .952[.948] .948[.906] .949[1.14] .948[1.11] .945[1.33] .946[1.31]
.3 .947[.459] .943[.423] .950[.733] .948[.691] .953[.962] .948[.925] .950[1.18] .944[1.15] .948[1.39] .947[1.36]
.4 .948[.444] .945[.440] .954[.720] .949[.678] .952[.955] .949[.920] .950[1.18] .951[1.16] .942[1.41] .944[1.39]
.5 .944[.421] .950[.397] .952[.691] .944[.656] .951[.928] .948[.894] .952[1.16] .947[1.13] .944[1.38] .948[1.36]
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We also estimated the type I error rates and powers of the signed-likelihood ratio test
for H0 : l � l0 vs. Ha : l > l0: The value of l0 is assumed to be 1� n and the true
mean is taken as l ¼ 1� nð Þk so that the probability of rejection at k¼ 1 is the true
type I error rate. The type I error rates and the powers are reported in Table 2. We
observe from this table that the type I error rates are very close to the nominal level
0.05 for sample sizes of 30 or more. We also see that the power is increasing with
increasing k and/or increasing sample size. Overall, we see that the test can be safely
used as long as the sample size or the total count is 30 or more and n is no more
than 0.5.

5. Examples

Example 1. The Annual Report of the pension fund S.P.P. for 1952 (cited in Kennedy
& Gentle, 1980) reported that some 4,075 widows received pensions from the fund. The
following Table 3 shows the number of widows and their children who were entitled to
support from the fund.
Notice that the number of widows for the count 0 is too large, and so the data are

not consistent with being a sample from a Poisson distribution. Alternatively, a ZIP
model was postulated assuming some widows were observed with probability n from a
population p0 of widows with no children, and others were observed with probability
1� n from a population p of widows with none or some children which can be mod-
eled by a Poisson distribution with parameter k.
Suppose the reported data is a sample from a mixture distribution, and we like to

estimate the mean number of children per widow who received the support. The MLEs

based on the data are k̂ ¼ 1:03784 and n̂ ¼ :61506: The 95% likelihood CI for the mean
is (.3733,.4257). That is, the mean number of children per 100 widows who were enti-
tled for support fund is between 37 and 43 with confidence 95%. The 95% CI for the
mean based on 100,000 bootstrap samples is (.3750,.4247), which is similar to the

Table 2. Type I error rates and powers of the SLRT test H0 : l ¼ l0 vs: Ha : l > l0; l ¼
ð1� nÞk; l0 ¼ ð1� nÞ:
n k¼ 1 k ¼ 1:3 k ¼ 1:6 k¼ 2

n¼ 30
.1 .048 .364 .799 .984
.2 .049 .328 .729 .956
.3 .048 .295 .639 .906
.4 .049 .259 .556 .833
.5 .048 .217 .461 .732

n¼ 40
.1 .049 .479 .890 .997
.2 .051 .416 .828 .987
.3 .048 .355 .745 .960
.4 .048 .304 .653 .912
.5 .046 .259 .560 .838

n¼ 50
.1 .045 .517 .943 .999
.2 .051 .481 .895 .996
.3 .046 .408 .820 .983
.4 .048 .348 .737 .955
.5 .045 .291 .637 .899
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likelihood CI. To calculate the 95% CI based on the signed-likelihood ratio test, the
SLRT statistic (10) is 1.96 at l0 ¼ :3752, and is -1.96 at l0 ¼ :4250: So the 95% CI for
the mean based on the SLRT is (.3752,.4250). Notice that all three CIs are in agreement.

Example 2. In this example, we shall use the fetal lamb data of Leroux and Puterman
(1992), which is reproduced here in Table 4. A more formal way to choose between the
Poisson and the ZIP distribution is to apply the score test. On the basis of a score test,
Van den Broeck (1995) has concluded that the data are not Poisson distributed, but
they are ZIP distributed. Thas and Rayner (2005) have applied their new tests with a
class of alternatives, and concluded that the data not ZIP distributed. Even though our
likelihood approaches depend on the model assumption, the bootstrap approach does
not, and so we shall use the data to check if there is any disparity among the results of
different methods.

For these data, the MLEs are k̂ ¼ :84728 and n̂ ¼ :57708: The 95% likelihood CI for
the mean is (.2617,.4550). The bootstrap CI for the mean, on the basis of 10,000 boot-
strap samples, is (.2625,.4667). To find the 95% CI for the mean based on SLRT, we
found the SLRT statistic T in (10) is –1.96 at l0 ¼ :4605 and it is 1.96 at l0 ¼ :2744
and the 95% CI for the mean is (.2744,.4605). Notice that the likelihood CIs are close to
the bootstrap CI whether or not the data are ZIP distributed.
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Appendix

Let P0 ¼ nþ 1� nð Þe�k: Using E n0ð Þ ¼ nP0 and E �xð Þ ¼ 1� nð Þk, the components Iij n, kð Þ of the
Fisher information matrix I n, kð Þ can be expressed as follows:

I 11 n, kð Þ ¼ �E
@2l n, kjxð Þ

@n2
¼ E

n0 1� e�kð Þ2
P20

þ n� n0
1� nð Þ2

 !

I 12 n, kð Þ ¼ �E
@2l n, kjxð Þ
@n@k

� �
¼ �E

n0e�k

P20

 !

I 22 n, kð Þ ¼ �E
@2l n, kjxð Þ

@k2

� �
¼ E

n�x

k2
� n0n 1� nð Þe�k

P20

 !

By replacing n, kð Þ by the MLE n̂, k̂
� �

, we get the observed Fisher information matrix as

I n̂, k̂
� �

¼
� n0 1�e�k̂ð Þ2

P̂
2
0

þ n�n0

1�n̂ð Þ2
n0e�k̂

P̂
2
0

� n0e�k̂

P̂
2
0

n�x
k̂
2 � n0n̂ 1�n̂ð Þe�k̂

P̂
2
0

0BBB@
1CCCA:

An estimate of the asymptotic variance-covariance matrix is given by I�1 n̂, k̂
� �

: To find an esti-

mate of the asymptotic variance of the MLE 1� n̂
� �

k̂, we note that the gradient of the MLE is

r 1� n̂
� �

k̂ ¼ �k̂, 1� n̂
� �

: Thus, we obtain an estimate of the variance of the MLE as

�̂ n̂, k̂
� �

¼ �k̂, 1� n̂
� �0I�1 �k̂, 1� n̂

� �
:
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