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a b s t r a c t

Green Treefrogs (Hyla cinerea) were captured, marked, measured and released at an urban study site in
Lafayette, LA, during the 2004 and 2005 breeding seasons. A statistical method based on a generalization
of the hypergeometric distribution was used to derive weekly time-series estimates of the population
sizes. To describe the population dynamics, a stage structured mathematical model was developed and
compared to time-series obtained from the weekly population estimates study using a least-squares
approach. Two fitting experiments were done: (1) Using uniform distribution for the birth rate during
the breeding season; (2) Using a birth rate distributed according to weekly data on frog calling intensity.
Although both model-to-data fits look very promising during the years 2004 and 2005 and result in
similar inherent survivorship rates for the tadpoles, juvenile and adult frogs, the fit that uses the calling
data predicts a lower number of tadpoles and frogs in the long term than the one that uses uniform birth
distribution. The parameter estimates resulting from these fitting experiments are used in the context of
stochastic simulations to derive extinction and persistence probabilities for this population. Due to the
oscillatory dynamics (with high amplitude) evidenced by the capture–recapture data and corroborated by
the model, it is suggested that anuran monitoring efforts should take into account the natural intra-annual
variation in population size.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

An apparent global decline of amphibians has created concern,
which has led to numerous research efforts (Bridges and Dorcas,
2000; de Solla et al., 2006; Bailey et al., 2004; Lips et al., 2003; Pellet
et al., 2006). Many of these efforts focus on monitoring amphib-
ian populations to better understand their dynamics (Bailey et al.,
2004). In order to determine whether there is a decline, it is essen-
tial to accurately and efficiently determine their population size
(Driscoll, 1998). However, because of their natural history, local
populations of amphibians may fluctuate during the course of the
year. First because many amphibian species are explosive breed-
ers, that is they have large number of progeny in short periods
of time (e.g., Dundee and Rossman, 1989). Second, many amphib-
ian species life history are characterized by adults migrating to
breeding sites and juveniles migrating out of those sites to habitat
occupied by adults (McDiarmid, 1994). Tracking these fluctuations
will be important if we are to interpret year-to-year changes in
population size.

∗ Corresponding author. Tel.: +1 337 482 6709; fax: +1 337 482 5346.
E-mail address: ackleh@louisiana.edu (A.S. Ackleh).

Our research efforts focus on the Green Treefrog (Hyla cinerea
Schneider, 1799) which is found throughout the southeastern
region of the United States (Dickerson, 1969). In Louisiana, these
frogs are found in freshwater ponds used as breeding sites
throughout the state (Dundee and Rossman, 1989). At the study
site (see description below), adult H. cinerea can be found on
emergent vegetation such as Cattail (Typha spp. L.) and Bull-
tongue (Sagittaria lancifolia L.) as well as on nearby trees and
on windows and the sides of buildings. Adult H. cinerea range
in length from 37 to 63 mm (Wright and Wright, 1949). At the
study site, H. cinerea have been noted to call from April through
September.

We had two questions we wanted to explore with this study.
First, how did the population of H. cinerea change throughout
the year? While this question was partially answered in Pham
et al. (2007), we wanted to see if the same intra-annual patterns
observed in 2004 would be repeated in 2005. Second, we wanted
to use the estimations made of the life history parameters to deter-
mine if the population under study will remain persistent over a
long period of time. A model is necessary to answer the second
question since the population fluctuates throughout the year and
therefore point estimations are not predictive without an under-
standing of the intrinsic dynamics.

0304-3800/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2009.10.012
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Fig. 1. Aerial view of the federal office complex in Lafayette, LA, USA with ponds used in the study highlighted. The coordinates of pond D are 30.2246◦ N, 92.045◦ W.

We used two approaches to study the dynamics of this urban
population: (1) The use of a mark-capture–recapture procedures
and generalized hypergeometric statistical method described in
Pham et al. (2007) and Yang and Pal (2009) for data collected dur-
ing the 2004 and 2005 breeding season supplemented with frog
call monitoring for the 2005 sampling season; (2) The development
of a three stage discrete-time mathematical model to understand
the long-time behavior of this population. To derive estimates for
the life-history parameters, the model was fitted to the population
estimates obtained from the capture–recapture data through a non-
linear least-squares approach. These estimates were then used to
study the long-time behavior.

2. Study area

Our study site is in the city of Lafayette, LA, USA, and is a
collection of artificial ponds and reflecting pools at the USGS
National Wetlands Research Center (NWRC) and the National
Marine Fisheries Service’ Estuarine Habitats and Coastal Fisheries
Center (EHCFC), henceforth the ‘Federal Complex’ (see Fig. 1). In
1992, the NWRC was built, and the ponds in front of the complex
were created. In 1999, when the EHCFC was built next door, the
ponds around the perimeter of the complex were created. The land-
scape surrounding these ponds is representative of various fresh
water wetland vegetation types with elements that include Willow
(Salix spp. L.), Cattail (Typha spp.), Bald Cypress (Taxodium distichum
L. Rich.), and Bulltongue (Sagittaria spp.). There are seasonal wet-
lands located in the fields neighboring the complex, but the nearest
is 60 m away and access to it is limited by the buildings. The eastern
border of the ponds is comprised of sidewalks, four-lane roads, and
is located across the street from a medium density housing com-
plex. Thus, while this population is in an urban area, the degree to
which it represents a typical urban population is unclear. However,
because it is functionally isolated it is a good population to study
the dynamics for without concern of significant immigration due
the absence of nearby breeding sites.

3. Methods

3.1. Capture–recapture study and hypergeometric statistical
method

The 2004 capture–recapture study used Visible Implant Elas-
tomer (VIE) tags to mark frogs in weekly cohorts (Pham et al., 2007).
In 2005, mark-recapture was conducted once a week for 19 weeks,
from April through September at the Federal Complex and used
VI-alpha tags (Northwest Marine Technology Inc., 2002) in place of
VIE. The change was made in order to follow individual capture his-
tories, which the VIE tags do not allow. At least 30 min after sunset
and before attempting to hand capture frogs, we recorded current

weather conditions and the intensity of frog calls using North Amer-
ican Amphibian Monitoring Program protocols (NAAMP, 2008). The
frog calling intensity scale runs from 0 to 3: 0 – no frogs are call-
ing; 1 – individuals can be counted and there is space between
calls; 2 – calls of individuals can be distinguished but there is some
overlapping of calls; 3 – full chorus, calls are constant, continuous
and overlapping. After monitoring frog calls, we conducted time
constrained searches in and around each of the four ponds in the
complex for H. cinerea. Frogs were caught by hand during a search
of the vegetation and adjacent vertical surfaces such as walls and
windows. Frogs caught during the search were held in individual
clear plastic bags with zipper seals until they could be measured for
length and checked for tags. Body length was used to determine the
life history stage of the frog, smaller frogs and frogs with tail rem-
nants considered juvenile (Pham et al., 2007). Unmarked frogs were
marked and all frogs were released in the general area where they
were caught. Because we wanted to compare population estimates
for 2004 and 2005 it was necessary to use the generalized hypergeo-
metric maximum likelihood estimation method described in Pham
et al. (2007) and Yang and Pal (2009) to derive weekly population
estimates.

3.2. Discrete-time population model

To develop a discrete-time model which describes the dynam-
ics of the urban H. cinerea population, we divided the population
into three different stages: tadpoles, non-breeders, and breed-
ers. Let the number of tadpoles at time t be denoted by Tt, the
number of non-breeders be denoted by Nt, and the number of
breeders be denoted by Bt. The breeding season for H. cinerea lasts
approximately 6 months in Louisiana. The tadpole stage starts at
the time eggs are laid and fertilized and ends when the tadpole
metamorphoses to a froglet. A frog is classified as a non-breeder
from the froglet stage through to the next breeding season. In our
model a frog is a tadpole for 5 weeks (Garton and Brandon, 1975;
Blouin, 1992; Gunzburger, 2006; Smith, 2005; Leips and Travis,
1994; Duellman and Trueb, 1986) and after 1 year (52 weeks),
a non-breeder becomes a breeder (Garton and Brandon, 1975).
Furthermore, for anuran populations, tadpoles only compete with
tadpoles for resources, and non-breeders and breeders compete
amongst each other for resources. Thus, survivorship of tadpoles
depends on the tadpole density while survivorship of non-breeders
and breeders depends on the total density of non-breeders and
breeders. Because our field data were collected once a week we
set the time unit in our model to 1 week. We further structure the
tadpoles and non-breeding stages by age. Because tadpoles take 5
weeks to metamorphose into a frog, so we use five age classes of
tadpoles, each of which is 1 week long and denoted by Ta

t , a = 1,. . .,5.
Also, it takes 52 weeks for a juvenile frog to sexually mature, so we
assume 52 age classes for non-breeders each of which is 1 week
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Fig. 2. Conceptual diagram of the model (1).

long and denoted by Na
t , a = 1,. . .,52. Thus, the total tadpoles and

non-breeders at time t are given by Tt = ∑5
a=1Ta

t and Nt =
∑52

a=1Na
t ,

respectively. See Fig. 2 for a conceptual diagram of this model.
The model for the dynamics of this population is described by

the difference equations

T1
t+1 = btBt

Ta+1
t+1 = sT (Tt)Ta

t a = 1, . . . , 4

N1
t+1 = sT (Tt)T5

t

Na+1
t+1 = sN(Ft)Na

t a = 1, . . . , 51

Bt+1 = sN(Ft)N52
t + sB(Ft)Bt

(1)

Here, Ft = Nt + Bt is the total number of frogs at time t. The function
bt is the time-dependent birth rate which is equal to the number of
tadpoles produced by one breeding frog per unit-time (taken to be
1 week in our model to match the capture–recapture data) during
the breeding season (and zero otherwise). Thus, due to seasonality
in birth our model is non-autonomous. The functions, ST, SN and SB,
are the (density-dependent) fractions of surviving juveniles, non-
breeding adults and breeding adults per unit-time (1 week). For
this model, we will utilize Beverton–Holt type density-dependent
functions given as follows (Caswell, 2001; Allen, 2007):

sT (T) = a1

1 + k1T
, sN(F) = a2

1 + k2F
, sB(F) = a3

1 + k3F
(2)

Note that the constants, a1, a2 and a3, represent the inherent sur-
vivorship of tadpoles, non-breeders and breeders, respectively. The
above model can be written in a nonlinear time-dependent matrix
form (Cushing, 1998; Caswell, 2001) as follows:

xt+1 = A(t, xt)xt (3)

where the coefficient matrix A is a 58 × 58 matrix whose nonzero
elements are given by:

A1,58 = bt

Ai,i−1 = sT (Tt), i = 2, . . . , 6
Ai,i−1 = SN(Ft), i = 7, . . . , 58
A58,58 = SB(Ft)

and xt = [T1
t , . . . , T5

t , N1
t , . . . , N52

t , Bt]
transpose

is a 58 × 1 vector.

3.3. Parameter estimation method

Information about the birth rate was obtained from the litera-
ture. In one breeding season, H. cinerea can produce a wide range
of clutch sizes with an average of about 800 eggs (Gunzburger,
2006; Dundee and Rossman, 1989; Garton and Brandon, 1975;
Perrill and Daniel, 1983). H. cinerea females may produce 1–2
clutches per breeding season (Perrill and Daniel, 1983; Morrison
and Hero, 2003). While the data for clutch size are relatively good,

we could not find studies with estimates of either egg or tadpole
survival rates (NEPARC, 2009). Furthermore, experimental studies
indicate that tadpole survivorship can be highly variable depend-
ing on both the predator community and kinds of refugia available
(Gunzenburger and Travis, 2004, 2005). Therefore, for the purpose
of our models we arbitrarily assume that 50% of the eggs hatch to
become tadpoles, i.e., eggs survivorship which we denote by a0 is
fixed at 0.5. Thus based on the assumption that each female pro-
duces on average 1200 eggs (one and a half clutches), we assume
in our computations that each breeding adult produces around 300
tadpoles during the breeding season assuming the ratio between
females and males to be 1:1. If, for example, we assume a uniform
breeding distribution during the 26 week breeding season (number
of weeks in the breeding season of 6 months), then we get a mean
production per week to be bt = 11.538 during the 26 weeks of the
breeding season and zero otherwise.

The rest of the model parameters are not available in the lit-
erature, so we combine the knowledge gained in the field with
the current modeling efforts to infer some information about these
unknown parameters. In particular, we set up the following least-
squares problem: Given data(ti), the frog population estimate from
capture–mark-recapture data at week ti, we want to find the 6 × 1
parameter vector q = [a1, k1, a2, k2, a3, k3]transpose that minimizes
the following weighted least-squares function L:

L(q) =
n∑

i=1

[
log(data(ti) + 1) − log(Fti

(q) + 1)
]2

, (4)

where Ft(q) = Nt(q) + Bt(q) is a quantity representing the total num-
ber of frogs (breeders and non-breeders) at time t which can
be calculated from the solution of the population model (1).
This quantity depends on the vector value q = [a1, k1, a2, k2, a3,
k3]transpose = [q1, q2, q3, q4, q5, q6]transpose and n is the number of
data points available. Because of the high amplitude oscillations in
the population dynamics evidenced by the population estimates we
used a weighted least-squares function. Using the routine “lsqnon-
lin” in the software MATLAB, we determine the numerical values
for these parameters.

Once parameter estimates are obtained we can compute stan-
dard errors for q. This can be done using similar ideas from
standard regression formulations in statistics (Bates and Watts,
1988; Gallant, 1987; Huet et al., 2003). To obtain this analysis, we
need to compute the sensitivity matrix

X(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(∂/∂q1)Ft1

1 + Ft1

(∂/∂q2)Ft1

1 + Ft1

. . .
(∂/∂q6)Ft1

1 + Ft1

(∂/∂q1)Ft2

1 + Ft2

(∂/∂q2)Ft2

1 + Ft2

. . .
(∂/∂q6)Ft2

1 + Ft2

...
...

. . .
...

(∂/∂q1)Ftn

1 + Ftn

(∂/∂q2)Ftn

1 + Ftn

. . .
(∂/∂q6)Ftn

1 + Ftn

,

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Since we cannot compute (∂/∂qj)Fti
, j = 1,2,. . .,6, i = 1,2,. . .,n directly

from our model, we use the following forward difference approxi-
mation:

Dh
j+ (Fti

) = 1
h

(
Fti

(qj + h) − Fti
(qj)

)
,

j = 1, 2, . . . , 6, i = 1, 2, . . . , n (6)

where h is taken to a small positive constant. With these difference
approximations we are able to compute an approximation to the
sensitivity matrix X(q) denoted by X̂(q).

Under the assumptions of classical nonlinear regression theory,
we know that if ε̂i∼N(0, �2), where ε̂i is the difference between
the observation and the model at time ti, then the least-squares
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Fig. 3. Time-series plot of the estimated frog population numbers in 2005 with the
95% confidence intervals.

estimate q* is expected to be asymptotically normally distributed.
In particular, for large samples we may assume

q∗∼N(q0, �2{XT (q0)X(q0)}−1
), (7)

where q0 is the true minimizer and �2{XT(q0)X(q0)}−1 is the true
covariance matrix (Davidian and Giltinan, 1995; Bates and Watts,
1988; Gallant, 1987; Huet et al., 2003). Since we do not have q0
and �2, we follow a standard statistical practice (Huet et al., 2003;
Ackleh et al., 2005; Adams et al., 2005): substitute the computed
estimate q* for q0 and approximate �2 by

�̂2 = 1
n − 6

n∑
i=1

[
log(data(ti) + 1) − log(Fti

(q) + 1)
]2

. (8)

Then we take

√
(�̂2{X̂T (q∗)X̂(q∗)}−1

)j,j to be the standard deviation
for the parameter qj, j = 1,2,. . .6.

4. Results

4.1. Results from capture–recapture study

In Fig. 3 we present the weekly frog (non-breeders and breeders)
population estimates and the 95% confidence intervals resulting
from the hypergeometric statistical method (Pham et al., 2007). In
week 2 of the 2005 dataset (May 6, 2005) we obtained the smallest
frog population estimate, 35, and in week 18 (September 10, 2005)
we obtained the largest frog population estimate, 1559. In 2004, the
smallest population size was estimated to be 123, in week 10 (June
28, 2004) and the largest population size was estimated to be 1429
in week 11 (August 27, 2004). Since the dynamics of each popula-
tion change as the dataset encounters the steep increase, we break
up the populations into two sets, before and after the increase. In
2005, the average population size before the steep increase, weeks
2–17, is 205 frogs, and the average population size for week 18 and
19 is 1343 frogs. In 2004, the average population size before the
steep increase, weeks 2–10, is 173 frogs and the average popula-
tion size for weeks 11–18, after the steep increase, is around 564
frogs.

In Table 1 the average lengths of the frogs are recorded as well
as the smallest and largest frog for each week. In 2005, the small-
est frog caught was 20 mm and in contrast with 2004, where the
smallest frog caught was 15 mm (Pham et al., 2007). The largest
frog caught in 2005 was 60 mm and in 2004, the largest frog caught
was 55 mm (Pham et al., 2007). In 2005, before week 18, the aver-
age of the mean lengths of the frogs for each week was 44.4 mm.
Weeks 18 and 19 produced an average length of 30.2 mm. A similar
pattern was observed in the 2004 dataset. Before the steep increase

Table 1
Minimum, maximum, and average lengths of frogs caught during the 2005 sampling
season. There were 224 capture events during the 2005 sampling season.

Week # n Min (mm) Max (mm) Median Mean S.D.

1 18 41 58 49 48.7 6.2497
2 6 34 51 36 40.3 9.2916
3 26 22 52 41 39.7 8.0770
4 13 33 57 49 48.0 6.1373
5 17 30 55 45 45.4 6.9107
6 15 36 60 44.5 45.1 6.5850
7 8 35 51 46.5 45.0 5.6821
8 26 33 57 45 45.1 6.7634
9 12 38 57 46 45.3 6.1398

10 6 36 50 45 43.7 6.4704
11 7 36 50 45 45.1 4.9809
12 18 36 56 45 46.3 4.8118
13 5 34 57 48 47.2 8.3487
14 13 40 51 45 44.7 3.4250
15 5 40 52 46 46.2 4.2661
16 6 30 50 42.5 41.7 8.5010
17 3 25 52 36 37.7 13.5769
18 12 23 48 29.5 31.7 8.3811
19 8 20 37 29.5 28.6 6.2092

in week 11, the average length was 34.0 mm and after week 11, the
average length was 28.7 mm. This decrease in frog length average,
concomitant with the increase in numbers caught in both years,
supports the idea that the steep increase in the number of frogs
estimated is due to recently produced tadpoles metamorphosing
into frogs and not due to immigration from other water bodies.

4.2. Results of parameter estimation

In this section, we perform two experiments with two different
distributions of birth rates. The first assumes that bt is a uniform dis-
tribution representing the mean number of tadpoles produced by a
breeding frog during the breeding season and zero otherwise. The
second experiment uses a birth distribution based on field calling
data.

For the number of data points n we consider two cases. For the
first case, we use the full time-series for 2004 and 2005, with n = 34.
In the second case, we assume that the three data points with the
highest population estimates are outliers and do not include them
in the estimation procedure, so n = 31. An argument suggesting that
these values may be outliers has been discussed in detail for the
2004 case in Pham et al. (2007).

In particular, from Fig. 3, it is clear that the 95% confidence inter-
vals for the high population estimates of weeks 18 and 19 in 2005
are considerably larger than the other weekly estimates. The same
is true for week 11 in 2004 (Pham et al., 2007). This is due to the
fact that during these weeks the recapture rates were very low
in comparison with other weeks. Thus, explaining our reasoning
for treating these three points as “outliers” in some of the fitting
experiments.

4.2.1. Uniform distribution for birth
Here we assume that the birth is uniform across the breeding

season and we set bt = 11.538 tadpoles per week per breeding frog
(300 per season) (see Fig. 4). In Table 2, we present the parame-
ter estimates obtained from the least-squares method for the first
case where all the data points are used (i.e., n = 34) together with
standard errors. Using these estimates, in Fig. 5(a), we present the
total number of frogs Ft obtained from the numerical solution of
model (1) superimposed on the frog (breeders and non-breeders)
population estimates obtained from 2004 to 2005 field datasets. It
can be seen from this figure that the model fits the dataset well. We
then ran the model for a longer period of time (500 weeks) using
the parameter values for the full dataset given in Table 2 and pre-
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Table 2
Weekly least-squares parameter estimation results (with and without outliers) for the two distributions of birth rate.

Parameter Outliers included Uniform birth distribution Birth distribution according to calling data

Estimate S.E. Estimate S.E.

a1 Yes 0.5558 0.1307 0.5793 0.1888
k1 Yes 0.0000 0.0001 0.0000 0.0001
a2 Yes 0.9827 0.2096 0.9999 0.0976
k2 Yes 0.0003 0.0009 0.0002 0.0004
a3 Yes 0.8806 0.3167 0.8943 0.4040
k3 Yes 0.0000 0.0009 0.0000 0.0009
a1 No 0.5422 0.1540 0.6111 0.2167
k1 No 0.0000 0.0002 0.0001 0.0003
a2 No 0.9999 0.2295 0.9999 0.1491
k2 No 0.0003 0.0012 0.0002 0.0006
a3 No 0.9002 0.3362 0.9203 0.4280
k3 No 0.0000 0.0012 0.0000 0.0014

Fig. 4. Birth rate distributed according to calling data superimposed on uniform
birth distribution.

sented the results for the breeders and non-breeders in Fig. 5(b)
and for tadpoles in Fig. 5(c). It is clear that in this case the popu-
lation converges to a periodic solution. In fact, the period is 1 year
long.

For the second case, we remove the outliers from the estima-
tion process (i.e., n = 31), we provide the parameter estimates in
Table 2 (bottom part) with the corresponding standard errors. In
Fig. 5(d), we present the total number of frogs Ft obtained from
the numerical solution of the model (1) superimposed on top of
the frog population estimates obtained from 2004 to 2005 data.
We then present the long-term behavior for breeders and non-
breeders in Fig. 5(e) and for tadpoles in Fig. 5(f), using the same
parameter estimates used in Fig. 5(d). Once again, the population
converges to a periodic solution. The comparison of the least-
squares value L for the full dataset and the outlier omitted dataset
is in Table 3.

Fig. 5. (a) Total frog numbers (breeder and non-breeders) predicted by the model (1) (using the parameters estimates resulting from the least-squares approach with
outliers) with uniform birth distribution (purple line) superimposed on estimated total frog number resulting from the data collected in 2004 (blue diamonds) and 2005
(green squares). (b) The model predicted long-time behavior of breeders (grey line) and non-breeders (red line) with parameter estimates resulting from the least-squares
method with outliers. (c) The model predicted long-time behavior of tadpoles with parameter estimates resulting from the least-squares method with outliers. (d) Total frog
numbers predicted by the model (1) (using the parameters estimates resulting from the least-squares approach without outliers) with uniform birth distribution (purple
line) superimposed on estimated total frog number resulting from the data collected in 2004 (blue diamonds) and 2005 (green squares). (e) The model predicted long-time
behavior of breeders (grey line) and non-breeders (red line) with parameter estimates resulting from the least-squares method without outliers. (f) The model predicted
long-time behavior of tadpoles with parameter estimates resulting from the least-squares method without outliers. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of the article.)
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Table 3
Comparison of the of least-squares function, L, for each dataset type with the two birth distributions.

Dataset type Uniform birth distribution Birth distribution according to calling data

Calculated value for L L divided by number of data points Calculated value for L L divided by number of data points

Full dataset 9.5292 0.2803 10.8059 0.3178
Data omitting outliers 4.7381 0.1528 6.3955 0.2063

4.2.2. Birth distributed according to male frog calling data
Using the calling data of 2005 and 2006 we derived a birth

distribution as follows: for intensity level 0 we assumed no frogs
were reproducing; for intensity level 1 we assumed one frog was
reproducing; for intensity level 2 we assumed that five frogs were
reproducing and for intensity level 3 we assume that 15 frogs were
reproducing. In this case we still maintained an average of 300 tad-
poles per breeding adult for the entire breeding season. However,
in this case the 300 tadpoles are not uniformly distributed across
the 26-week breeding season, but rather distributed according to
the calling data (see Fig. 4).

With this birth rate we repeated the parameter estimation
experiments with outliers (n = 34) and without outliers (n = 31) and
presented the parameter estimates in Table 2. In Fig. 6 we show
the model-to-data fits and present the long-term behavior of the
model for resulting parameter values. The comparison of the least-
squares value L for the full dataset and the outlier omitted dataset
is in Table 3.

4.3. Model sensitivity analysis

In this section we present results for the sensitivity of the model
output to the survivorship of eggs, tadpoles, non-breeders and
breeders. Recall that in deriving the standard errors for the param-

eter vector q we had to compute the sensitivity of the quantity
Ft (total number of breeders and non-breeders at time t) with
respect to the parameter q which includes the survivorship of
tadpoles, non-breeders and breeders (see the matrix X(q) given
in Eq. (8)). Here, for convenience of the reader, we provide the
graphs of the sensitivities of this quantity Ft to these inherent sur-
vivorships denoted by a1, a2 and a3. Furthermore, we will present
the sensitivity of Ft to the eggs survivorship denoted by a0. In
particular, we consider the case where the birth is distributed
according to calling data and in Fig. 7 we plot the derivative of
the function Ft with respect to each of these survivorships as a
function of time over approximately 10 years, i.e., we plot the
quantities |∂Ft/∂a1|, |∂Ft/∂a2| and |∂Ft/∂a3| for t = 1,2,. . .,520 eval-
uated at the estimated parameters obtained for the full dataset
and for the dataset omitting outliers (see Table 2) and the quan-
tity |∂Ft/∂a0| for t = 1,2,. . .,520 evaluated at the a0 = 0.5 used in our
simulations. To compute these derivates we apply a forward differ-
ence approximation as that presented in Eq. (6). The results show
that for the parameter estimates resulting from the full dataset,
the quantity Ft which is obtained from solving the model (1) is
most sensitive to the inherent survivorship of breeders then to the
inherent survivorship of tadpoles. However, it is much less sen-
sitive to inherent survivorship of non-breeders and survivorship
of eggs. For the parameter estimates resulting from the outlier

Fig. 6. (a) Total frog numbers predicted by the model (1) (using the parameters estimates resulting from the least-squares approach with outliers) with birth rate distributed
according to calling data (purple line) superimposed on estimated total frog numbers resulting from mark-recapture data collected during 2004 (blue diamonds) and 2005
(green squares). (b) The model predicted long-time behavior of breeders (grey line) and non-breeders (red line) with birth distributed according to calling data and parameters
estimates resulting from least-squares approach with outliers. (c) The model predicted long-time behavior of tadpoles with birth distributed according to calling data and
parameters estimates resulting from least-squares approach with outliers. (d) Total frog numbers (using the parameters estimates resulting from the least-squares approach
without outliers) with birth rate distributed according to calling data (purple line) superimposed on estimated total frog numbers resulting from mark-recapture data
collected during 2004 (blue diamonds) and 2005 (green squares). (e) The model predicted long-time behavior of breeders (grey line) and non-breeders (red line) with birth
distributed according to calling data and parameters estimates resulting from least-squares approach without outliers. (f) The model predicted long-time behavior of tadpoles
with birth distributed according to calling data and parameters estimates resulting from least-squares approach without outliers. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of the article.)
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Fig. 7. The sensitivity of the frog population Ft to survivorship values of eggs (cyan
line), tadpoles (blue line), breeders (grey line) and non-breeders (red line) for the
following two cases: (a) full dataset and (b) dataset with outliers omitted. (For inter-
pretation of the references to color in this figure legend, the reader is referred to the
web version of the article.)

omitted dataset, the quantity Ft is most sensitive to the inher-
ent survivorship of breeders then to the inherent survivorship
of tadpoles. It is a little less sensitive to the inherent survivor-
ship of non-breeders and much less sensitive to survivorship of
eggs. Similar results hold for the case of uniform birth distribu-
tion. These conclusions will be more evident in the next subsection
which focuses on the development of a stochastic version of the
model (1) which accounts for stochastic annual variation in the
parameters.

4.4. Stochasticity and extinction

We are interested in understanding how sensitive the model
output, which predicts persistence of the population in the long
term when using the estimated inherent survivorship values, to
annual stochastic variation in these inherent survivorship esti-
mates. Here, we consider the following stochastic version of the
model (1): For each simulation we vary one parameter and fix the
remaining parameters. At the beginning of each year we randomly
choose a value for the varying parameter from the interval [q* − fq*,
q* + fq*] where q* is the parameter estimate obtained in the fitting
experiments above (see Table 2) and 0 < f < 1 represents maximum
percentage change in that parameter (for example f = 0.2 implies
the parameter is allowed to vary up to 20% of its estimated value).
If the right hand side of the interval exceeds the biologically rele-
vant survivorship value of 1 then this interval is truncated at that
value. In our experiments we choose f = 0.1, 0.15, 0.2, 0.25, 0.3 to
represents a maximum change of 10%, 15%, 20%, 25% and 30% in the
parameter value estimated. We perform several sets of 500 sample
paths where each sample path is run for 10 years. For each set of
500 sample paths, we vary one parameter and fix the remaining
ones. During each path simulation, if at any time the total number
of frogs (breeders and non-breeders) falls below 2 than we con-
sider the population extinct. At the end we divide the number of

Table 4
Probability of extinction over 10 years.

Parameter Dataset type f = 0.1 f = 0.15 f = 0.20 f = 0.25 f = 0.30

a3 Full dataset 0.000 0.130 0.552 0.824 0.930
Data omitting
outliers

0.000 0.004 0.228 0.618 0.850

a1 Full dataset 0.000 0.000 0.000 0.004 0.040
Data omitting
outliers

0.000 0.000 0.000 0.000 0.000

extinct sample paths by the total number of paths (500) to obtain an
extinction probability. Subtracting the extinction probability from
1 provides us with a persistence probability for this population.
The results of these simulations for the birth distributed accord-
ing to calling data are presented in Table 4 for the survivorship of
breeders and for the survivorship of tadpoles. Similar results hold
for the case where birth is distributed according to calling data.
We point out that up to 30% stochastic variation in eggs and non-
breeder survivorships leads to all sample paths being persistent,
i.e., zero probability of extinction; thus we do not present these
results in Table 4. Furthermore, up to 10% variation in breeder sur-
vivorship and up to 20% variation in tadpole survivorship also lead
to all sample paths being persistent (i.e. zero extinction probabil-
ity). From the results in Table 4 it can be concluded that the model
is most sensitive to stochasticity in the inherent survivorship of
breeders leading to 55% of the sample paths going extinct for the full
dataset (and 22% of the sample paths going extinct for the dataset
omitting the outliers) when this parameter is allowed to change
20%.

5. Discussion

The intra-annual patterns observed in 2005 were the same as
those observed in 2004. While the marking techniques were differ-
ent in 2004 and 2005, because both used subcutaneous fluorescent
plastic tags we feel they are comparable when the data are analyzed
using the hypergeometric statistical method to derive population
estimates. The frog population size (breeders and non-breeders)
and average body length of H. cinerea varied during 2005. In April
and May of 2005, the frog population was smaller in number and
larger in average size than the frog population in late August. A
significant increase in frog population occurred in August and was
associated with the influx of recently metamorphosed frogs into the
population. The observed intra-annual pattern was corroborated
by a three-stage life history model with seasonal breeding. Though
the population fluctuates significantly over the course of a grow-
ing season, the model predicts that the population is stable over the
long-term provided that the actual adult survivorship is within 10%
from the estimated value. If it is within 15% then the model predicts
a 13% probability of extinction within 10 years period. The model
output which predicts persistence for the estimated parameter val-
ues is far less sensitive to the inherent survivorship of tadpoles and
minimally sensitive to the inherent survivorship of non-breeders.
In the fact, the model predicts a probability of extinction of 4% if the
tadpoles survivorship is within 30% of the estimated value and no
extinction is possible if the survivorship of non-breeders is within
30% of the estimated value. Furthermore, our stochastic simula-
tions show that if the 50% eggs survivorship that we assumed in our
simulation increases or decreases by up to 30% then the stochastic
model predicts zero probability of extinction, i.e., the model output
is pretty robust to such changes in egg survivorship.

Population parameters estimated using the least-squares
approach were survivorships for adults, juvenile frogs and tadpoles
as well as density effects. We used parameters from the literature to
estimate egg production. Egg production is one of the more reliable
parameters from the literature since H. cinerea are regularly bred in
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captivity. Thus, the parameter estimation was based primarily on
our mark-recapture data and the model structure. It worth pointing
out that, to the best of our knowledge, this and Pham et al. (2007)
are the only studies providing population estimates of H. cinerea.
Furthermore, this study is the first to use frequent population esti-
mates to parameterize a population dynamics model.

In 2005, we captured and marked H. cinerea from 29 April to 16
September. The study from the previous year ran from 17 June to 22
October. Fig. 3 shows a sharp increase in the population estimates
of frogs caught on the week of 10 September 2005. In 2004, there
was also an increase around the week of 27 August (Pham et al.,
2007). In 2004 and 2005, the mean lengths of the frogs caught each
week declined coincidentally with a sudden increase in our popu-
lation estimates (Table 3, Pham et al., 2007). During this increase in
population we also began catching froglets (frogs whose tails were
not yet fully absorbed). These lines of evidence strongly suggest
an influx of recently metamorphosed frogs from the pond into the
population. Furthermore, the timing of this increase matches well
with noted increases in calling intensity earlier in the year and what
is known about egg and tadpole natural history. This hypothesis is
also supported by our models.

During the breeding season adult males call, and since we
use calls to help locate individuals our method is biased towards
males at the height of the breeding season. We do not know
how strong the bias is, but assume that if the sex ratio is 1:1 we
are underestimating the adult population size. Froglets and juve-
nile frogs generally do not vocalize and are less likely to have a
sex ratio bias. However, we were unable to develop a satisfac-
tory method for consistently determining the sex of frogs in the
field.

The model-to-data fitting experiments provide us with esti-
mates on inherent survivorship rates and density-dependence
effects on such survivorships (the estimate of the parameter q). The
estimates in Table 2 suggest a weekly survivorship rate of 54–61%
for tadpoles, 98–99% for non-breeders, and 88–92% for breeders.
Furthermore, they suggest that the survivorship of breeders show
minimal density dependence, while that of juveniles and tadpoles
are influenced by density slightly.

Comparing the parameter estimates resulting from using the
full dataset (Table 2, top part) with the estimates resulting from
using the dataset omitting the outliers (Table 2, bottom part), one
observes that the density effect on tadpoles is slightly higher for
the dataset omitting the outliers. Also the L value divided by the
total number of points is lower for the set of parameter estimates
without outliers (Table 3), suggesting a better least-squares fit. Fur-
thermore, the long-time behavior of the model when omitting the
outliers results in lower population numbers than the ones with the
full dataset. These numbers are, although still a little higher, closer
to the current population estimates. Also the long-time behavior
of the population using estimates resulting from the birth distri-
bution based on calling data (Table 2) results in lower population
numbers when compared with the uniform birth distribution case
(Table 2) which are closer to the population estimates we obtained
during 2004–2005.

There were several important parameters we were unable to
measure in the field. First, we were unable to estimate tadpole pop-
ulation size. This necessitated that we use values from the literature
on tadpole production (tadpoles produced per female frog) and
then use the model to back estimate tadpole survivorship. Second,
we do not have information on life stage based carrying capacity
or predation rate for any of the individual ponds in the system, but
this may be important. For example, differences in the numbers of
frogs captured in the different ponds may be a function of available
high quality habitat or differences in their predator communities.
Third, we treated the ponds in the complex as one large population.
In 2005 we recorded 10 out of 76 recapture events where indi-

viduals switched ponds (J. Carter, unpublished data). This nominal
13% exchange rate may indicate that the entire complex may more
accurately be described as a meta-population, with different sur-
vivorship and fecundity rates in the different ponds. Unfortunately,
the numbers captured were insufficient to allow parameter estima-
tion on a per-pond basis. However, the above limitations have been
present in many previous studies estimating the size and survival
rates of amphibian populations (Bradford et al., 2004; Grafe et al.,
2004; Anholt et al., 2003; Bailey et al., 2004; Govindarajulu et al.,
2005).

This study is unique for two reasons. First this study, together
with Pham et al. (2007), is the first to make weekly estimates
throughout the breeding season for H. cinerea and the first to do so
for an urban area. Second, this is the first study to explicitly tie popu-
lation estimates for H. cinerea to a population dynamics model. This
modeling allowed us to estimate parameters such as tadpole and
frog survivorship rates that currently we are unable to directly mea-
sure. The graphical results of the model suggest that these stage/age
structured models describe the dynamics reasonably well and thus
may be used as tools for understanding the long-time behavior of
this population.

Our models predict that if the estimated parameters vary up to
10%, the population of H. cinerea at the Federal Complex should
exhibit long-term persistence barring a major disruption of the
habitat. This conclusion is in accord with the observation that H.
cinerea have been observed at the Federal Complex since 1997.
While these populations may persist long-term, the estimated
number may vary by an order of magnitude during the active sea-
son and may experience significant changes over short periods of
time.

6. Concluding remarks

H. cinerea population dynamics have high amplitude oscilla-
tions but appear to be persistent over several years. This was
evidenced by the capture–recapture data and corroborated by the
site history and our model prediction using up to 10% variation
in the estimated parameters. Monitoring is a critical part of pop-
ulation management, especially for endangered and threatened
species. It is suggested that anuran monitoring efforts should take
into account these natural intra-annual variation in population
size.

This will allows us to determine if the population of interest is
increasing, decreasing or stable. Many anuran populations like the
H. cinerea in this study, experience large seasonal changes in pop-
ulation size. Therefore the timing of when to make the population
estimate is critical for species with similar life history patterns. A
mismatch in timing from year-to-year could lead to mistakes in
assessing the status of the population of interest.

Because of logistical constraints, monitoring programs are often
time limited and cannot be conducted through out the entire breed-
ing season. Using a population dynamics model we can estimate
the health and stability of a population by sampling two times dur-
ing the year. First, early in the season after all the individuals have
reached the breeding pools but well before the first tadpoles have
metamorphosed to froglets. The second sampling period should be
shortly after the peak of when the tadpoles have metamorphosed
to froglets. These two time frames can give an estimation of the
breeding population size and breeding success. Data on frog call
monitoring, which is easier to collect than mark-recapture data, can
be used to estimate when the second sampling session should begin
because the length of time from eggs being laid to metamorphosis
from tadpoles to juveniles is generally known and species spe-
cific. If conducting a mark-recapture study is only possible once a
year, then the first time frame should be used. That mark-recapture
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should be timed to the peak of breeding activity in order to get an
estimation of the breeding pool population size for that year and
to make projections for the next. This sampling principal can be
applied generally to all species with a similar life-history pattern,
where large seasonal swings in population sizes are due to seasonal
breeding patterns.
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