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 Sankhy? : The Indian Journal of Statistic*
 1986, Volume? 48, Series B, Pt. 2, pp. 233-245.

 COST ROBUSTNESS OF AN ALGORITHM FOR
 OPTIMAL INTEGRATION OF SURVEYS

 By K. KRISHNAMOORTHY and SUJIT KUMAR MITRA
 Indian Statistical Institute

 SUMMARY. Let the cost of an integrated survey depend only on the number y of dis
 tinct unit3 in the survey and the cost function C(v) be monotonie increasing in v. Further let
 the increment C(v-\-l) ? C(v) diminish with v. It is shown that the optimal integrated survey of

 Mitra and Pathak (1984) is cost optimal under such a cost function. We also present integration
 plans for three surveys which are cost optimal when (7(3) ?(7(2) > (7(2) ?(7(1).

 1. Introduction

 Consider a finite population with N units serially numbered 1, 2, ..., N.

 Let 8 denote the set {1, 2, ..., N}. It is proposed to carry out k separate
 surveys on this population. The i-th survey assigns a probability of selection
 Pij to the j-th unit and thus corresponds to a random variable X% which
 assigns a probability P^ to the integer j (j = 1, 2, ..., N). An integrated
 survey corresponds to a joint probability distribution of random variables
 Xx, X2i, ..., Xjc which realises for Xi the same marginal distribution as the
 one determined by the i-th survey. For x=(xx, x%, ..., xjc) in Sk the k-th carte

 sian power of S, v(x) denotes the number of distinct integers appearing in
 the k coordinates of x. An integrated survey is called optimal if E[v(X)] is a
 minimum. It was pointed out in Maczynski and Pathak (1980) that an opti
 mal integrated survey always exists but is not unique. Mitra and Pathak
 (1984) present algorithms for deriving optimal integrated surveys for k = 2
 and 3. The present paper is a follow up of the Mitra-Pathak paper and aims
 firstly to clarify some doubts that may crop up through a cursory reading of
 this paper. Example 1 illustrates a stochastic matrix, specifying the selec
 tion probabilities for the k surveys, for which the optimal integrated survey is
 unique. Though the optimal integrated survey is in general not unique, one
 may speculate that each such survey plan would lead to a unique probability
 distribution for v(X) the number of distinct units in the integrated survey.
 Examples 2 and 3 point out to the contrary. One may here be pleasantly
 surprised to find that the integration plan is still optimal even though he
 may have initially missed the bus by putting less than the maximum possible

 AMS (1980) subject classification : 62D05.
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 Integrated survey, Maximum matching, Safe available surplus.
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 234  K. KRISHNAMOORTHY AND SU JIT KUMAR MITRA

 mass to the event set S? = {x : v{x] = 1}. In one of these examples an opti
 mal integrated survey plan in fact assigns a probability 0 to $x even though
 dx > 0. In the other example an optimal integrated survey assigns a pro
 bability 0 to A3 even though l?02 > 0 where 82 and S3 are defined the same
 way as 8t noting that for k = 3, 2 and 3 are the only other values that v(x)

 N

 could assume and 6% = 2 Pn)j, where P^j is the i-th smallest value among i

 *\5 > ^ 22> ' *kj

 The optimal integrated survey is clearly cost optimal if the cost of
 observing and analysing an integrated sample with v distinct units depends
 only on v and the cost function C(v) is linear in v with a positive slope. It
 may be more realistic to assume that C(v) increases monotonically with v
 but the increments themselves diminish with v[bJJ{v) > 0, lS?C{v) < 0]. The
 second object of this paper is to show that the optimal integrated survey
 derived in Mitra and Pathak (1984) is fairly cost robust in the sense that it
 retains its cost optimality even for this wide class of cost functions. The
 case of a cost function which exhibits a faster than linear growth presumably
 only of academic interest is treated in Section 3. We are able to present
 integrated surveys which are cost optimal under such a cost function.

 We recall that a configuration in general, in the context of k surveys,
 a kxN array of nonnegative numbers with each row adding up to the same
 number not necessarily equal to 1 (Mitra and Pathak, 1984). Each step of
 the Mitra-Pathak algorithm transforms one configuration into another with
 the common row totals of the successive configurations shrinking to zero.

 2. Three examples

 Consider the stochastic matrix for three surveys given in

 TABLE 1. VALUES OF P,?

 12 3 4

 1 a I?a 0

 2 6 0 l-b

 3 6 0 0

 1 > 6> a> 0

 The algorithm given in Mitra and Pathak (1984) leads to the following optimal
 integrated survey

 Plll = Pr {Xt = 1, X2 = 1, X3 = 1} = a
 #234 = l?b, p2ll = b?a

 Example 1 :
 Table 1.

 v
 o

 o

 1-6
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 OPTIMAL INTEGRATION OF SURVEYS  235

 where the Pjm's in general are analogously defined. Here E[v(X)] =
 l(a)Jr2(b?a)-{-3(l?b) = 3?a?b. We now show that here the optimal
 integrated survey is uniquely determined. Clearly an integrated survey here
 is supported entirely on 8 points

 \XX, X2, X^), Xx = 1, ? \ X2 = 1, o ', X% = 1,4.

 One considers the linear equations which the Pjja's must satisfy to realise
 the marginal distributions given in Table 1 along with the linear equation
 which will ensure optimality (i.e. E[v(X)] = 3?a?b). It is seen that these
 equations uniquely determine p2M as p2M =1?6. This along with
 Pr {X2 ^ 1} = Pr {X3 ^ 1} = 1?b on account of nonnegativity of the
 Pin's imply pxu = pm = plu = p2U = p2ZX = 0 which in turn implies
 pul = a, p2X1 = b?a. The uniqueness of the optimal integrated survey
 is thus established.

 The next two examples show that in general not only are the optimal
 integrated survey plans not unique, they do not even lead to a unique pro
 bability distribution for the number of distinct units. It is easily seen that
 for an optimal integrated survey the vector (Pr (Sx), Pr (S2), Pr (Ss)) is unique
 upto a constant multiple of the vector (?1, 2, ?1).

 Example 2 : Consider the stochastic matrix for 3 surveys given in
 Table 7 of Mitra and Pathak (1984) after correcting the obvious mistake there
 in (interchanging of rows and columns)

 TABLE 2. VALUES OF P(j

 j \ 1 2 3
 i \
 1 .2 .5 .3

 2 .3 .2 .5

 3 .5 .3 .2

 The algorithm leads to the following plan for an optimal integrated survey

 2>111 = 2>222 = #333 = ?2 i #211 = #232 = #331 = -1 ? #231 = -1'

 An alternative optimal integrated survey is given by

 #111 = -l> #222 = #333 = -2 ; #211 = -2> #232 = #331 = #131 = -1

 Note that we have transferred equal probability masses of .1 from (1, 1, l)e Sx
 and (2, 3, 1) e Ss to (2, 1, 1) and (1, 3, 1) both in S2. We have here Pr (Sx)
 = .5, Pr (S2) = .5.
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 236 K. KRISHNAMOORTHY AND SUJIT KUMAR MITRA

 Example 3 : Consider the following stochastic matrix for 3 surveys.

 TABLE 3. VALUES OF P{}

 1 .1 .1 .1 .7

 2 0 .5 , .2 .3

 3 .3 .1 .6 0

 The algorithm leads to the following plan for an optimal integrated survey

 #222 = #333 = -1 ; #121 = #433 = -1 ? #443 = -3 I #421 = ?2> #423 = -1

 An alternative optimal integrated survey is given by

 #121 = #221 = #422 = #323 = -1 1 #433 = -2 I #443 = 3 ? #421 = -1

 Note that we have transferred equal probability masses from 8? and Ss to S2.
 We have here Pr (S2) = .9, Pr (Sz) = .1.

 3. The main results

 We shall prove the following theorem.

 Theorem 1 : Let the cost of an integrated survey depend only on the number

 v of distinct units in this survey and the cost function G(v) be monotonie increasing
 in v. Further let the increments C(v+1)?C(v) diminish with v. The optimal
 integrated survey derived through the algorithm in Mitra and Pathak (1984) is
 cost optimal under such a cost function.

 Proof : The case of two surveys is trivial. We confine our attention to
 k = 3. First the case 62 < 1. Here the optimal integrated survey assigns
 a probability of 6X to Sl9 (62?6^) to S2 and (1?02) to 8Z. If this is not cost
 optimal let there exist an integrated survey assigning probability of p% to 8%
 with a lower expected cost, that is

 C(l)2?1+C(2)1?i+0(3)2>, < C(l)?1+C(2) (dt-dJ+CiZ) (l-0?) ... (1)

 This implies on subtracting 0(2) from both sides of (1)

 [C[l]-C(2)]Pl+[C(3)-C(2)]p3 < [C(l)-C(2)]61+[C(S)-C(2)] (1-6S)

 ^{G(3)-G(2)]p3<[C(l)-C(2)](?1-p1)+[C(3)-C(2)](l-ez). ... (2)
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 OPTIMAL INTEGRATION OF SURVEYS 237

 The R.H.S. of (2) is further seen to be less than

 [0(3)-0(2)] (1-0.) since [0(1)-C(2)] (^-ft) < 0.

 This implies p3 < (1?02).

 Inequality (2) implies

 [0(l)-0(2)]A+[0(2)-0(l)]A < [C(1)-C(2)]?1+[C(2)-0(1)] (l-02) ... (3)

 since [C(2)-C(l)] > [C(3)-<7(2)]

 => [C(2)-C(l)] (#1+2??2+3?>3) < [C(2)-<7(1)] [?1+2(02-?1)+3(l-?2)]

 adding 2[C(2)-C(1)] to both sides of (3)

 => #i+2#2+3#3 < o1+2(?a-?1)+3(l-ea) since [C(2)-C(l)] > 0

 which is impossible since the algorithm for optimal integration minimises
 the expected value of the number of distinct units.

 The case d2 ^ 1 can be similarly established making use of the facts that
 d1? Pr (Sx) > 0 and G(v) is monotonie increasing. Q.E.D.

 Theorem 2 : Let the cost function C(v) be monotonie increasing in v and

 (7(3)-C(2) > C(2)-C(l).

 Let there exist an optimal integrated survey which assigns a probability 0 to Ss.
 This survey is also cost optimal under such a cost function.

 Proof : Let the optimal integrated survey assign a probability p? to Si
 and p\ -= 0. If this is not cost optimal let there exist an integrated survey
 assigning probability pi to 8% with a lower expected cost

 C(l)Pl+C(2)p2+C(Z)ps < C(l)p<l+C(2)pl

 => C(l)Pl+C(2)p2+[2C(2)-C(l)]p.?

 < C(l)Pl+C(2)p2+C(Z)p3 < C{l)p\+C{2)pl

 = C(l)p?+C(2)p?+[2C(2)-C(l)M

 => [G(2)-C(l)](Pl+2p2+3p3) < [C(2)-C(l)](pl+2p?+3p?)

 adding (7(2)?2(7(1) to both sides.

 Since C(2)?C(l) > 0, this contradicts our assumption that the optimal inte
 grated survey minimises the expected number of distinct units. Q.E.D.

This content downloaded from 128.143.23.241 on Mon, 29 Aug 2016 02:34:11 UTC
All use subject to http://about.jstor.org/terms



 238  K. KRISHNAMOORTHY AND SUJIT KUMAR MITRA

 Example 2 illustrates such a situation.

 The following theorem can be proved on similar lines. We omit the
 proof.

 Theorem 3 : Let the cost function G(v) be monotonie increasing in v and

 C(3)-C(2)>G(2)-C(1).

 Let there exist an optimal integrated survey which assigns probability 0 to Sx.
 This survey is also cost optimal under such a cost function.

 Example 3 illustrates such a situation.

 Plans for optimally integrating three surveys derived through the algorithm
 in Mitra and Pathak (1984) are of two types. One that uses stages 1, 2 and
 3 leads to the probability distribution of the number of distinct units given by

 Pr {Sx} = 6X, Pr {S2} = 62-dx, Pr {Ss} = l-d2. ... (4)

 The other uses stages 1, 2* and 3* and leads to

 Pr {S? = dlt Pr {S2} = l-6v ... (5)
 Clearly as noted in Mitra and Pathak (1984) the first alternative works only if

 tf2< 1. ... (6)

 Theorem 4 shows that condition (6) is also sufficient.

 Theorem 4 : For an optimal integration of three surveys with the probabi
 lity distribution as in (4) to exist it is necessary and sufficient that (6) holds.

 Proof : The necessity part is trivial since (4) =>

 Pr {S3} = l-62 > 0.

 For the sufficiency part we show that if (6) holds all the steps in stage 2 will
 go through smoothly without any hindrance. Let us consider the configura
 tion at the commencement of stage 2. We classify the N columns of the con
 figuration as follows. Let IiX denote the set of indices of those columns for
 which the i-th row contains the smallest column entry (0), Ii2 the set of indices
 of those columns for which the i-th row contains the second smallest column

 entry and Its the set of indices of those columns for which the i-th row con
 tains the maximum column entry, ties being arbitrarily broken-up.

 Clearly,
 4U4U4=S5 ?=1,2,3.
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 OPTIMAL INTEGRATION OF SURVEYS  239

 A typical column in I1X, written as a row vector, is thus

 (0, a, b) or (0, b, a), a < b.

 If this is column j, the second smallest entry in this column is zeroed out by
 assigning a mass 8U to a point (u, j, j) in Sz such that u ^ j and 2 8U = a.

 The target is to execute this operation without affecting the second smallest
 entry in any column. This implies that 8U > 0 only if uel13 and in any case
 8U should not exceed P{3)u?P{2)u. The available surplus in the columns
 of I13 should be adequate to meet the demands made by the columns in Ixx
 that is

 Supply ? demand = S {P^u?P^u}? 2 {P{2)u?P(du} uel13 ^e/n

 = 2 {Piu~P(2)u}-\r S {Pxu?P(2)u}Jr S {Piu?P(2)u}
 uel13 uelu uel12

 (noting that for u in IX2, P1U?P{2)U = 0)

 = S PXu? S P(2)U = l ? #2 ^ 0?
 ueS ueS

 Hence if (6) holds, in row 1, supply is adequate to meet the demand. The
 same argument also holds for the other rows. Q.E.D.

 Consider a point in Sx and a point in S3. We say that these two points
 are matched if they agree in one coordinate. Since the coordinates of a
 point in Sx are all identical and those of a point in S3 are necessarily distinct
 these two points could agree at most in one coordinate e.g. the pair of points
 (1, 1, 1) and (2, 3, 1) in Example 2. Since the algorithm assigns a mass of
 8= .2 to (1, 1, 1) and 8' = .1 to (2, 3, 1), a mass of .1 = min (S, 8') could be
 removed from each of the points (1, 1, 1) e Sx and (2, 3, l)e S3 and redistributed

 to each of the points (2, 1, 1) and (1, 3, 1) both in S2. The resulting plan is
 still optimal since these manoeuvres do not affect E{v(X)}. However alter
 native plans derived through the algorithm of Mitra and Pathak (1984) may
 allow for differing degrees of matching. The arguments given in the proof of
 Theorem 4 suggest a strategy for 'maximum matching'. This is described
 below, keeping in view possible uses in connection with Theorems 2, 3 and
 also 5 which we present later in this section. We have said earlier that for
 uel13 the available surplus is P{3)U?P{2)U. Since here the plan assigns a mass
 of P(X)u to (u, u, u) e Sx if the entire surplus is used in stage 2 which only gener
 ates points in S2, the possibility of a matching of a point in S3 with the point
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 240  K. KRISHNAMOORTHY AND SUJIT KUMAR MITRA

 (u, u, u) in Si will be annihilated in the bud. Ideally out of the surplus
 P(3)u?P(2)u> s*age 2 should leave an amount of P(1)u for stage 3. We therefore
 define the notion of safe available surplus au as follows.

 f 0 lfP(3)w?P(2)U ^ P(1)U

 L P(3)u?P(2)u?P{i)u otherwise.

 We have maximum matching in the first coordinate if

 2 0CU ^ 2 {P(2)U ? P(l)u} (8)

 and the extent of matching is measured by

 /h= * ?u ... (9)
 uel13

 r p(1) if <xu > o
 where y5w = i ... (10)

 L P(3)w?P(2)w, otherwise.

 Since the demand in any case has to be met, if (8) is not satisfied the maximum
 matching as given in (9) is reduced by the corresponding amount. One has
 here the following revised expression for ?ix

 ?ix = S (?u+au)- S {Pi2)u-P{1)u} = l-0a. ... (11) wel13 ueln

 Compute similarly [i2 and /?3. The maximum matching in a plan for integrating
 3 surveys is given by

 min (/?x+^2+^3, 1 ?02) ... (12)

 noting that once the configuration prior to stage 3 is so arrived at, with each
 column containing atmost one nonnull entry, operations in stage 3 could be so
 directed as to attain the bound set in (12). Clearly no change in the steps
 under stage 3 of Mitra and Pathak (1984) are called for if ?ii ? 1?62
 for i = 1, 2, or 3 since the maximum matching 1?-62 can be secured through
 the i-th row itself. We shall therefore consider the case where /it < 1?62
 for i = 1, 2, 3. Here it will be convenient to split the nonnull entry yu in
 column u of the configuration (prior to stage 3) as yu = ?u+Vu (Vu ^ 0),
 ?u and 7?u, representing respectively the critical and the noncritical mass.
 The distinction is however only superficial and will help us in describing the
 required modifications in the steps of stage 3. We first zero out the critical
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 OPTIMAL INTEGRATION OF SURVEYS  241

 masses ?u in the first row with the help of noncritical masses in other rows.
 This will be possible if

 2 vu> 2 ?u, Z 7?u> S ?u ... (13)
 uel?3 we/13 uel33 uel13

 i.e. l ? ?2 > /?i+/?2 an(^ l ? ?2.> /?i+/?3. ... (14)

 If one of these inequalities is not true for example if 1 ? 62 < /?i+/?3 the non
 critical masses in third row are insufficient for this purpose. That is, while
 zeroing out the critical masses in the first row not only are the entire non
 critical masses in third row used up but one has to draw from part of the criti
 cal masses in third row as well. Hence when one zeroes out next the balance

 of the critical masses in third row which add upto l ? 62?ptv the noncritical
 masses in the first row are just sufficient for the purpose and irrespective of
 what happens in the second row the bound l ? 62 i*1 (I2) is clearly attained.

 If (13) is satisfied the critical masses in row 2 are next zeroed out with
 the help of noncritical masses in other rows. Since in the first row only non
 critical masses remain, no special efforts are needed here. However in the
 third row the available noncritical masses should suffice for this purpose,
 that is

 2 Tju- 2 ?u> S ?u ... (15)
 ml33 ne/13 ?ei23

 or equivalently
 1?62 > Ih+H+IH- ... (16)

 If (15) is satisfied, the critical masses in third row are next zeroed out
 with the help of available masses in the other two rows which are incidentally
 all noncritical. Thus the bound /?!+/?2+/?3 i*1 (I2) is attained. If (15) is not
 true the bound 1?d2 in (12) is attained in a manner similar to what we have
 described above. It may be wise to distinguish the points in Sx that are to be
 used in maximal matching by putting a * against the coordinate that supports
 a pivotal critical mass. Thus p12$3 = .1 indicates that the point (1, 2, 3) is
 matched with (2, 2, 2) and a mass of .1 can be removed from each of these
 points for transfer to (1, 2. 2) and (2, 2, 3).

 Consider a plan for maximally matched optimal integrated survey and a
 plan for optimal integrated survey derived from the same by transferring
 equal masses, to the maximum extent possible from Sx and S3 to points in
 S2. It is shown in Theorem 5 that the resulting plan (call it Px) is cost opti
 mal for

 . K.[?(3)-(7(2)]/tC(2)-(7(l)] < 2 . .. . ... (17)

 even if Pr (Sx) and Pr (S3) are both nonnull in this case.
 B 2-12
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 Consider the plan Px so derived in the preceding paragraph. There
 is zero matching now between the points in 8Z and those in Sv However
 transfers to 82 can still take place under slightly more unfavourable condition.
 Thus given a mass 28 attached to the point (u, u, u) e Sx and a mass S at the
 point (j, k, I) e Sz with u, j, k, I all distinct, a mass of S could be transferred
 to each of the points (j, u, u), (u, k, u), (u, u, I) in S2. These transfers though
 not profitable under (17) will turn out to be profitable if

 2<[C(3)-C(2)]/[C(2)-(7(1)]. ... (18)
 We keep on making these transfers until zero mass is left either in 81 or in ?3
 or in both. It is shown in Theorem 5 that the resulting plan P2 is cost opti
 mal under (18).

 Theorem 5 : Let G(v) be an increasing function of v. The integration
 plans Px and P2 are cost optimal under conditions (17) and (18) respectively.

 Proof : Let G(v) \ v and
 [0(3)-0(2)]/[0(2)-0(l)] > 1. ... (19)

 Further let P be an integration plan which is cost optimal under such a
 cost function. We consider the points in 8V S2 and $3 which received posi
 tive mass under P. The respective subsets are denoted by 8\, 8\ and 8\
 and let these correspond to configurations1 ?lt ?2 and (?J3 respectively. We
 now deduce certain properties of (t1? <(J2 and (f*3 as a consequence of the cost

 optimality of P. Firstly we note that there is zero matching between the
 points in $3 with those in $J, because otherwise certain positive mass d
 could be removed from a point in 81 and a matching point in 8[ and then
 transferred to points in S2 as indicated earlier. When (19) holds these trans
 fers would result in strict improvement in respect of the expected cost con
 tradicting the cost optimality of P. This implies that if a column in ((J1
 has nonnull entries then the corresponding column in (??3 has only null entries.

 Similarly we note that a column in (j)3 can have atmost one nonnull entry,
 because otherwise an application of the Mitra-Pathak algorithm to d?3 would
 result in shifting positive masses from $3 to certain points in Sx and/or S2
 and these shifts again would result in a strict improvement in respect of the
 expected cost. Let the j-th column of (^ be null and without any loss of gene
 rality let the single nonnull entry c in the j-th column of $3 occur in the first
 row. This implies that the j-th column of $2, written as a row vector would
 look like

 (Ptf-c, P2j, Psj) = (qxj, q2j, q3j) (say)

 1Each configuration here is a 3 X N table with the three rows describing the partial marginal
 probability distributions for the three surveys.
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 where P?/s are the entries of the original configuration specifying the marginal
 probability distributions for the three separate surveys. We now show that
 qXj cannot be the smallest or the second smallest entry in that column. The
 points in S2 with j appearing in at least one of the three coordinates are of
 six types (1) (j,j, kx), (2) (j, k2,j), (3) (k3,j,j), (4) (k?, kA, j), (5) (k5, j, k5) and
 (6) (j, kQ, k6) while the points in S3 with j appearing in the first coordinate

 are of one type?(j, i, I). Clearly the point (k3, j, j) could not appear in ?J.
 If it did, certain positive mass 8 could be transferred from each of the points
 (k3, j, j) in SI and (j, i, I) in SI to the point (k3, i, I) in S3 or S2 and (j, j, j)
 in Sx and this would result in a strict improvement in respect of the expected
 cost. Also the point (fc4, k?, j) (and for a similar reason the point (k5, j, k5) )
 could not appear in S%. For example if the point (k?, k?, j) did, a positive
 mass 8 could be transferred from (j, i, I) in #* and (k?, k?, j) in SI to points
 (fc4, fc4, I) and (j, i, j) both in S2. These transfers would result in a strict
 improvement in respect of the expected cost. Thus there are only points of
 type (1), (2) and (6) in $*. Let the total mass received by points of type (u)
 be denoted by au. We have therefore

 ax+a2+a6 = qXj

 ax = q2j

 a2 = q3j

 =* ill > ?2/> ?ii > 9W => Qii = 2(3tf

 Let Ci (? = 1, 2, 3) denote the sum of the i-th minimum column entries
 of all the N columns of <j?2. \x, ?2 and \3 thus correspond to 8X, 62 and 63 res

 pectively as defined for the original configuration. Let 6X?yx be the total
 mass assigned to the points in S\. The structure of <jJ2 we have just estab
 lished implies \x = yx, \%?\x = 02?dx and for each of the three rows of <fc2,

 the row total is equal to ? = (?i+?2+?3)/3. If ? > ?2, an application of the
 Mitra-Pathak algorithm to C2 would result in shifting from $2 a mass of ?x

 to ^ and f??2 to $3, the balance mass ?2?Ci would remain in S2. With
 the allocation already made in S$ and /SJ remaining undisturbed, these
 shifts would result in a plan for which

 P(8i) = 71+^i-ri = 0i

 P(St) = 1-0,
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 which is clearly optimal in the sense of Mitra and Pathak (1984). In other
 words the integration plan p can be derived from a plan which is optimal
 in this sense by shifting masses from 8X and S3 to S2. This can be more
 clearly seen as follows : Assume without any loss of generality that the first
 column of $2 has nonnull entries in each row. As enumerated earlier six types
 of points in $2 could have contributions in the first column of (f}2. (1) (1, 1, kx),

 (2) (1, k2, I), (3) (?3, 1, 1), (4) (fc4, fc4, 1), (5) (fc6, 1, fc6) and (6) (1, k6, fce). For

 reasons we have stressed earlier $2 cannot exclusively have points of type
 (4), (5) and (6). It should in fact have points of atleast two of types (1), (2)
 and (3). For example if it has only points of type (1) and none of type (2) or
 (3) then for the first column to have the stipulated property it is necessary
 that SI should have some points of type (4). Again a point of type (1)
 cannot coexist with a point of type (4) in ?* for precisely the same reason.
 Thus either $2 has exclusively points of all the three types (1), (2) and (3)
 (with kv k2 and k3 all distinct) or has only two of them e.g. of types (1) and (2)

 (with kx ^ k2) with or without points of type (6). If plan p assigns masses
 p, q, r respectively to (1, 1, kx), (1, k2, 1) and (kz, 1,1) and p > q ^ r, an appli
 cation of the Mitra-Pathak algorithm to the resulting configuration will lead
 to a redistribution of masses as follows :

 mass point
 q+r (1, 1, 1) e St
 p-q (1, 1, kx) e S2
 q-r (1, k2, kJeSz

 r (fc3, k2, kx) e b3.

 It is seen that if one transfers masses to 82 symmetrically from the point
 (1, 1, 1) in Sx and matching point (1, k2, kx) in Ss and then asymmetrically
 from the point (1, 1, 1) in ?x and the nonmatching point {kz, k2, kx) in Ss the
 original distribution of masses to the three points (1, 1, kx), (1, k2, 1) and
 (fc3, 1, 1) is restored. The argument is similar for the case where the plan

 p assigns masses p and q to the points (1, 1, kx) and (1, k2, 1). It is interest
 ing to observe that even if the plan p had assigned a mass s to the point
 (1, k6, k6), (kx ^ k2 ^ k6) and Mitra-Pathak algorithm applied to the resulting
 configuration then the mass assigned to the point (1, k6, kG) will not be affected

 by the redistribution. This means that when the smallest nonzero entry in
 different columns similar to column 1 (are zeroed out) disjoint sets of points
 are affected by the redistribution. The claim made earlier in this paragraph
 is thus substantiated. The plan px which ensures maximal matching betwen
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 points in Sx and S3 before these shifts take place in a symmetric manner is
 thus seen to be cost optimal when (17) holds. The cost optimality of 1P2
 under (18) is similarly established.

 If % < ?2 ^he Mitra-Pathak algorithm shifts from S\ a mass t,x to &?

 and a mass ?;?\x to S2 which contradicts the cost optimality of yo unless
 lx = 0. If ?x = 0, that is P(S\) = 6V P(S?) = d2-dv P(S?) = l-d2
 since P(S\) =? d2?dx contradicts either the cost optimality of p or the
 optimality of the plan derived through the Mitra-Pathak algorithm. This
 shows that the plan 7? is itself optimal in the sense of Mitra and Pathak (1984)

 and the argument given in the preceding paragraph is valid. Q.E.D.

 Open problem. It may be of interest to characterize the situation where
 the plan for an optimal integrated survey is unique. Table 1 illustrates one
 such case.

 For references to earlier work of Keyfitz, Lahiri and Des Raj on the
 optimal integration of two surveys see any one of the two papers listed below.
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