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A discrete two-stage population model: continuous
versus seasonal reproduction

AZMY S. ACKLEH* and SOPHIA R.-J. JANG

Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, USA

(Received 27 April 2006; in final form 19 October 2006)

A discrete two-stage model which describes the dynamics of a population where juveniles and adults compete
for different resources is developed. A motivating example is the green tree frog (Hyla cinerea) where
tadpoles and adult frogs feed on separate resources. First, continuous breeding is assumed and the asymptotic
behavior of the resulting autonomous model is fully analyzed. It is shown that the unique interior equilibrium
is globally asymptotically stable when the inherent net reproductive number is greater than one. However,
when the inherent net reproductive number is less than one, the population becomes extinct. Then a seasonal
breeding described by a periodic birth rate with period 2 is assumed. It is proved that for this nonautonomous
model a period two solution is globally asymptotically stable when the inherent net reproductive number is
greater than one and when the inherent net reproductive number is less than one the population becomes
extinct. Finally, the advantage (in terms of maximizing the number of juveniles and adults in the population
over a fixed time period) of having a seasonal breeding is studied by comparing the average of the juvenile and
adult numbers of the periodic solution for the nonautonomous model to the equilibrium solution of the
autonomous model. Our results indicate that for high birth rates the equilibrium of the autonomous model is
higher than the average of the two cycle solution. Therefore, all other factors being equal, seasonal breeding
appears to be deleterious to populations with high birth rates. However, for low birth rates seasonal breeding
can be beneficial. It is also shown that for a range of birth rates the nonautnomous model is persistent while the
solution to the autonomous model goes to extinction.

Keywords: Discrete two-stage model; Seasonal versus continuous reproduction; Inherent net reproductive
number; Global stability

1. Introduction

Many populations engage in seasonal breeding versus continuous breeding. The cost of winter

breeding, presumably, overweigh the benefits. This hypothesis is well accepted [3,4]. Energy

availability in the winter is generally low. Therefore, many animal populations restrict their

reproductive activities to specific times of the year when food is abundant and survival and

reproductive success is high [20]. In addition to seasonal breeding, many populations also have

their juveniles and adults compete for different resources. Anurans are a good example of such

populations. They have a bi-phasic lifestyle, living on land and in water at different stages in

their life cycle. Tadpoles feed on algae while frogs feeds on crickets, wax worms, mealworms,

small silkworms, red worms, moths, and flies. Therefore, in this population intra-competition

within each stage occurs.

In this paper, we develop a two-stage discrete model which describes the dynamics of a

seasonally breeding population with stage specific competition. We fully analyze this model

when breeding is continuous and when breeding is seasonal (Section 2). In particular, we show
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that the continuous breeding model has a globally asymptotically stable equilibrium. While

we prove that the model with seasonal breeding has a globally asymptotically stable periodic

solution. We then ask the following question: all other factors being equal, is seasonal

reproduction (assuming within a season an adult individual reproduce the same number of

juveniles as in continuous breeding during a year) advantageous in terms of maximizing the

average number of juvenile and adult individuals over a fixed time period? To answer this

question we compare the equilibrium solution to that of the average of the periodic solution.

The results show that for a high birth rates the seasonal reproduction is deleterious. While for

low birth rates seasonal breeding is beneficial. Also our results indicate that for a range birth

rates seasonal reproduction is advantageous in the sense that for such birth rates the

autonomous population becomes extinct while the seasonal population is uniformly

persistent with respect to the origin.

2. Model development and analysis

This work is motivated by our interdisciplinary project for understanding the dynamics of the

green tree Hyla cinerea. In March 2003 we set up a long term monitoring program of this

population at ponds located near the USGS National Wetlands Research Center in Lafayette,

Louisiana. We have combined statistics and data collected using a mark-recapture technique

to obtain population estimates in these ponds (for more details see Ref. [21]). The green tree

frog has a tadpole stage of approximately 2 months (55–65 days). Its breeding season varies

according to temperature. Within moderate climates the breeding season includes late spring

months, early summer and mid-summer months. In warmer, southern environments the

breeding season can be as long as March–October. However, our calling data indicate that in

these ponds the breeding season is from March to August (6 months).

Our interest here is to develop a theoretical model which describes the dynamics of a

population which is divided into two stages: juveniles and adults and engages in seasonal

breeding. To this end, denote by x(t) the number of juveniles at time t and by y(t) the number

of adults at time t. We assume that the juvenile stage is less than or equal 6 months and

choose the time step equal to the breeding season of 6 months (note that all surviving

juveniles move into the adult stage within one time step). Assume that juveniles compete

with each other but not with adults and similarly adults compete with each other but not

with juveniles. Assume further that Beverton–Holt type function is used to model this

competition. Let b(t) be the time-dependent birth rate. We then obtain the following two-

stage discrete model:

xðt þ 1Þ ¼ bðtÞyðtÞ

yðt þ 1Þ ¼
xðtÞ

aþ k1xðtÞ
þ

yðtÞ

cþ k2yðtÞ

ðxð0Þ; yð0ÞÞ [ R2
þn{ð0; 0Þ};

8>>>><
>>>>:

ð2:1Þ

where the parameters a, c, k1 and k2 are assumed to be positive. Moreover, since

1/(a þ k1x(t)) represents the fraction of the juveniles x(t) present at time t that survive one

unit of time and appear as adults at time t þ 1, we assume a . 1 for the model to be

biologically meaningful. Similarly, we assume that the parameter c . 1. We define sj ¼ 1/a,

A. S. Ackleh and S. R.-J. Jang262
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the inherent survivorship fraction of juveniles, and sa ¼ 1/c, the inherent survivorship

fraction of adults.

We are interested in theoretically understanding whether seasonal reproduction is

advantageous or not. Therefore, we will analyze the model equation (2.1) for two cases. The

first one is assuming that b(t) ¼ b a positive constant and the second case is b(t) being

periodic with period 2. Before we start analyzing the model equation (2.1) we recall the

following result (see Theorem 1.10 in Ref. [15]) which will be used in the sequel. Consider

a k þ 1 order nonlinear difference equation of the form

xnþ1 ¼ Fðxn; xn21; . . . ; xn2kÞ; n ¼ 0; 1; 2; . . . ; ð2:2Þ

where F [ CðI kþ1;RÞ and I is an open interval of R.

Theorem 2.1. Let x* [ I be an equilibrium of equation (2.2). Suppose F satisfies the

following two conditions:

(a) F is non-decreasing in each of its arguments, and

(b) F satisfies ðu2 x *Þ½Fðu; u; . . . ; uÞ2 u� , 0 for all u [ In{x*}.

Then x* is a global attractor of all solutions of equation (2.2).

2.1 Continuous breeding

In this section we consider the model equation (2.1) with continuous breeding. That is we

assume throughout this section that in the model equation (2.1) bðtÞ ¼ b, a positive constant.

Clearly solutions of system (2.1) remain nonnegative. The system always has a trivial steady

state E0 ¼ ð0; 0Þ. The y-component of a nontrivial steady state ð�x; �yÞ, �y . 0, must satisfy

1 ¼
b

aþ k1by
þ

1

cþ k2y
: ð2:3Þ

Consequently, equation (2.1) has an interior steady state E1 ¼ ð�x; �yÞ if and only if

b

a
þ

1

c
. 1; ð2:4Þ

where �y solves equation (2.3) and �x ¼ b�y. The interior steady state is unique whenever it

exists.

Observe that since c . 1 inequality (2.4) is equivalent to

b

a

1

12 ð1=cÞ
. 1;

and the left hand side of the above inequality can be rewritten as

b

a

1

12 ð1=cÞ
¼ b=að1þ ð1=cÞ þ ð1=c2Þ þ · · ·Þ ¼ bsj þ bsjsa þ bsjs

2
a þ · · ·:

Therefore,

R0 ;
b

a

1

12 ð1=cÞ

A discrete two-stage population model 263
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represents the inherent net reproductive number of the population. It is the expected number

of juvenile recruits per juvenile per life time. Using Theorem 2.1 the asymptotic dynamics of

system (2.1) can be understood and are summarized below.

Theorem 2.2. Suppose that b(t) ¼ b for t ¼ 0, 1, . . . , then we have the following results:

(a) If R0 , 1, then equation (2.1) has only the trivial steady state E0 ¼ (0,0) which is

globally asymptotically stable.

(b) If R0 . 1, then in addition to E0, equation (2.1) has another equilibrium E1 ¼ ð�x; �yÞ

which is globally asymptotically stable.

Proof.

(a) Suppose R0 , 1. It is clear that equation (2.1) has only the trivial steady state E0.

Linearization of system (2.1) at E0 yields the following Jacobian matrix

JðE0Þ ¼
0 b

1=a 1=c

 !
:

Since the spectral radius of JðE0Þ, ðð1=cÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=c2Þ þ 4b=a

p
Þ=2, is less than 1, and

equation (2.1) satisfies inequality (1.22) in Ref. [6], E0 is globally asymptotically stable

by Ref. [6].

(b) Suppose now R0 . 1. Let (x(t), y(t)) be an arbitrary solution of equation (2.1). Notice

that

yðtÞ #
1

k1
þ

1

k2

and

xðtÞ # b
1

k1
þ

1

k2

� �

for all t large. Hence solutions of equation (2.1) are bounded.

Since R0 . 1, it follows from an earlier discussion that system (2.1) has two nonnegative

equilibria E0 ¼ ð0; 0Þ and E1 ¼ ðb�y; �yÞ. The linearization of equation (2.1) at E1 yields the

following Jacobian matrix

JðE1Þ ¼

0 b
a

ðaþ k1b�yÞ
2

c

ðcþ k2 �yÞ
2

0
B@

1
CA:

Since trJðE1Þ . 0 and det JðE1Þ , 0, to show local asymptotic stability of E1 it is enough

to prove trJðE1Þ , det JðE1Þ þ 1 by the Jury conditions [2,11]. Replacing 1 by the right

hand side of equation (2.3) evaluated at y ¼ �y, we see that tr JðE1Þ , det JðE1Þ þ 1 is

A. S. Ackleh and S. R.-J. Jang264
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equivalent to

c

ðcþ k2 �yÞ
2
2

1

cþ k2 �y
,

b

aþ k1b�y
2

ab

ðaþ k1b�yÞ
2
;

which is clearly true. Therefore E1 is locally asymptotically stable.

Furthermore, equation (2.1) is equivalent to the following second order scalar difference

equation

yðt þ 2Þ ¼
byðtÞ

aþ k1byðtÞ
þ

yðt þ 1Þ

cþ k2yðt þ 1Þ
ð2:5Þ

with

yð1Þ ¼
xð0Þ

aþ k1xð0Þ
þ

yð0Þ

cþ k2yð0Þ
. 0

for a given ðxð0Þ; yð0ÞÞ [ R2
þn{ð0; 0Þ}. Clearly �y is a steady state solution of equation (2.5).

Let

Gðu; vÞ ¼
bu

aþ k1bu
þ

v

cþ k2v
for u; v $ 0:

Then ð›G=›uÞ . 0, ð›G=›vÞ . 0 for all u; v $ 0, and

ðu2 �yÞ½Gðu; uÞ2 u� ¼ ðu2 �yÞ
b

aþ k1bu
þ

1

cþ k2u
2 1

� �
u , 0

for all u . 0; u – �y by equation (2.3). Hence solutions of equation (2.5) converge to �y

by Theorem 2.1. As a consequence, solution (x(t), y(t)) of equation (2.1) converges to

E1 ¼ ðb�y; �yÞ. This completes the proof of (b) as the solution was arbitrary. A

Remark. Although from the global asymptotic result it follows that the system is uniformly

persistent with respect to the origin, the general theory in [6, Theorem 1.2.1] and

[19, Theorem 3] can be applied to system (2.1) to prove uniform persistence.

2.2 Seasonal breeding

In this section we assume that breeding is seasonal. That is we assume that the function b(t) in

equation (2.1) is periodic with period 2. Specifically, bð0Þ ¼ b̂ . 0, b(1) ¼ 0, bð2Þ ¼ b̂,

b(3) ¼ 0, . . . . Let ðxð0Þ; yð0ÞÞ [ R2
þn{ð0; 0Þ} be given. Then

xð1Þ ¼ b̂yð0Þ

yð1Þ ¼
xð0Þ

aþ k1xð0Þ
þ

yð0Þ

cþ k2yð0Þ
;

8><
>:

and

xð2Þ ¼ 0

yð2Þ ¼
b̂yð0Þ

aþ k1b̂yð0Þ
þ

xð0Þ

aþ k1xð0Þ
þ

yð0Þ

cþ k2yð0Þ

cþ k2
xð0Þ

aþ k1xð0Þ
þ

yð0Þ

cþ k2yð0Þ

� � :

8>>>>><
>>>>>:

A discrete two-stage population model 265
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If the solution (x(t), y(t)) is periodic with period 2, we must have

xð0Þ ¼ 0

yð0Þ ¼
b̂yð0Þ

aþ k1b̂yð0Þ
þ

yð0Þ

cþ k2yð0Þ

cþ
k2yð0Þ

cþ k2yð0Þ

:

8>>>>><
>>>>>:

If y(0) . 0, then y(0) must satisfy

1 ¼
b̂

aþ k1b̂y
þ

1

c2 þ ck2yþ k2y
: ð2:6Þ

Equation (2.6) has a unique positive solution y* if and only if

b̂

a
þ

1

c2
. 1: ð2:7Þ

In this case, system (2.1) has a unique nontrivial 2-cycle

ð0; y*Þ; b̂y*;
y*

cþ k2y*

� �� �
:

Similar to the autonomousmodel, equation (2.7) is equivalent to ðb̂=aÞð1=ð12 ð1=c2ÞÞÞ . 1.

The left hand side of this inequality can be written as:

b̂
a

1
12ð1=c 2Þ

¼ b̂=að1þ ð1=c2Þ þ ð1=c4Þ þ · · ·Þ:

Thus, we define

R̂0 ;
b̂

a

1

12 ð1=c2Þ
¼ b̂sj þ b̂sjs

2
a þ b̂sj s

2
a

� 	2
þ· · ·

It is the inherent net reproductive number of the population for the periodic birth rate (this is

because in order to reproduce repeatedly an adult must suffer two survivorship events

with a probability s2a). The asymptotic dynamics of system (2.1) (depending on R̂0) can be

summarized below.

Theorem 2.3. Suppose that bð2tÞ ¼ b̂, b(2t þ 1) ¼ 0 for t ¼ 0, 1, . . . , then we have the

following results:

(a) If R̂0 , 1, then E0 ¼ ð0; 0Þ is globally asymptotically stable.

(b) If R̂0 . 1, then the 2-periodic solution {ð0; y*Þ; ðb̂y *; y*=ðcþ k2y*ÞÞ} is globally

asymptotically stable.

Proof. We start by proving (b) first. To this end, suppose R̂0 . 1. Let (x(t), y(t)) be a solution

of equation (2.1). Notice that y(t) . 0 for t $ 1 and

yðt þ 2Þ ¼
bðtÞyðtÞ

aþ k1bðtÞyðtÞ
þ

yðt þ 1Þ

cþ k2yðt þ 1Þ

A. S. Ackleh and S. R.-J. Jang266
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for t $ 0. Since x(2t) ¼ 0 for t $ 1, we have by equation (2.1) that

yð2t þ 1Þ ¼
yð2tÞ

cþ k2yð2tÞ

and

yð2tÞ ¼
b̂yð2t2 2Þ

aþ k1b̂yð2t2 2Þ
þ

yð2t2 1Þ

cþ k2yð2t2 1Þ

for t $ 1. Hence

yð2tÞ ¼
b̂yð2t2 2Þ

aþ k1b̂yð2t2 2Þ
þ

yð2t2 2Þ

c2 þ ck2yð2t2 2Þ þ k2yð2t2 2Þ
ð2:8Þ

for t $ 2. The above second order difference equation has the nontrivial steady state y* by

the assumption R̂0 . 1. Since equation (2.8) has the same form as equation (2.5) and

y(2) . 0, we conclude that solutions of equation (2.8) converge to y* by Theorem 2.1, i.e.

solution (x(t), y(t)) of equation (2.1) satisfies limt!1xð2tÞ ¼ 0 and limt!1yð2tÞ ¼ y*.

Consequently, limt!1xð2t þ 1Þ ¼ b̂y *, and since yð2t þ 1Þ ¼ yð2tÞ=ðxþ k2yð2tÞÞ for t $ 1,

we have limt!1yð2t þ 1Þ ¼ y *=ðcþ k2y*Þ. This shows that solutions of equation (2.1)

converge to the 2-cycle {ð0; y*Þ; ðb̂y *; y*=ðcþ k2y*ÞÞ}.

Furthermore, the local stability of the 2-cycle depends on the eigenvalues of the product of

the matrices [11]

Ĵ ¼

0 bð0Þ

1=a
c

ðcþ k2y*Þ
2

0
B@

1
CA

0 bð1Þ

a

ðaþ k1b̂y *Þ
2

c

cþ k2y *

cþk2y *


 �2
0
BB@

1
CCA

¼

ab̂

ðaþ k1b̂y*Þ
2

b̂c

cþ
k2y*

cþ k2y*

� �2

ac

ðcþ k2y*Þ
2ðaþ k1b̂y *Þ

2

c2

ðcþ k2y*Þ
2 cþ

k2y*

cþ k2y*

� �2

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Similar to the proof of Theorem 2.2(b), we have det Ĵ ¼ 0 and

tr Ĵ ¼
ab̂

ðaþ k1b̂y*Þ
2
þ

c2

ðcþ k2y*Þ
2 cþ

k2y*

cþ k2y*

� �2
. 0:

Replacing 1 by the right hand side of equation (2.6) evaluated at y ¼ y*, it can be shown that

tr Ĵ , 1. Consequently, the 2-cycle is locally asymptotically stable. Therefore, the 2-cycle is

globally asymptotically stable.

To prove (a), suppose R̂0 , 1. It follows from equation (2.8) that

yð2tÞ #
b̂

a
yð2t2 2Þ þ

1

c2
yð2t2 2Þ

A discrete two-stage population model 267
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for t $ 2. We consider the following second order scalar difference equation for t $ 2

zð2tÞ ¼ b̂
a
zð2t2 2Þ þ 1

c 2 zð2t2 2Þ

zð2Þ ¼ yð2Þ:

8<
:

Its corresponding characteristic equation is l2 2 ððb̂=aÞ þ ð1=c2ÞÞ ¼ 0. Therefore, we have

limt!1zð2tÞ ¼ 0 as R̂0 , 1. Hence limt!1yð2tÞ ¼ limt!1xð2tÞ ¼ 0, and as a result,

limt!1yð2t þ 1Þ ¼ limt!1xð2t þ 1Þ ¼ 0. Therefore, solutions converge to E0 ¼ ð0; 0Þ if

R̂0 , 1. Now, the local stability of E0 can be determined by the eigenvalues of the product of

the matrices [11]

J ¼
0 bð0Þ

1=a 1=c

 !
0 bð1Þ

1=a 1=c

 !
¼

b̂=a b̂=c

1=ac 1=c2

0
@

1
A:

It is clear that det J ¼ 0 and tr J ¼ ðb̂=aÞ þ ð1=c 2Þ , 1 by the assumption R̂0 , 1. Thus it

follows that E0 is locally asymptotically stable. Consequently, E0 is globally asymptotically

stable. A

Remark. Parallel to the earlier remark on the autonomous model, system (2.1) is also

uniformly persistent when birth rate is seasonal. This follows directly from the global

asymptotic stability of the nontrivial 2-cycle as proved in Theorem 2.3(b). However, letting

z(t) ¼ y(2t) for t $ 1 in equation (2.8), one obtains a one-dimensional autonomous

difference equation for the even subsequence (in y) of the original system (2.1) and similar

procedure can be applied for the odd subsequence. Using the technique developed by

Cushing [6] and Kon et al. [19] one can also conclude uniform persistence of system (2.1).

2.3 Comparison between continuous and seasonal breeding

Motivated by some recent work in Refs. [7–9,12–14], our next goal is to understand whether

seasonal breeding is advantageous or not. There are many comparison questions between

continuous and seasonal reproduction one can ask about the model equation (2.1). For

example, are there values for the birth rate such that the population with periodic birth rate

persists while the one with continuous birth rate go to extinction? Do both juvenile and adult

averages x and y decrease (or increase) with fluctuating birth rates? Does the average of the

total population (i.e. x þ y) decrease (or increase)? Does a weighted average w1xþ w2y for

positive w1 and w2 increase (or decrease)? Does the reproductive stage y (adults) decrease

(or increase)?

The most recent literature concerning such problems was motivated by an observed

increase of the total population size in an experimental system [18]. Thus in the papers

[5,16,17] the authors consider the average total population size x þ y as a comparison

criterion. In this paper, we address the first two questions posed above. We point out that the

component wise comparison posed in the second question is a more strict criterion than the

ones discussed in the remaining questions. Thus the results obtained here will apply to these

other criteria such as the total population x þ y or the weighted average w1x þ w2y or the

reproductive stage y.
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To compare the two cases on an equal basis, we assume for the rest of this section that

b̂ ¼ 2b. Clearly in this case for both the continuous and seasonal breeding models each adult

produces 2b juveniles within a one-year period.

(a) Persistence of population with periodic birth rate

Since b̂ ¼ 2b, then Theorems 2.2 and 2.3 require, respectively, that

b . a 12
1

c

� �
; and b .

1

2
a 12

1

c2

� �
:

Since (recall that c . 1)

a 12
1

c

� �
.

1

2
a 12

1

c2

� �

it follows that Theorem 2.3 applies, and hence there exists a survival 2-cycle on interval

of average birth rates b, namely

1

2
a 12

1

c2

� �
, b , a 12

1

c

� �
;

for which the population in the autonomous case goes extinct. This shows that for this

range of birth rates seasonal reproduction is advantageous.

(b) Comparison of the averages of x and y for periodic and constant birth rates

Here we show that the average of juveniles and adults increase for the seasonal

reproduction for birth rates which are low while decreases when the birth rates are high.

This shows that seasonal reproduction is advantageous for low birth rates. To this end

since b̂ ¼ 2b, then equation (2.6) becomes

1 ¼
2b

aþ 2k1by
þ

1

c2 þ ck2yþ k2y
; ð2:9Þ

which is equivalent to

1 ¼
b

a
2
þ k1by

þ
1

c2 þ ck2yþ k2y
:

Solving for equation (2.3) explicitly yields

�y ¼
ðbk1 þ bk2 2 ak2 2 bck1Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbk1 þ bk2 2 ak2 2 bck1Þ

2 2 4bk1k2ðac2 bc2 aÞ
p

2bk1k2
:

Similarly, solving for equation (2.9) we have

y* ¼
Ĉþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉ2 2 8bk1k2ðcþ 1Þðac 2 2 2bc2 2 aÞ

p
4bk1k2ðcþ 1Þ

;

where Ĉ ¼ 2bk1 þ 2bk2 þ 2bck2 2 ak2 2 ack2 2 2bc2k1.
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Since �y satisfies equation (2.3), differentiating both sides of equation (2.3) with respect to b

yields

0 ¼
a2 k1b

2 d�y
db

ðaþ k1b�yÞ
2
2

k2
d�y
db

ðcþ k2 �yÞ
2
:

Hence

d�y

db
¼

aðcþ k2 �yÞ
2

k1b2ðcþ k2 �yÞ
2 þ k2ðaþ k1b�yÞ

2
. 0

for b $ að12 ð1=cÞÞ. Similarly, differentiate both sides of equation (2.9) with respect to b,

we have

0 ¼
2a2 4b2k1

dy *

db

ðaþ 2bk1y*Þ
2
2

ðcþ 1Þk2
dy *

db

ðc2 þ ck2y* þ k2y*Þ
2
:

Therefore

dy*

db
¼

2aðc2 þ ck2y* þ k2y*Þ
2

4b2k1ðc 2 þ ck2y* þ k2y*Þ
2 þ ðcþ 1Þk2ðaþ 2bk1y*Þ

2
. 0

for b $ ða=2Þð12 ð1=c2ÞÞ.

As �y and y* are increasing functions of b and solutions of equation (2.1) are bounded, we

see that limb!1 �yðbÞ ¼ �yð1Þ and limt!1y*ðbÞ ¼ y*ð1Þ both exist. A direct computation

yields

�yð1Þ ¼
k1 þ k2 2 ck1

2k1k2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2 2 ck1Þ

2 þ 4ck1k2
p

2k1k2

and

y*ð1Þ ¼
k1 þ k2 þ ck2 2 c 2k1

2k1k2ðcþ 1Þ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2 þ ck2 2 c 2k1Þ

2 þ 4k1k2c2ðcþ 1Þ
p

2k1k2ðcþ 1Þ
:

Since

k1 þ k2 2 ck1

2k1k2
¼

k1 þ k2 þ ck2 2 c 2k1

2k1k2ðcþ 1Þ

and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2 þ ck2 2 c 2k1Þ

2 þ 4k1k2c2ðcþ 1Þ
p

2k1k2ðcþ 1Þ
,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ k2 2 ck1Þ

2 þ 4ck1k2
p

2k1k2
;

we have y*ð1Þ , �yð1Þ. Consequently,

y*ðbÞ , �yðbÞ for all b sufficiently large:

On the other hand, it is easy to see that limb!ðað12ð1=cÞÞÞþ �yðbÞ ¼ 0, and since

limb!að12ð1=cÞÞbk1k2ðc þ 1Þðac 2 2 2bc2 2 aÞ ¼ a2=cðc2 2 1Þk1k2ð2c 2 1 2 c2Þ , 0, we

have limb!að12ð1=cÞÞy*ðbÞ . 0. In particular,
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y*ðbÞ . 2�yðbÞ for b . að12 ð1=cÞÞ but sufficiently close to að12 ð1=cÞÞ:

Now, if y* , �y (which is true for high birth rates b), then

b̂y * þ 0

2
¼ by* , b�y ¼ �x

and

1

2
y * þ

y*

cþ k2y*

� �
,

1

2
�yþ

�y

cþ k2 �y

� �
, �y:

Therefore, the periodic environment is deleterious. If y* . 2�y (which is true for birth rates b

sufficiently close to að12 ð1=cÞÞ), then

2by* þ 0

2
¼ by * . 2b�y . �x;

and

1

2
y* þ

y*

cþ k2y*

� �
.

1

2
2�yþ

2�y

cþ 2k2 �y

� �
. �y

Therefore, the periodic environment is advantageous.

We use a numerical example to demonstrate our finding. Let a ¼ 3, c ¼ 2, k1 ¼ 0.001, and

k2 ¼ 0.01. Then clearly R0 ¼ ðb=aÞð1=ð12 ð1=cÞÞÞ . 1 for b . 1:5 and R̂0 ¼ ð2b=aÞ �

ð1=ð12 ð1=c2ÞÞÞ . 1 for b . 1.125. We plot �y and y* as a function of the parameter b in

figure 1 together with the ratio �y=y*. Since y* , �y for b . 24.04, the periodic environment

is deleterious to the population if b is greater than around 24.04. When b is between 1.5 and

3.05 the periodic environment is advantageous since y * . 2�y for this range of birth rates. Our

theory is inconclusive as whether the periodic environment is deleterious or not for b larger

than 3.05 and less than 24.04. However, simulation results of the model equation (2.1)

indicate that periodic environment produces larger averages of juveniles and adults and thus

is advantageous for b in the interval (1.5, 3.376).

3. Concluding remarks

All other factors being equal, we showed that for high birth rates the seasonal breeding is

deleterious. While for low births rate it is beneficial. However, this is a first attempt and

indeed a simplification of reality, that is to say, all other factors may not be equal. For

example, survival success may be lower in harsh winter seasons due to risk of infections

because of insufficient energy reserve being available to sustain immunity. Stress can

compromise immune system [1,10]. To investigate the effect of both periodic survival rate

and seasonal breeding one can modify the model developed in this paper as follows:

xðt þ 1Þ ¼ bðtÞyðtÞ

yðt þ 1Þ ¼ g1ðtÞ
xðtÞ

aþ k1xðtÞ
þ g2ðtÞ

yðtÞ

cþ k2yðtÞ

ðxð0Þ; yð0ÞÞ [ R2
þn{ð0; 0Þ};

8>>>><
>>>>:

ð3:10Þ
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where 0 # g1ðtÞ # 1 and 0 # g2ðtÞ # 1 are periodic functions which are low in winter and

high(er) during warm weather.

Simulation results show that the model (3.10) with continuous breeding will produce

larger juvenile and adult population numbers for high birth rates. Hence, in this sense, the

conclusion would be similar to the models discussed in Section 2. In figure 2 we present a

comparison of the solution of equation (3.10) with b(t) ¼ b ¼ 10 (i.e. continuous

reproduction) with the solution of equation (3.10) when b(t) is periodic with period 2.

Specifically, bð0Þ ¼ b̂ ¼ 2b . 0, bð1Þ ¼ 0, bð2Þ ¼ b̂, b(3) ¼ 0, . . . The functions g1(t) and

g2(t) are chosen to be periodic with period 2, where g1(0) ¼ 1, g1(1) ¼ 0.6, g1(2) ¼ 1, . . . ,

and g2(0) ¼ 1, g2(1) ¼ 0.8, g2(2) ¼ 1, . . . The initial conditions are chosen as x(0) ¼ 100

and y(0) ¼ 10 while the rest of the parameters are given as follows:

a ¼ 3; c ¼ 2; k1 ¼ 0:001, and k2 ¼ 0:01. Clearly the average of juveniles and adults for

the continuous breeding case is larger than those for the seasonal breeding case. This seems

true for high values for b. However, if we set b to small values (e.g. b ¼ 2.1) this conclusion

is reversed. Therefore, seasonal breeding is beneficial for low values of b.

Finally, we point out that our current work is focused on improving this model to better fit

the dynamics of the green tree frog (Hyla cinerea). In particular, not all frogs are

reproductive. In fact, green tree frogs become sexually mature when they are around one year

of age. Therefore, we plan to modify equation (2.1) to include an additional equation which

describes the dynamics of nonreproductive frogs. This will result in a new system composed

Figure 1. Using parameter values a ¼ 3, c ¼ 2, k1 ¼ 0.001, and k2 ¼ 0.01 we plot in the left figure �y and y * as
functions of b, the birth rate. While in the right figure we plot the ratio �y=y *. Note that y * , �y when b is larger than
24.04 and y * . �y when b is between 1.5 and 24.04. Furthermore, y * . 2�y when 1.5 # b # 3.05.
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of three difference equations which model the dynamics of juveniles, nonreproductive adults,

and reproductive adults. We also plan to extend this investigation to competition modeled by

Ricker type of functions.
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