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Abstract. We consider a three-stage discrete-time population model with density-dependent survivorship
and time-dependent reproduction. We provide stability analysis for two types of birth mechanisms: con-
tinuous and seasonal. We show that when birth is continuous there exists a unique globally stable interior
equilibrium provided that the inherent net reproductive number is greater than unity. If it is less than
unity then extinction is the population’s fate. We then analyze the case when birth is a function of period
two and show that the unique 2-cycle is globally attracting when the inherent net reproductive number is
greater than unity. While if it is less than unity the population goes to extinction. The two birth types
are then compared. It is shown that for low birth rates the adult average number over a one year period
is always higher when reproduction is continuous. Numerical simulations suggest that this remains true
for high birth rates. Thus periodic birth rates of period two are deleterious for the three stage population
model. This is different from the results obtained for a two-stage model discussed by Ackleh and Jang (J.
Diff. Equ. Appl. (13):261-274, 2007) where it was shown that for low birth rates seasonal breeding results
in higher adult averages.
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1. Introduction

Several researchers have focused in recent years on the dynamics of nonautonomous discrete-time models
and the advantage of seasonal versus continuous breeding in terms of maximizing the total population
number or the total number of adults over a fixed time period [4–10, 12, 13, 15]. These studies were mo-
tivated by an experimental system which investigated the responses of populations of the flour beetle,
Tribolium castaneum, cultured in a series of regularly fluctuating environments. Therein, it was observed
that population density declined as environmental period lengthened [14].

Motivated by an urban population of green treefrogs that we are studying [16], we recently developed
the following juvenile-adult model for a seasonally breeding population [1]:





xt+1 = btyt

yt+1 =
xt

a + k1xt
+

yt

c + k2yt
x0, y0 > 0,

where the parameters a, c, k1 and k2 are assumed to be positive. Moreover, since
1

a + k1xt
represents the
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fraction of the juveniles xt present at time t that survive one unit of time and appear as adults at time t+1,
we assumed a > 1 for the model to be biologically meaningful (note that 1/a is the inherent survivorship of
juveniles). Similarly, we assume that the parameter c > 1. The function bt represents the time-dependent
birth rate.

In that paper we focused on the following question: given that an adult recruits a fixed number of
juveniles in one year, is it advantageous (in terms of maximizing the total number of adults over a period
of one year) to reproduce continuously or seasonally? To answer this question we investigated the model
dynamics for two types of recruitment: continuous (i.e., bt = b > 0 for t = 0, 1, 2, . . . ) and periodic with
period two (i.e., b0 = b̂ = 2b, b1 = 0, b2 = b̂, . . . ).

Our analysis showed that for low birth rates the population which produces seasonally may survive
while the one which reproduces continuously will go to extinction. Thus seasonal breeding is beneficial for
such values of birth rates. Furthermore, we show that for low values of birth rates where both populations
persist, the adults for the continuously breeding population have lower average over a one year period than
the one that produces seasonally. Therefore, seasonal reproduction is beneficial in this case. However, for
high birth rates this conclusion reverses and it is shown that breeding continuously results in higher adult
averages over a one year period.

The purpose of this paper is to continue this investigation for a three-stage discrete time model. In
Section 2 we present the model and we analyze the continuous breeding case and show that if the inherent
net reproductive number is less than unity then the population goes to extinction while if it is greater than
unity then the unique interior equilibrium is globally asymptotically stable. We then analyze the seasonal
breeding with period-two and show that if the inherent net reproductive number is less than unity then
the population becomes extinct while if it is greater than unity the unique 2-cycle is globally attracting.
At the end of this section we compare the two birth types and show that in this case (unlike the two-stage
model) breeding seasonally seems to always be deleterious. In Section 3 we provide concluding remarks.

2. Model Development and Analysis

We develop a theoretical model describing the dynamics of a population which engages in seasonal breeding
and is divided into three stages: a juvenile stage, nonbreeding (sexually immature) stage, and breeding
(adult) stage. To this end, denote by xt the number of juveniles at time t, by yt the number of nonbreeding
individuals at time t and by zt the number of adults at time t. We assume that the juvenile and nonbreeding
stages are less than or equal to one time unit (i.e., all juveniles and nonbreeders move into the next stage
within one time step). Assume that competition occurs within each stage. We then obtain the following
nonautonomous three-stage discrete model:





xt+1 = btzt

yt+1 = s1(xt)xt

zt+1 = s2(yt)yt + s3(zt)zt

(x0, y0, z0) ∈ R3
+\{(0, 0, 0)}

(2.1)

where bt is the per-capita birth rate of the breeding adults and si is the survivorship rate of stage i. We
assume that si satisfies the following assumption:

(H1) si ∈ C1[0,∞), si(0) = ai, 0 < ai < 1, s′i(x) < 0,
d(si(x)x)

dx
> 0, lim

x→∞ si(x) = 0, and lim
x→∞ si(x)x = âi < ∞

for i = 1, 2, 3.

Such an assumption is satisfied, for example, by a Beverton-Holt type of survivorship function. Before we
start analyzing model (2.1) we recall the following result (see Theorem 1.10 in [11]) which will be used in
the sequel. Consider a k + 1 order nonlinear difference equation of the form

xn+1 = F (xn, xn−1, · · · , xn−k), n = 0, 1, 2, · · · , (2.2)
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where F ∈ C(Ik+1,R) and I is an open interval of R.

Theorem 2.1 Let x∗ ∈ I be an equilibrium of (2.2). Suppose F satisfies the following two conditions:

(a) F is non-decreasing in each of its arguments, and
(b) F satisfies (u− x∗)[F (u, u, · · · , u)− u] < 0 for all u ∈ I\{x∗}.

Then x∗ is a global attractor of all solutions of (2.2).

2.1. Continuous breeding

In this subsection we consider model (2.1) with continuous breeding. In particular, we assume that in
model (2.1) bt ≡ b, a positive constant. Clearly solutions of system (2.1) remain positive. The system
always has a trivial steady state E0 = (0, 0, 0). The z-component of a nontrivial steady state (x̄, ȳ, z̄),
z̄ > 0, must satisfy

1 = bs2(s1(bz)bz)s1(bz) + s3(z). (2.3)

Notice the right hand side of (2.3) is a strictly decreasing function of z by (H1), with value ba1a2 + a3

when z = 0, and approaches 0 as z goes to infinity. Therefore, (2.3) has a positive solution if and only if
ba1a2 + a3 > 1. Consequently, (2.1) has an interior steady state E1 = (x̄, ȳ, z̄) if and only if

ba1a2 + a3 > 1, (2.4)

where z̄ solves (2.3), x̄ = bz̄, and ȳ = s1(x̄)x̄. The interior steady state is unique whenever it exists. Clearly
(2.4) is equivalent to

R0 :=
ba1a2

1− a3
> 1, (2.5)

where R0 is the inherent net reproductive number. Using Theorem 2.1 the asymptotic dynamics of system
(2.1) can be understood and are summarized below.

Theorem 2.2 If R0 < 1, then (2.1) has only the trivial steady state E0 = (0, 0, 0) which is globally
asymptotically stable. If R0 > 1, then E0 is unstable and (2.1) has another equilibrium E1 = (x̄, ȳ, z̄)
which is globally asymptotically stable in the interior of R3

+.

Proof. Suppose R0 < 1. Let (xt, yt, zt) be a solution of (2.1). Since yt+1 ≤ a1xt and zt+1 ≤ a2yt + a3zt for
t ≥ 0, consider the following linear system

Xt+1 = bZt

Yt+1 = a1Xt

Zt+1 = a2Yt + a3Zt.
(2.6)

The eigenvalues λ of the above coefficient matrix A satisfy p0(λ) = λ3 − a3λ
2 − ba1a2 = 0. It is clear that

p0(1) > 0, p0(−1) < 0, and 1 − b2a2
1a

2
2 > ba3a1a2 by our assumption of R0 < 1. It follows from the Jury

conditions [2] that E0 is locally asymptotically stable. Since A is nonnegative and irreducible with spectral
radius less than unity, we have lim

t→∞At = 0 and hence lim
t→∞Xt = lim

t→∞Yt = lim
t→∞Zt = 0. As a result, all

solutions of (2.1) converge to E0 and E0 is globally asymptotically stable.
Suppose now R0 > 1. It is clear that E0 is unstable by the above analysis. We first verify that E1 is

locally asymptotically stable. The linearization of (2.1) with respect to E1 yields the following Jacobian
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matrix J(E1):

J(E1) =




0 0 b
J21 0 0
0 J32 J33


 ,

where J21 = s′1(x̄)x̄ + s1(x̄), J32 = s′2(ȳ)ȳ + s2(ȳ), and J33 = s′3(z̄)z̄ + s3(z̄). The eigenvalues λ of J(E1)
satisfy p1(λ) = λ3 − J33λ

2 − bJ21J32 = 0. In the following we shall verify the three Jury conditions [2]:
p1(1) > 0, p1(−1) < 0, and 1− b2J2

21J
2
32 − |bJ33J21J32| > 0.

Observe that J21 > 0, J32 > 0, and J33 > 0 by our assumptions of (H1). Since z̄ satisfies (2.3), x̄ = bz̄,
and ȳ = s1(x̄)x̄, we have by (2.3) that

1 = bs2(ȳ)s1(x̄) + s3(z̄). (2.7)

Substituting the above expression of 1 in p1(1) = 1− J33 − bJ21J32 yields

p1(1) = −s′3(z̄)z̄ − bs′1(x̄)s2(ȳ)x̄− bs′2(ȳ)ȳ[s′1(x̄)x̄ + s1(x̄)] > 0.

It is also clear that

p1(−1) = −1− J33 − bJ21J32 < 0

as J21 > 0, J32 > 0, and J33 > 0. We proceed to verify the last inequality 1− b2J2
21J

2
32 − |bJ33J21J32| > 0,

which is equivalent to B := 1 − b2J2
21J

2
32 − bJ21J32J33 > 0. For notational convenience, we rewrite s1(x̄)

by s1, s2(ȳ) by s2 and s3(z̄) by s3. Replacing 1 by the square of the right hand side of (2.3), i.e.,

1 = b2s2
1s

2
2 + 2bs1s2s3 + s2

3,

then

B = b2s2
1s

2
2 + 2bs1s2s3 + s2

3 − b2J2
21J

2
32 − bJ21J32J33. (2.8)

Notice b2s2
1s

2
2−b2J2

21J
2
32 = [bs1s2+bJ21J32][bs1s2−bJ21J32], where bs1s2+bJ21J32 > 0, and bs1s2−bJ21J32 =

−bs′1x̄(s′2ȳ + s2) − bs1s
′
2ȳ > 0. Furthermore, 2bs1s2s3 + s2

3 − bJ21J32J33 = 2bs1s2s3 + s2
3 − bJ21J32s

′
3z̄ −

bJ21J32s3. The only negative terms in the above expression are

−bs′1s
′
2s3x̄ȳ and − bs1s2s3,

where −bs1s2s3 can be cancelled out by one of the 2bs1s2s3 in (2.8) and −bs′1s
′
2s3x̄ȳ can be combined with

the positive term −bs′1s2s3x̄ to obtain −bs′1s3[s′2ȳ+s2]x̄ > 0. This proved that E1 is locally asymptotically
stable.

To show that E1 is globally attracting in the interior of R3
+, we apply Theorem 2.1. Notice system (2.1)

can be converted into the following third order scalar difference equation:

zt+3 = s2(s1(bzt)bzt)s1(bzt)bzt + s3(zt+2)zt+2. (2.9)

Since ba1a2 + a3 > 1, (2.9) has a unique positive steady state z̄. It is sufficient to prove that z̄ is globally
attracting for (2.9) in (0,∞). Let

g(x, y, z) = s2(s1(bx)bx)s1(bx)bx + s3(z)z.
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Then

∂g

∂x
= b[s′1(bx)bx + s1(bx)][s2(s1(bx)bx) + s′2(s1(bx)bx)s1(bx)bx] > 0,

∂g

∂y
= 0 and

∂g

∂z
= s′3(z)z + s3(z) > 0

for all x > 0, y > 0, z > 0. Moreover,

(z − z̄)[g(z, z, z)− z] = (z − z̄)[bs2(s1(bz)bz)s1(bz) + s3(z)− 1]z < 0

for z > 0 and z 6= z̄ by (2.3). Hence z̄ is globally attracting for (2.9) in (0,∞) by Theorem 2.1 and
consequently E1 is globally attracting for (2.1). This completes the proof.

2.2. Seasonal breeding

In this subsection we assume that breeding is seasonal where the function bt in (2.1) is periodic with period
two. Specifically, we set b0 = 0, b1 = b̂ > 0, b2 = 0, b3 = b̂, · · · . Let (x0, y0, z0) ∈ R3

+\{0, 0, 0)} be given. It is
clear that (xt, yt, zt) ∈ R3

+\{(0, 0, 0)} for t > 0. Moreover, x1 = 0, y1 = s1(x0)x0, z1 = s2(y0)y0 + s3(z0)z0,
x2 = b̂z1, y2 = 0 and z2 = s2(y1)y1 + s3(z1)z1. Therefore, if (x0, y0, z0) is a part of a 2-cycle, then we have
x2 = x0, y2 = y0 = 0 and z2 = z0 = s2(s1(x0)x0)s1(x0)x0 + s3(s3(z0)z0)s3(z0)z0. As a result, if z0 6= 0,
then z0 must satisfy

1 = s2(s1(b̂s3(z)z)b̂s3(z)z)s1(b̂s3(z)z)b̂s3(z) + s3(s3(z)z)s3(z). (2.10)

Let

h(z) = b̂s3(z)z.

Then h(0) = 0, lim
z→∞h(z) < ∞ and h′(z) > 0 for z ≥ 0 by (H1). Let H(z) denote the right hand side of

(2.10) and X = s1(h(z))h(z). Then

H(0) = b̂a1a2a3 + a2
3, lim

z→∞H(z) = 0

and

H ′(z) = s′2(X)s1(h(z))b̂s3(z)[s′1(h(z))h(z) + s1(h(z))]h′(z)

+ s2(X)s′1(h(z))b̂s3(z)h′(z) + b̂s2(X)s1(h(z))b̂s′3(z)

+ s′3(s3(z)z)s3(z)[s′3(z)z + s3(z)] + s3(s3(z)z)s′3(z) < 0,

for all z ≥ 0 as h′ > 0 and si satisfies (H1) for i = 1, 2, 3. We conclude that (2.10) has a positive solution
z∗ if and only if

b̂a1a2a3 + a2
3 > 1. (2.11)

Condition (2.11) is equivalent to

R̂0 :=
b̂a1a2a3

1− a2
3

> 1, (2.12)
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where R̂0 is the inherent net reproductive number for the seasonal population. Therefore, (2.1) has a
unique 2-cycle {(x∗, 0, z∗), (0, s1(x∗)x∗, s3(z∗)z∗)} if and only if (2.12) holds, where z∗ satisfies (2.10) and

x∗ = b̂s3(z∗)z∗.

Theorem 2.3 If R̂0 < 1, then E0 = (0, 0, 0) is globally asymptotically stable for (2.1).

Proof. We first show that E0 is globally attracting by using a simple comparison method. Observe that
x2t+1 = 0 for t ≥ 0 and y2t = 0 for t ≥ 1. Also

y2t+1 ≤ a1x2t, x2t ≤ b̂z2t−1, and z2t+1 ≤ a3z2t

imply

x2t+2 ≤ b̂z2t+1 ≤ b̂a3z2t and z2t+2 ≤ a2y2t+1 + a3z2t+1 ≤ a1a2x2t + a2
3z2t,

i.e.,

x2t+2 ≤ b̂a3z2t and z2t+2 ≤ a1a2x2t + a2
3z2t

for t ≥ 1. Letting n + i = 2(t + i) for i ≥ 0, consider the following linear system of difference equations:

An+1 = b̂a3Bn

Bn+1 = a1a2An + a2
3Bn

with A1 = x2 and B1 = z2, i.e.,

(
An+1

Bn+1

)
=

(
0 b̂a3

a1a2 a2
3

)(
An

Bn

)
.

The eigenvalues of the above coefficient matrix satisfy

λ2 − a2
3λ− b̂a1a2a3 = 0.

It is clear that −b̂a1a2a3 < 1, and a2
3 < 1 − b̂a1a2a3 under the assumption R̂0 < 1. It follows that

lim
n→∞An = lim

n→∞Bn = 0. Therefore lim
t→∞x2t+2 = lim

t→∞ z2t+2 = 0 and as a result, lim
t→∞ y2t+1 ≤ a1 lim

t→∞x2t = 0
and lim

t→∞ z2t+1 ≤ a3 lim
t→∞ z2t = 0. We conclude that E0 is globally attracting. It remains to show that E0 is

locally asymptotically stable.
Since system (2.1) is periodic with period two, the local stability of E0 depends on the product of the

matrices [3]:




0 0 0
a1 0 0
0 a2 a3







0 0 b̂
a1 0 0
0 a2 a3


 =




0 0 0
0 0 a1b̂

a1a2 a2a3 a2
3


 .

Denote the resulting product matrix by J0. Then the eigenvalues of J0 are 0 and eigenvalues of Ĵ0, where

Ĵ0 =
(

0 a1b̂
a2a3 a2

3

)
.
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Since trĴ0 = a2
3 and detĴ0 = −b̂a1a2a3, we see that |trĴ0| < 1+detĴ0 < 2. Therefore all the eigenvalues of J0

have modulus less than 1. Hence E0 is locally asymptotically stable and thus E0 is globally asymptotically
stable.

Suppose now R̂0 > 1. Then it follows from the proof of Theorem 2.3 that E0 is unstable. Moreover, (2.1)
has a unique 2-cycle:

{(x∗, 0, z∗), (0, s1(x∗)x∗, s3(z∗)z∗)},

where z∗ satisfies (2.10) and x∗ = b̂s3(z∗)z∗. In the following we show that the 2-cycle is globally asymp-
totically stable.

Theorem 2.4 If R̂0 > 1, then the 2-cycle is globally asymptotically stable for system (2.1) in the interior
of R3

+.

Proof. We first prove that the 2-cycle is locally asymptotically stable. Recall that its stability depends on
the eigenvalues of the product of the matrices [3]:




0 0 0
s′1(x

∗)x∗ + s1(x∗) 0 0
0 a2 s′3(z

∗)z∗ + s3(z∗)







0 0 b̂
a1 0 0
0 a32 a33


 ,

where

a32 = s′2(s1(x∗)x∗)s1(x∗)x∗ + s2(s1(x∗)x∗)

and

a33 = s′3(s3(z∗)z∗)s3(z∗)z∗ + s3(s3(z∗)z∗).

Denote the resulting product matrix by J1. Then

J1 =




0 0 0
0 0 A

a1a2 B C


 ,

where

A = b̂[s′1(x
∗)x∗ + s1(x∗)] > 0, B = [s′3(z

∗)z∗ + s3(z∗)]a32

and

C = [s′3(z
∗)z∗ + s3(z∗)]a33.

The eigenvalues of J1 consist of 0 and the roots of λ2 − Cλ − AB = 0. For the 2-cycle to be locally
asymptotically stable, it is necessary and sufficient that |C| < 1−AB < 2. Observe that a32 > 0, a33 > 0
by (H1) and we have AB > 0. Thus 1−AB < 2 is trivially true. It remains to verify |C| < 1−AB which
reduces to C < 1 − AB as C > 0. Using x∗ = b̂s3(z∗)z∗, abbreviate si(z∗) by si and s′i(z

∗) by s′i, and
rewrite z∗ by x, C < 1−AB is equivalent to

1− b̂[s′1(b̂s3x)b̂s3x + s1(b̂s3x)](s′3x + s3)[s′2(s1(b̂s3x)b̂s3x)s1(b̂s3x)b̂s3x

+s2(s1(b̂s3x)b̂s3x)]− (s′3x + s3)[s′3(s3x)s3x + s3(s3x)] > 0.
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The only negative terms in the above expression are

−b̂s1(b̂s3x)s3s2(s1(b̂s3x)b̂s3x)− s3s3(s3x)

and

−b̂s′1(b̂s3x)b̂s3xs′3xs2(s1(b̂s3x)b̂s3).

Replacing 1 by the right hand side of the equilibrium equation (2.10), we see that the first two negative
terms can be canceled out by the terms in the equilibrium equation while the last negative term can be
combined with −b̂s′1(b̂s3x)b̂s3xs3s2(s1(b̂s3x)b̂s3x) to yield a positive term

−b̂s′1(b̂s3x)b̂s3xs2(s1(b̂s3x)b̂s3x)[s′3x + s3].

Therefore C < 1−AB holds and the 2-cycle is locally asymptotically stable.
It remains to show that the 2-cycle is globally attracting in the interior of R3

+. The proof is similar to
the proof of Theorem 2.2. Let (x0, y0, z0) ∈ R3

+\{(0, 0, 0)} be given. Observe that x2t+1 = 0 for t ≥ 0 and
y2t = 0 for t ≥ 1. It follows that for t ≥ 1

x2t+2 = bs3(z2t)z2t

and

z2t+2 = s2(s1(x2t)x2t)s1(x2t)x2t + s3(s3(z2t)z2t)s3(z2t)z2t.

Let n + i = 2(t + i) for i ≥ 0. We obtain the following system of first order difference equations:

xn+1 = bs3(zn)zn

zn+1 = s2(s1(xn)xn)s1(xn)xn + s3(s3(zn)zn)s3(zn)zn
(2.13)

for n ≥ 1. The system is equivalent to the following second order scalar equation:

zn+2 = s2(s1(b̂s3(zn)zn)b̂s3(zn)zn)s1(b̂s3(zn)zn)b̂s3(zn)zn

+s3(s3(zn+1)zn+1)s3(zn+1)zn+1.
(2.14)

Let the right hand side of (2.14) be denoted by f(x, y), i.e.,

f(x, y) = s2(s1(b̂s3(x)x)b̂s3(x)x)s1(b̂s3(x)x)b̂s3(x)x + s3(s3(y)y)s3(y)y

and Y = s1(b̂s3(x)x)b̂s3(x)x. Then

∂f

∂x
= [s′2(Y )s1(b̂s3(x)x)b̂s3(x)x + s2(Y )]×

{s′1(b̂s3(x)x)b̂[s′3(x)x + s3(x)]b̂s3(x)x + s1(b̂s3(x)x)b̂[s′3(x)x + s3(x)]} > 0.

Similarly,

∂f

∂y
= s′3(s3(y)y)s3(y)y[s′3(y)y + s3(y)] + s3(s3(y)y)[s′3(y)y + s3(y)] > 0.
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Furthermore, (2.14) has a unique interior steady state z∗ as b̂a1a2a3 + a2
3 > 1. It is clear that

(u− z∗)[f(u, u)− u] = (u− z∗)[s2(s1(b̂s3(u)u)b̂s3(u)u)s1(b̂s3(u)ub̂s3(u) + s3(s3(u)u)s3(u)− 1]u < 0.

It follows from Theorem 2.1 that lim
n→∞ zn = z∗. Hence lim

t→∞x2t = x∗ and lim
t→∞ y2t+1 = s1(x∗)x∗. That

is, the even subsequence (x2t, y2t, z2t) of the solution converges to (x∗, 0, z∗) and the odd subsequence
(x2t+1, y2t+1, z2t+1) converges to (0, s1(x∗)x∗, s3(z∗)z∗). Since (x0, y0, z0) 6= (0, 0, 0) is arbitrary, we see
that the 2-cycle is globally attracting in the interior of R3

+. Therefore the 2-cycle is globally asymptotically
stable for (2.13) in the interior of R3

+.

2.3. Comparison between continuous and seasonal breeding

For the rest of this section we assume that in a continuous or seasonal breeding population an adult
reproduces the same number of juveniles in one year period. Thus, we let b̂ = 2b. We are interested to see
for what values of b is continuous breeding (seasonal breeding) advantageous in terms of maximizing the
average number of adults over a one year period.

a) Persistence of population with continuous reproduction

Since b̂ = 2b, then Theorem 2.2 and Theorem 2.4 require respectively that

b >
1− a3

a1a2
, and b >

1− a2
3

2a1a2a3
.

Since (recall that a3 < 1)

1− a3

a1a2
<

1− a2
3

2a1a2a3

it follows that Theorem 2.2 applies, and hence there exists a survival interior steady state on interval of
average birth rates b, namely

(
1− a3

a1a2
,

1− a2
3

2a1a2a3
),

for which the population in the periodic case goes extinct. This shows that for this range of birth rates
continuous reproduction is advantageous.

b) Comparison of the breeding adults for periodic and constant birth rates

Differentiate both sides of equilibrium equation (2.3) with respect to b yields
dz̄

db
= Ā/B̄, where

Ā = −[s1(bz) + s′1(bz)bz][s2(s1(bz)bz) + s′2(s1(bz)bz)s1(bz)bz] < 0

and

B̄ = bs2(s1(bz)bz)bs′1(bz) + s′3(z) + b2s1(bz)s′2(s1(bz)bz)[s′1(bz)bz + s1(bz)] < 0.

Therefore
dz̄

db
> 0 for b ≥ 1− a3

a1a2
. Similarly, letting b̂ = 2b in (2.10) and differentiate both sides of (2.10)
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with respect to b resulting in
dz∗

db
= C∗/D∗, where

D∗ = s′2(X
∗)s1(2bs3(z)z)2bs3(z)2b[s′3(z)z + s3(z)][s1(2bs3(z)z) + s′1(2bs3(z)z)2bs3(z)]

+s2(X∗)2bs3(z)s′1(2bs3(z)z)2b[s′3(z)z + s3(z)]

+s2(X∗)s1(2bs3(z)z)2bs′3(z) + s′3(s3(z)z)s3(z)[s′3(z)z + s3(z)] + s3(s3(z)z)s′3(z) < 0

and

C∗ = −s′2(X
∗)s1(2bs3(z)z)2bs3(z){s′1(2bs3(z)z)2bs3(z)z2s3(z)z + s1(2bs3(z)z)2s3(z)z}

+s2(X∗)2bs3(z)s′1(2bs3(z)z)2s3(z)z + s2(X∗)s1(2bs3(z)z)2s3(z) < 0,

with X∗ = s1(2bs3(z)z)2bs3(z)z. Therefore
dz∗

db
> 0 for b ≥ 1− a2

3

2a1a2a3
. Since lim

b→(
1−a2

3
2a1a2a3

)+
z∗(b) = 0, we

conclude that when b >
1− a2

3

2a1a2a3
but sufficiently close to

1− a2
3

2a1a2a3
, the constant birth rate has a higher

breeding adult equilibrium value, i.e, z̄ > z∗ >
z∗ + s3(z∗)z∗

2
. Therefore, constant birth rate is more

advantageous.
We provide numerical results verifying our theoretical conclusions. In Figure 1, we choose a set of

parameters that results in the continuous birth population converging to a positive equilibrium while the
population with period-two birth rate going to extinction. In this case R0 = 1.0125 > 1 while R̂0 = 0.9 < 1.
Increasing the birth rate, we present the results in Figure 2. In this case R0 = 1.5 > 1 while R̂0 = 1.333 >
1. Thus, both populations survive. One converges to a positive equilibrium and the other converges to
a positive 2-cycle. Clearly, the equilibrium value for adults zt is larger than the average 2-cycle. Thus
continuous reproduction is advantageous for this birth rate value.

3. Concluding Remarks

In this paper we have shown that for the three-stage discrete-time population model (2.1) a periodic
birth rate with period two is deleterious for low birth rates as it will result in smaller average of adults
in comparison with a continuous birth rate even though in both cases each adult reproduces the same
number of juveniles per year. Numerical simulations of model (2.1) suggest that this conclusion remains
true for large birth rates. This is in contrast with the result for a two stage discrete model which shows that
when birth rates are low seasonal reproduction is advantageous while when birth rates are high continuous
breeding is advantageous. The reason for this is that for a juvenile to become a breeding adult it has to
survive two time units (two stages). Thus, a period two birth rate is not enough to compensate for this.
Therefore, the seasonally breeding population needs to concentrate its breeding over a shorter time period.
However, this period cannot be too short. If for example, the seasonal population resorts to a period three
birth rate then numerical simulations of model (2.1) suggest that the conclusion is similar to that of the
two stage model with period two birth rate [1]. That is for low birth rates the three stage model with period
three birth rate results in higher adult averages than the continuous breeding population (see Figure 3 for
an example).

Similarly if the birth rate has period four then seasonal breeding results in higher adult averages for low
birth rates. However, if the birth rate has period five then our numerical simulations suggest that seasonal
breeding is always deleterious. Thus, the conclusion is similar to a period two birth rate.
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Figure 1. A comparison between continuous and seasonal breeding with period two birth rate for model (2.1). The survivorship
functions are s1(x) = a1/(1 + k1x), s2(y) = a2/(1 + k2y), s3(z) = a3/(1 + k3z) with parameter values

a1 = 0.3, a2 = 0.5, a3 = 0.8, k1 = 0.001, k2 = 0.0015, k3 = 0.002 and b = 1.35 and b̃ = 2b = 2.7. The initial conditions are given by
x0 = 0, y0 = 0, and z0 = 1.
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Figure 2. A comparison between continuous and seasonal breeding with period two birth rate for model (2.1). The survivorship
functions are s1(x) = a1/(1 + k1x), s2(y) = a2/(1 + k2y), s3(z) = a3/(1 + k3z) with parameter values

a1 = 0.3, a2 = 0.5, a3 = 0.8, k1 = 0.001, k2 = 0.0015, k3 = 0.002 and b = 2 and b̃ = 2b = 4. The initial conditions are given by x0 = 0,
y0 = 0, and z0 = 1.

If the population with three stages have a seasonal breeding of period three, i.e., b0 = 0, b1 = 0,

b2 = b̃ > 0, b3 = 0, b4 = 0 and b5 = b̃ . . . , then one can show that by defining R̃0 :=
b̃a1a2

1− a3
3

the inherent

net reproductive number for this population, a unique 3-cycle exists provided that R̃0 > 1. We conjecture
that this 3-cycle is globally attracting provided that R̃0 > 1. While if R̃0 < 1 then the population becomes
extinct. These results should follow by using a similar argument as in Section 2 (which involves lengthy
computations). Thus, if b̃ = 3b (i.e., each individual reproduces in one season the same number of juveniles
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Figure 3. A comparison between continuous and seasonal breeding with period three birth rate for model (2.1). The survivorship
functions are s1(x) = a1/(1 + k1x), s2(y) = a2/(1 + k2y), s3(z) = a3/(1 + k3z) with parameter values

a1 = 0.3, a2 = 0.5, a3 = 0.8, k1 = 0.001, k2 = 0.0015, k3 = 0.002 and b = 1.5 and b̃ = 3b = 4.5. The initial conditions are given by
x0 = 0, y0 = 0, and z0 = 1.
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Figure 4. A comparison between continuous and seasonal breeding with period three birth rate for model (2.1). The survivorship
functions are s1(x) = a1/(1 + k1x), s2(y) = a2/(1 + k2y), s3(z) = a3/(1 + k3z) with parameter values

a1 = 0.3, a2 = 0.5, a3 = 0.8, k1 = 0.001, k2 = 0.0015, k3 = 0.002 and b = 1.2 and b̃ = 3b = 3.6. The initial conditions are given by
x0 = 0, y0 = 0, and z0 = 1.

as an individual who reproduces continuously breeds in an entire year) then both populations persist if:

b >
1− a3

a1a2
, and b >

1− a3
3

3a1a2
.

However, since (recall that a3 < 1)

1− a3

a1a2
>

1− a3
3

3a1a2
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then for

1− a3
3

3a1a2
< b <

1− a3

a1a2

the seasonal population persists while the continuous breeding population goes to extinction. In Figure 4
we present a numerical example for this case. Here, the inherent net reproductive numbers are R0 = 0.9
and R̃0 = 1.1066.
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