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ABSTRACT : Let X be an Ny (o,2) random vector. Suppose besides #
observations on X, m observations on the first g(¢ < p) coordinates are available.
Eaton (1970), for this set up, has given a minimax estimator of %, which is better
than the MLE. We, in this paper, obtain a class of constant risk minimax esti-
mators (Eaton’s estimator is its member), and hence estimators better than any
member of this class. Similar results are derived also for the estimation of X-1,
The 1loss functions considered are thase of Selliah (1964) and Tames and Stein
(1961) for the estimation of X and an analogue of Stein’s loss function for the
estimation of X1,

1. INTRODUCTION

Consider a p-varitate normal population with a known mean
vector and an unknown covariance matrix 2. The mean vector,
without loss of generality, can be assumed to be null. Let (X, -,
&,) be a random sample from this population. Also, suppose that
we have m observations Y,, -, ¥, available from the Ng(o, Z,;)
population where ¢ < p and

2_(211 2is

), X, 1 of order g% q.
21 Zap

This amounts to having m+n observations from the N,(o, X)
population in which m observations have information only on the
first ¢ coordinates. The problem, we are interested in, is one of esti-
mating 2 or 2~* from this incomplete sample. Anderson (1957) and
Sylvan (1969) derived the MLE of X in such a set up. Eaton (1970)
obtained a minimax estimator of 3, when the loss function is

Ly(%, &)=t (£27) -log | £2-* | -p.
The loss function L, was first considered by James and Stein (1961)
and Eaton’s estimator is, in fact, best lower triangular equivariant.
For its derivation, he has used a theorem due to Stein (see, for
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example, Zidek (1969), which reprssents the best equivariant estimator
formal Bayes estimator with respect to a right invariant prior,
as a Kiefer’s (1957) theorem ensures the minimaxity of the estimator.
The MLE also being lower triangular equivariant is worse than
Eaton’s estimator.

We, in Section 2, following Eaton’s approach, obtain minimax
estimator of 2 under the loss function

L2, B)=tr E5* -2,

As the computation for general p and g is difficult, we restrict to the
cases p=2,g=1; and p=3, g=1.

Let $4(S, V) (i=1, 2), where S=SX, X", and V=3Y,¥’;, denote

the minimax estimators, mentioned above, when the loss function is
L;. In Section 3, we obtain a class of minimax estimators under
L,(i=1, 2) which contains ¢;(S, V). Then we find an estimator

23;‘ which is better than any member of this class ; ff 1s, in fact, the
best average of two members of the class. It is shown that the best
average is the simple average for any p and ¢ when the loss function
is Ly and for p — g=2 when the loss function is L,.

In Section 4, we derive an estimator ¢,(S, V) (i=1, 2) which is
equivariant under a group of transformations G for the case p=3,

1 0

g=1,a member of G is of the form ( r

) with I'y, ortho-
29
gonal.

Section 5 is concerned with the estimation of X-! under the
loss

LOE-, B ty=t (B-* D)—log | 1 5| -p

We first obtain a minimax estimator ¢\1(S, V) for the cases p=3,

g=land p=2, g=1. As in Section 3, we then find ¢ class of mini-
max estimators containing ¢S, V) and derive estimators

Z?f}) and (S, V) similar to Z?’f and $N(S, V) respectively. Both fw
and $V(S, V) are better than ¢1)(S, V).

In Section 6, we find expressions for the risks of the MLE under
the losses L, and L, when p=3 and g=1. We also obtain in risks
of the estimators ¢,(S, V) and ¢*(S, V) through numerical integra-
tion. Comparison of the risks shows us the amount by which
$4(S, V) dominates the MLE. The exact risk difference between
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$.(S, V) and 5% and between ¢S, V) and ZA’;‘) are obtained in
Section 7 and presented in Tables 3(a) and 3(b).

The evaluation of the risks of $,(S, V), ZA’;‘ and ¢, (S, V) is difficult
and we estimate them using Monte-Carlo method. This is the topic

of Section 8. Both ¢,(S, V) and Z'¥ seem to be considerable impro-
vements over the MLE under the loss L;(i=1,2). The estimatoss
3:,'§ and (S, V) are not comprable, though ¢,(S, V) is an average
oager a larger set of constant risk minimax estimators.

2. BEST LOWER TRIANGULAR EQUIVARIANT ESTIMATORS OF X

Let the pxp positive definite matrix 2 be partitioned as

2= (211 Z"12

21 22

Lid. Ny(0, &) and Y,, -, Y, arei.id. N(o, Z,,) and the X’s

are statistically independent of the ¥’s. Consider the estimation of 5
under a loss function L, which is fully invariant, that is,

Ly(Z, Z)=L,(42'4, AZA4’) for any non-singular 4.
Since (S, V), where S~3X; X', and V=3Y,Y,, is a sufficient
(2 [

), where 2, isgxq (q < q). Suppose X, - X,, are

statistic for { 2 : 2 > O}, we consider estimators depending on §
and V only. Notice that S and V are independently Wy(Z, n) and
W (2,1, m) respectively.

Let G, denote the class of lower triangular matrices of order DXp
and any matrix 4 in G, be partitioned as
A,, O )

Agy As2 @2.1)
where A,, is of order gx g. Then, the estimation problem is invari-
ant under the transformations S—>4S4’, V—d4,,VA,,, 2424,
Xy, —A XA, and 2—»AZ?A', that is, it is lower triangular invariant.
According to a thearem due to Stein (Zidek (1969)), the best lower
tringular equivariant estimator is formal Bayes with respect to a
right invariant prior. It is minimax since G, is solvable (Kiefer

(1957)). Eaton (1970), used these results to obtain minimax estimator.
His estimator is described below.

o

Let S be factorized as S=TT", Te G,. Denote Tivrii(r,,
is as in (2.1)) by U and ¢ ¢ G, be such that

=07 7)



26 CALCUTTA STATISTICAL ASSOCIATION BULLETIN

Also, let L (5, 5) be denoted by L(BEB'), B« G, and BB'— £-1,and
d* minimize
H(d)={ LZdz) | Z|" | Zy, | "

exp (-3 tr ZZ' + 3 tr Z,1653UE 13275, W(dZ) - (2.2)

with respect to d, where v(dZ) is (ﬁZ;f)dZ and corresponds to the
1

left invariant measure on G,. Then the best lower tringular equiva-
riant estimator is given by Téd*£'T". When the loss function is L,,
Eaton has shown that the estimatar is
TID Y+ (p-D O \ -
T( 11 1%1 (p-9)D) D;l)T’ - (2.3)
where D, =diag (d*, -, d@); dP=m+r+q-2i+1(=1, -, q)
and D, =diag (d{®, -, diP)): dP=n+p+2¢9-2i+1 (=1, -, p-q).

We derive below the best lower triangular equivariant estimator
of X for the loss function L,. The minimization of (2.2) is equiva-
lent to the minimization of

f UZdZ) | Q 1538 | Zgy | ™0 | Zag | ™

exp [—3tr Z,, 2", — 31 Z3, 775, - 3tr Z,107Z 3, W(dZ) - (2.4)
where L(ZdZ')=tr (ZdZ'V?* -2 tr (ZdZ')-p and Q=1-¢;31UEST

11
Since evaluating (2.4) for general p and q is difficult, we consider the

special cases of p=2,9=1; and p=3,g=1.

Casel. p=2,q=1. The quantity (2.4) is

, 1 men_ n=1_4
J Lz’ | @ 1 ¥at) ™ ety T
1

23,23 Zh 2 2
exp [__2__7_53_](&11 dz%, dz,,, .. (2.5)
where Q is a scalar and 7= Q~*. Except for a normalizing constants
(2.5) is the expection of L(ZdZ') under the joint distribution of z%,,
zj, and z,, which are independently x3.,, x%_; and N(0, B) respe-
ctively. It can be easily verified that

EL(ZdZ')={M(M +2+2B8)+28%]) di, +(n* - 1)d2,
+2(n—- 1M+ 28)d} , +2B(n~1)d, d, , ~ (2M + p)d, ,
~An-1)d;4 +2, w (2.6)



IMPROVED MINIMAX ESTIMATORS FROM INCOMPLETE SAMPLES 27

where d; ; are the elements of 4 (d is a symmetric matrix) and M=
m+n, The minimizing d is then given by

(d;; 0 )= M(n+1)+28 0
0 di. (n+Dx-(n-1)B*
0 x"(M"’ﬁ)ﬁ

(n+ Dx—(n- )=t

where x=M(M+2+2B8)+3B% and B=1+v[s,,(s,, is the (1.1)
element of ). Thus the best lower triangular equivariant estimator is
d¥.p 0 ) T

$o(S, V)=T £d* ¢ T’=T( .
22

Case II. p=3, q=1. Noting that(2.4) is proportional to EL(ZdZ')
where z2,, 225, 224, Zs4s 221 and zg, are innependently Xnm.w, Xi-1s
x2_,, N(0, 1), N(O, 8) and N(0, B) respectively and proceeding as in
the earlier cases, we find

dr . (1+V/s,y) O 0

$2(S, V)=T 0 S 0 T,
0 0 di,
with
a* =1__(n3+2n"—n+2)di§3 w _N2+2-n
1t nn+1)B 2P22 T yln+ 1) 40
d§3 n{y_ﬁ(M+2B)}(n+ 1) (2.7)

T n—1)y-nB2) + y(n*—n+2)n+1)’
y=MM+2)+4BM +2B), M=m+n
and B=1+ V/sy;.

3. DERIVATION OF Z¥ UNDER THE Luss L;(i=1, 2).

The estimator ¢,(S, V) of Section 2 is a constant risk minimax
estimator and one can use the following lemma to generate a class of
such estimators.

Lemma 3.1. Suppose L is a fully invariant loss function, then, if
&(S, V) is a minimax estimotor with constant risk so is bp(S, V)=
(" ST, Iy, VI, )" for any orthogonal matrix I' of the form
(F i1 0 )

0 I',,

Proof : Let Eg 5 | denote the expectation under the joint dis-
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tribution of S~ W, (Z, n) and Vi~ Wy (Zy,, m). Then Eg 5 | L(Z,
TI"ST, I'y . VT, )I) = Episr, 1y y 3, my  JAZS TR(S, V)
=Epgr, 1,901, LA T 9(S, V) = Ep 5, L(Z, 905, V),

which proves the assertion.

If L(Z, ﬁ') is also a strictly convex function of 2‘, any average
afp(S, V) +(1-a)9r(S, V), 0<a<l, I'#n, is better than 9(S, V)
and is minimax. The loss functions L, and L, can be easily seen
to be strictly convex. We show that a=73 is the best choice for any
p —q=2 when the loss function is L, and for any p and ¢ when the
loss function is L,. Recall that the best average under L, is being
denoted by ZA‘i . One could also consider the average of estimators
¢,.(S, V) with respect to an invariant probability measure over the
I O
o r,,
orthogonal and scale equivariant estimator (S, V). Jensen’s in-
equality ensures the dominance of #(S, V) over (S, V). As the
derivation of such estimators is difficult for general p and ¢, we take
the special case of p-g=2for L, and p=3, q=1 for L,. Such
estimators denoted by (S, V) to indicate the dependence on the
corresponding loss function L; (i=1, 2) are considered in the next
section.

group of orthogonal matrices of the form[ ]to obtain an

We first take up the loss function L, and obtain an expression

for 2'1* . Let the estimator ¢,(S, V) given by (2.3) be written as
T[D519 0 ] T, then it is equal to
0 D}
[T“ D*T,, T, DT, ]
T21 D: Tlll T21 D"I(. ]‘,2]._*-1.'22031r Tl22 )

Notice that T.oT ge=3S55—S5215738:12=S55., (say) has a
Wp—a(222.1 , n— q) distribution and
D} =diag (d(lz)_l, dg@;l),

so that T,, D% T4, is Stein’s [4] estimator of X,,, based on
Sgz... I I is taken to be

6 5h woee L35
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one can easily check that the simple average of ¢,(S, V)
and 9, .S, V)=TI9, Isr, F’11VP11) I is

[T11 by r,, T, DY Ty, ]
T3 DY T'yy  Toy DY Ty, +X(T,, D? Ty + U, DP*U,,)
Frpg(s’, V) (SQY), cee (3.1)

where U,, is an upper triangular matrix satisfying

UpoU'yy=8,,, and D%* =djag (ds2.", ..., 7). The estimator
U,:D*U,, can be described as the best upper triangular equivari-
ant estimator of ~,, , based on S, -
For the special case of p=3 and g=1, (3.1)is

[’411 4. ] Y
Ave Ay 43} 420+ 3Ty DY T'0+U,, DI U, )

where 4,,=4df (S, V)sia, Ay.=df (S, V)(sy, S18)s

. (M - * Cding (11
d]_ (S, V) (W'}‘z) aﬂd Dz dlag ('En n_2)'

Because of the following theorem, (3.2) is Z% | the best average of
?1(S, V) and 92 (S, V). Incidentally, 3(T,,D* Ty, + Uy DU )
is also the best average of T..Df Ty, and U, ,DS*U",, for estima-
ting ',, , from Sgs.q -

Theorem 3.2.  For the loss function L, and any p and q with p-q
=2, the best average of the estimators $1r (S, V) and ¢,,.(S, T ),

where I' and v are orthogonal matrices of the form [(1)?1 1 g ] and B, ,
is 4 X q, 1s the simple average. o
Proof: The risk difference

Ry(Z, 01r (S, VD)= Ru(Z, 29,1 (S, V)4 (1 - 1w (S, ¥))

= —E log Ay, Ay, I
Ay, A, 4754, .+ P,
+ E log A}l A}Z ,
A, AJAzAIéA12+('¢P1+(l"‘)P2)

=E(log | «P,+(1-<) P, | —log | P, |),

where P1=I'22 Toor D} T’stI"zz: chﬂzz Togn D3 Ty N2as
T,,rand T,,, arelower triangular matrices of order p-gq such
that Tyor T'22p=P'22 Saz.1 I';, and Toon T gun =7, Se2.1 754.

As shown in Fujimoto (1982), using the fact that [Py |=| Py, it

can be easily verified that | <Py +(1~«) P, | is maximized by « =%,
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Remark 3.2.1. We do not know what the best choice of «, if
any, for p-g>3is. A necessary and sufficient condition for o=
to be the best value is

Etr P, (Rl'*‘Pz)_l':(P“‘I)/z- - (3.4)
When 2., ,=J%,, ./, (3.4) can be easily seen to hold.
Consider next the loss function L.. TDenote the estimator

I'e, ("SI, Iy, VI, ) T by Pa2r: (S, V). We state and prove below
a theorem similar to Theorem 3.2.

Theorem 3.3.  For the loss function L, and any p and q, the best
average of the estimators 9, (S, V) and Pon+ (S, V), where I' and 74
are as in Theorem 3.2, is the simple average.

Proof : Since ¢,,.(S, V) and ¢, (S, V) have the same risk,
Ro(Z, Par (S, V) =Ry (2, 4021 (S, V)+(1=2)Pym (S, V)
=4Ry (2, P5r (S, V)+(1=%) Ry (2, 9,0 (S, V))

R (2 4Pop (S, V) + (1= ) Pyn. (S, V)
=26(1=4) Z5. 5., [0 (P (S, V) 51— D)

0 (Por (S, V) 27 = 1) (Pome (S, V) 271 = )],

which is maximised by « =},

1 00
If, in particular, p=3, g=1, I'=|0 0 1
010

the best average ZA';‘ is given by

St o 101 (S, V)8, 91 (S, V) Sy,
0% (s, V)S,. oF (S, V)S21SI}S12 +’12'(T22A*T'22
+VU22/\0*U'£19)

where 07 (S, V)=diy (1+ V/s,,), A*=diag(d};, d%,),

A°*=diag (d5,, di,), d¥, (i=1, 2, 3) are given by (2.7), and T,,
and U, , are as before lower triangular and upper triangular matrices
with T9, T3 =U,,U',,=8,,.,. Observe that we cannot describe
T, A*Ty; and U,, A°*U’,, as the best lower triangular equivari-

ant and the best upper triangular equivariant estimators of X, ,

based on S;, ,, as we could for similar expressions in Z'¥ |
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4. DERIVATION (S, V) UNDER THE LOSs L; (i=1, 2).

As mentioned in Section 3, since ¢,(S, V) is a constant risk
minimax estimator, so is Pir (S, V) for any orthogonal matrix I' of

of the form [(1;“ 1(-), ] Let Gr be the gronp of such orthogonal,
22

matrices. Define
(S, V)= [ Cir (S, V)au(I) NN

where » is an invariant probability measure on Gr. The estimator
$4(S, V) can be easily verified to be scale and Gr-equivarient. Strict
convexity of the loss function and Jensen’s inequality imply that
(S, V) is better than ?:(S, V). As the derivation of 4,08, V) for
general I', p and g is difficult, we shall take I'yy=1 and p-g=2.
For the derivation of ,(S, V) we shall consider onlyp=3and g=1.
v
As in Section 3, write ¢,(S, V)= T[ODl (l))"“ ]T'. Then since
2

Dy (S, V)=D; (I"S1', 1",); i=1, 2, .. (4.2)
it can be easily seen that
:p“v,(s’ ]/)H[T11 D:: T:11 T11D; T'su . ’ , ]

Tﬁll D1 T11 T21 D1 T21 +F22T22FD2 T 22FF 22

where T,, is a lower triangular matrix satisfying T, T'gop=y',,
Sg2.1'5,. Taking v now to be the invariant probability measure
over the group of orthogonal matrices of order 2 x 2, $,(S, V), from
Sharma and Krishnamoorthy (1983), is

[T11 DY T'yy TwD: T, J

T21D'>: Tlll T21D—)16. T,21+¢2(S22A1)

with
0 =_I_S =___2\ Szlézd
e T T L HEFHAN

To obtain (S, V), we consider p=3 and g=1. This sort of
restriction becomes necessary since we do not know if a relation
similar to (4.2) exists for general p and g. Proceeding as for D.(S, V),
it can be easily verified that

el *
$e(S, V) = [8: (S, V) sy, 8; S, V) S,, :l
it (S, V) S 0% (S, V)Ssy 857182 +‘/’g(S22.1)
R ]
where $9(S22.1) =31 (8, )S20..+ (03 (S, V) =03 (S, V) &%
22.1
6; (s, V_)==d‘1‘;(l+ Visii), 0% (S, V)=d;'?, 0% (S, V)=d;3, and
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di; (i=1,2, 3) are given by (2.7). However, unlike ¢9(S,,.,) the
estimator $9(S,,.,) is not a function of S.... alone. .

5. DERIVATION OF THE ESTIMATORS 9U(S, V), 2’;" AND
YOS, V) oF 2~ UNDER THE Loss L(V)
In this section, we consider the estimation of Z-* under the loss
function L(1)(¥-1, ‘SA'-‘)— tr (;‘1 ) —log | Ty | = p, which we can
denote by L( (Bf‘ 1B’)"1) where BE G, is such that BB =JX-1,

Proceeding as in Section 2, it is seen that the best lower triangular
equivariant and hence minimax estimator

(1)(5" V) = T'—lé —ld*’lé—lT"l,
where T and ¢ are lower triangular matrices satisfying

0 1
U=T7IVTY and d%=E(Z'Z)-1 with the density of Z propor-
tional to
[Z11]™"Z s " exp [— % tr VAR ATES 3 | VAPV ANA
—trZ,, (I-€371 UEiN)Z',,] WdZ)
As evaluatmg d* general p and q is difficult, take p=2, g=1; and
p=3,4=1, Forp=2,4g=1 we know from Section 2 that Z%,, Z2,

and Z,, are independently xZ.,, X#-1 and N(0, B) respectively so
that

TT =S and §§’=[1+ v O],

ari_ (M=2 0 )
( 0 (M-2)n-3)[(M-2+p)

where M=m+nand =1+ V/s,,. The estimator PaXS, V) is

iex [ (M -2)]8 0 -
] e (M=2(n-3)/(r~2+p) )

For p=3, g=1, d* % is seen to be

M -2)[2 0 ' 0
0 (M -2)(n—3)/(M -2+ B) 0

(M=2)(n-3)n—-4)

0 0 (n-2)(M-2+§)

so that ¢*)(S, V) is
o f AV 0
r 1( DS, V) )T

where dV=(M-2)/g, D® =diag (n-3, (n- 3)n—4)[(n~2)), and
h(S, V)=(M-2)[(M -2+ B).

-1
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We next obtain, for p=3, g=1, estimators 27&1) and (S, V)
similar to 2*¥ and ¢,(S, V). The estimator ¢*}(S, V) can be written
as

[sllld(l) S g/dD ]—1
Sg,[dM S31813810/dW + Ty o (D) 1T, [A(S, V)

in which T';1D®T;% is the best lower triangular equivariant esti-
mator of ¥;1 , based on Sy, ; (Sharma and Krishnamoorthy[8]).

Since L™ is fully invariant, ¢3)(S, V)= I'¢ (IS, I, VI )T for

any orthogonal I' of the form ( Piy 0 ) Then
0 r,,
(1) (1)
(S, V) = $11/d Syq/d -1
P5(S, V) [_S“/d‘” Sg18718, o/dV + :l w(5.1)

TyoTyor(D®) 2T oo p I3 [A(S, V)
where Tyor Taar=1"52 Sas.1 I'2s With Ty,p lower triangular.

If F22=((1) (l))o

1) - 311/d(1) Sxe/d(l) ]_1
PR V) [Sn/d(” Sy18118, . [dD 4+ U, o(DP) U5 5 [A(S.V)

=95(S, V) (say),
where U,, is an upper triangular matrix such that U, U’z =S:22.1,
Dy =diag ((n-3)(n-4)/(n—2), n—3) and U';LD{PU;% can be des-
cribed as the best upper triangular equivariant minimax estimator of
X,;%  basedon Sgqp.5 .

Strict convexity of the loss function implies that, for 0 < « < 1,
LPAUS, V)+(1 = <)P(S, V) is better than PA(S, V). We show that
the best choice of « is 2 so that XS, V) =1(¢W(S, V) +90US. ¥)):
Using the relation

(A11 A1g )'1
Aﬂl‘ AnlA;.iAle +B§9

— A7IT+ Ao (Bys) 2 4q. 471  —A7144.B53% L, (5.2)

"Bgal A21 A;i B;é
we have
<PUXS, V) + (1= <)PGS, V)
_ s“/d(l) S”/d(l) .
[Suld“’ SleI}Su/d‘“+{4T';éD““1';§+(l—UUG;DE’Q]
U'zib 2 h(S, V)

(5:3)
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Hence, the risk of «P(S, V) + (1 - <)P3(S, V) is

E'log (s:1/d™) - E log | «T'33DT 33 + (1 - ) U';3DE U5 2|~ log|Z)|
—2FE log A(S, V),

which again can be sent to be minimixed for « =1, as we have proved

in Theorem 3.2,

A convenient expression for ZA’Q)(S, V) is (5.3) with «=%; the
term HT';3DDT;1+ U';3D® U L) in it can he described as the best
average of the best lower triangular equivariant and the best upper
triangular equivariant estimators of Z;1 ; based on Saz.1

Like ¢,(S, V) we also define
YIS, V)=~(f )?}%)(S, V)do(I'y,), . (5.4)

where o is the invariant probability measure on the group O(2) of
orthogonal matrices of order 2x2 and {3 is the estimator (5.1).
Making use of (5.2), we get

PRS, V)=

d(l) SlZ (22.1) S12 22.1)
S"‘"‘ 32 rrg (Sag.1) (S21A(S, V) - ;g:"]}"g; (S22.1)A(S, V)
= Sa0) (L KS. V) 735 (S, A, V)

1

where 7(22-1)(S,, ,) is the best lower triangular equivariant estimator
of X3 , based on S,, , (Sharma and Krishnamoorthy [ibid.]) and
71&’2/2';)(529.1)‘,:]122 "1(22‘1)(11’22*?22.1 Tyo)",,. Once again using the

result in Sharma and Krishnamoorthy [ibid.] and (5.2),

$(S, V) =[S11/d(1" S1g/d® ]“1
Sa1/d) S3,51181./d™W + (A(S, V)21 (S,, )1
=4 o An=3) sk,

where 221§, , ) SET 0 .
¢ ( 22.1 (n—2) 22,1 (n—2) trsé‘g.l

Remarks 6.1. The admissibility of (S, V) (i1, 2) and $U1¥(S, V)
is an open question. We feel that they are inadmissible as they
‘“‘correct’” the best lower triangular equivariant estimator only in
(i, j) elements, i, j > 2. In view of the fact that we are considering
the group of orthogonal matrices, which is compact, if ’s are in-
admissible, one must be able to find a better orthogonal equivariant
¢stimator,
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6. Risks oF THE MLE AND THE BEST LOWER TRIANGULAR
EQUIVARIANT ESTIMATORS ¢, AND ¢(1)

Anderson (1957) has derived the MLE of X for general p and gq.
Forp=3andg=1,itis

o[ a+vism o 07
0 L0 |T'=7DT (say),
0 0 *

k1

where T€ G,, TT'=Sand M=m + n.

Its risk is

Ry(L, Zmie) = E; tr (TDT')— E, log |S| - E, log |D] 3
where E; denotes the expectation when X'=/. Let T= (¢;;), then ¢,
(i >j) are independent and ¢7; and ¢, (/ > j) have X7-14, and
N(0, 1) distributions resspectively. Denoting the digamma function
T'(x)/T(x) by {(x), we can obtain

E;log [S]=3log 2+ 5 {(n=4+1),
i=1
so that
Ry(I, B = E; tr TDS' =3 log 2— 5 g(n=jta)
i=1
+log (n*M)—E; log (1 + V/sy,)
M_z 1 3 n—2+1
~2(fgirmgy ~a )~ 10w 2- £ ey
— L(M[2) + {(»]2) + log (nE M).

Similarly, under the loss L, the risk of ZA'mle can be seen to be
M-2 [In(M-A)+3M(» 1)n 4)]
M(n+2) [ Mn(n-4)

+n(M+2)-—M(3n—4)+(n— 1)(2n+3)
Mn n* '

Kz(l: 2"1111e) =

Risks of ¢, and V) for p=3, g=1.
Consider the estimator ¢,(S, V). Since
Eg 5, tr (9.(S, V) £7) =p, the risk of ¢, is
R,(1, 9.(S, V)= - E; log |9.(S, V)|
= —E;log di(S, V)s;1 —~E; log |T3,DET', 4],
where d5(S, V)=B/(M+28), B=1+V[s,,, T,, islower triangular
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such that T',,T'y, =S, , and D¥ - diag (5, ). Since

2
E; log IT“T'“|=Elog Iszz.llc‘f"ElOg Xn-i

Ry(f, $2(S, V)= =3 log 2= {(M[2) - {((n - 1)/2) - {( (n - 2)/2)
+log (n(n—2))+ E; log (M +28)
E; log (M +28) can be evaluated through numerical integration, we

have done it for n=10 and m=4 ; its value is found to be 2.831472
so that R, (I, ?,(S, V) )="61559,

Similarly, the risk of ¢(2)(S, V) is

RO(I, S, V) )= - E; log |p(S, V)]

=-E;logdV -2E; log i(S, V)+ E; log Ty, D®-1T",,],
where V= (M -2)/B, h(S, V)=(M-2)|(M-2-8) and D'?) = diag
(n—3, (n-3)n-4)/(n-2)), and is seen to equal - 3log(M -2)+2E,
log (M =24+ R)+ L(M[2) + L(23Y) + {((»  2)/2)+ 3 log 2 log ((n-3)*®
(n-4)[(n-2)).

Once again, one can find E log (M -2+ ) through numerical

integration. Its value, for #=10 and m=4, is 2.60188 so that
RO, 90(S, V))=.74212.

Incidentally, using concavity of log x, one can obtain upper
bounds of the risks of ¢, and ) ;

Since E, log (M +28) < log [M+2+2m|(n-2)]
and E, log (M-2+p8) < log [M -1 +mf(n-2)].
Ry, 9:(S, V)) < =3 log 2= {(M[2) - {((n-1)[2) - ( (n—2)2)

tlog (n(n-2))+log [M+2+ 2mf(n - 2)]
and

RO 9S8, V)) < —3log (M -2)2) + {M2)+{((n-1)/2)
+{((n-2)/2)
—log ((n-3)*(n-4)/(n—-2)
+2log (M-1 +mf(n-2)).

7. EXACT COMPARISON OF X¥ WITH ?.(S, V) & )f;l) WITH (S, V)

From (3.3), when T'=/ and 7=(g ¢ 1), we have
Ry(Z, 55 )=R(Z, $:(S, ¥))
=E log ,T22D§T,321”El°g ,%(TzzD%z— Teo+ U21D2‘U/2z)l
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Notice that 7'y, D%T",, and U, ,D*U’,, are the best lower tringular
equivariant and the best upper triangular equivariant estimators of
%35, based on S, ,. Thus, the problem of comparing the estimators

)A,“f and ¢,(S, V) under L, is equivalent to the problem of comparing

the estimators ﬁ'l and %(2‘1 +2'u), where 2’1 and 2, are the bestlower
triangular and the best upper triangular equivariant estimators of 2z,
based on S~ W,_,(2, n—q). Wetake p=3 and ¢g=1, in which case
the risk difference, after some simplification, is found to be

2

=321

ni
2 1
- —_ 2 P eVk+1
=log (1 l/n1)+k‘2ﬂ0 (k+1)nf”””E(r Yet1, . (1.1)
where n,=n-1 and r=s,,/(s,,5,,)?/2 is the sample corelation co-
efficient. Fujimoto (1982) has calculated the exact values of the risk

difference between 3(Z,; + Z,) and 2, using the relation

. 1- 2)1;/2 @ P(B +i+j) {I‘("+i)}g 2¢
E(r2i =( P > il 3 [ )
) =y TG Te i) (7.2)
where S~W,(Z, n),j is an integer > 1 and p is the correlation co-

efficient calculated from 2. For our problem, R,(Z, :‘Ji‘ )- R, (2,
?.(S, V)) is given by (7.1) where n,=n-1and E(r?*?) is equal to
the expression on the right hand side of (7.2) with n replaced by
n—1.

We next find an expression of the risk difference of E‘Q) and
PSS, V). Clearly,

ROXZ, 5) - ROXZ, 96X(S, V)

=Elog |T53 DT ;1 - E log |{(T"35DT ;3 + U'3iDP U,
where T';1 DT} and U';1D{PU;}L are the best tower triangular
and the best upper triangular equivariant estimators of 23} , based
on Sy, ~Wy_ o(2,,.1,n—q). Thus, the comparison between 2’&1) and
P(S, ¥)is the same as the comparison of %(Z'Agl + f; 1) and 2;1

where 2‘;1 and £;1 are the best lower triangular equivariant and
the best upper triangular equivariant estimators of Z-* respectively
based on S~W, , (£, n~q). From Sharma and Krishnamoorthy
(ibid), forp=3, ¢=1,
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- 1 _2(m=3) (s*?)? (n-3)(n-4)s1®
-3 AR A A -
-1 (a3 (n-2) s** (n-)
(n-3)(n-4)s*® (n-3)(n-4)s**
B (n-2) n-2)
"(n—3)(fl-4) s11 (n_ 3)(" - 4) s12
and Z1 | (=2 (=2
(n-3Yn-4) .- _ayezz  2n—3) (s12)®
P = 3)s™ =) s

where S71 =(s*7).

After some calculation, we find the difference between the risk
‘g(i’; Ly f;‘) and the risk of Z’A[l and hence RO X, 2‘;‘ )) — ROY(Z, o)
(S, V)) equal to

(n-2)n-4 _ & 1 ek
CE 7c2=’o(k+l)(n——3)2‘k”)E(r) b (713)

We have calculated the risk differences (7.1) and (7.3) for n=
5, 10, 15, 20 and for different values of p : p in the original compari-
son problem is, in fact, the partial correlation coefficient p,,.,. The
calculated values are shown in Tables 3(a) and 3(b). We dotice that
Ry(Z, 3% ) — Ry(Z, 9,(S, V) and RO(Z, Z®) ~ RO(E, ¢S, V)
as pgg.1—1.

8. MONTE-CARLO STUDY (p=3,¢9=1)

Since evaluating the risks of ¢,(S, V), 2; and ¥, (S, ¥) under
L,, the risk of ¢,(S, V) under L, and the risk of ™ (S, V) under
LW is difficult, we do a Monte-Carlo study on the basis of samples
of size 10,000 for different %, n=10 and m=4. Note that ¢, (S, ¥)
is lower triangular equivariant and 93(S, V) is equivariant under G,
the group of matrices 4 of the form

a, 0 0
Aoy Agg azs |
a3y 0 Qags

Hence ﬁ’;‘ is equivariant under the group Gp of matrices B of the

J b,y Y 0

0

{bn baa O ]=[Z A ](say).
b31 0 bss 21 22

form
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Choosing Bz, =

—E@, it can be seen that it is enough to
o

evaluate R, (2, ZA:”; ) at

1 0 0
2= [ 0 1 P2s.1 ]»
0 Pgs.1 1

whereas for ¢,(S, V), X can be taken to be

1 c, ¢y
[ ¢y Cg 0 :]
Cq 0 Cy
without loss of generality.

Tables 1.1—1.3 present the values of R,(Z, 2‘*{ ) and R, (Z, ¢,

(S, V) ) while Tables 2.1—2.3 present the values of R,(Z, 2% ) add
Ro(Z, ¢o(S. F)).

From these tablesﬁ"f and ¢,;(S, V) (i=1, 2) do not seem to be
comparable.

Tables 1.1—1.3

m=4,n=10, p=3, g=1, R,(Z, Zmie)=.66130, R,(Z, ¢,(S,V)) =
61559

Column (a) gives the values of R,(Z2, f‘f ). Column (b) gives the
values of R, (&, ¥.(S, V)).

1 c, Cq
Table 1.1. 2=|:c1 1 0 :|: 1-¢c2-¢2 > 0.
¢, 0 1
Cy .1 2 3 S

AN

aN @ () @ ® (@ () (a (b)
2  .60410 .60335 .60411 .60334 .60413 .60334 .60419 .60338
4 .60412 .60338 .60415 .60338 .60423 .60339 .60458 .60348
.6 .60414 .60353 .60427 .60355 .60452 .60360 .60567 .60392
8
9

60423 60418 .60467 .60429 .60556 .60454 .60714 .60629
.60442 60534 .60558 .60570 .60799 .60656 — —
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1 0 0
Table 1.2. Z=]0 1 ¢}
0 ¢ 1
c (a) (b)
0 .60410 .60334
d .60420 .60350
2 .60447 .60362
3 .60490 .60368
4 .63553 .60393
S .60639 .60429
.6 60756 60478
g .60907 .60547
.8 .61095 .60648
9 .61316 .60821
99999 61558 61563
1 0 0
Table 1.3. 210 a,, O .
0 0 Og3
(022’ Oyg) (2) (b)
(L1 .60410 .60334
(2, 3) .60410 .60341
(10, 100) .60410 .60615
.60410 .60702

(20, 300)

Tables 2.1-2.3

m=4,n=10, p=3, g—1, Ry(Z, Eni) —99143,

R,(Z, 9,(S, V))=.81091 (simulated).

Column (a) gives the

values of R,(Z, .AZ';) and column (b) gives the values of R,(Z,

P, V)

1 ¢ ¢

Table 2.1. Z=}lec, 1 O |, 1-ci-c3>0

c, 0 1
s 1 2 3 .5
k @ ® @ ® @ ® @ (O
2 .80295 .80264 .80295 80264 .80296 .80265 .80301 .80268
4 .80295 .80266 .80298 .80267 .80304 .80268 .80329 .80276
6 .80297 .80276 .80306 80278 .80324 .80283 .80411 .80307
.8 .80303 .80320 .80336 .80329 .80403 .80347 .80732 .80471
9 .80317 .80399 .80404 80425 .80587 .80485 . —




Table 3.1. Bxact Risk Difference R(Y, 9,(S, ¥))— R(Z, %)
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1 0 0
Table 2.2. X=]0 1 ¢
1 ¢ 1
c a b
0 .80295 .80265
.1 .80302 .80267
2 .80323 .80274
3 .80356 .80286
4 .80403 .80303
.5 .80467 .80327
.6 .80551 .80360
q .80659 .80406
.8 .80789 .80474
9 .80933 .80589
.99999 81135 .81054
1 0 0
Table 2.3. =10 o4, 0 |{.
00 Gag
(022, 035 a b
;1) .80295 .80265
2, 3) .80295 .80270
(10, 100) .80295 .80469
(20, 300) .80295 .80531

41

\n 5 10 15 20
AN
P2s.a
0 .04866 .01103 00475 .00262
.05 .04858 .01099 .00474 .00261
.1 .04834 .01088 00471 .00258
3 .04571 .00975 .00437 .00232
.5 .04009 .00738 .00368 .00179
7 .02403 .00283 .00241 .00086
9 .01365 .00087 .00039 .00007
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Table 3.2. Exact Risk Difference R(Z, $()(S, ¥)) - R(Z, Z,0))
forp=3, g=1

AN 5 10 15 20
Pz s
0 22081 01831 .00640 .00327
.05 22046 01825 .00639 .00326
N 21942 01807 00633 .00323
,3 .20802 01619 .00573 .00289
.5 .18351 01227 .00469 .00224
T 11140 .00483 .00329 .00107
9 07056 .00096 .00072 .00008
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