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Abstract

A general discrete juvenile-adult population model with time-dependent birth
rate and nonlinear survivorship rates is studied. When breeding is continuous,
it is shown that the model has a unique globally asymptotically stable posi-
tive equilibrium provided the net reproductive number is larger than one. If
it is smaller than one, then the extinction equilibrium is globally asymptoti-
cally stable. When breeding is seasonal, it is shown that there exists a unique
globally asymptotically stable periodic solution provided the net reproductive
number is larger than one. When this value is less than one, the population
goes to extinction. Conditions on the birth rate where the population with sea-
sonal breeding survives while the population with continuous breeding becomes
extinct are provided.

1 Introduction

Although most of the current literature on discrete-time population dynamics con-
centrates on autonomous models, in recent years several researchers have devoted
considerable attention to studying non-autonomous discrete-time population models
with focus on parameters that vary periodically [2], [3], [5], [7]-[9], [12]-[18], [20]-[29].
The main question addressed in many of these papers is whether cycles generated by
time-dependent parameters due to a fluctuating or seasonal environment are atten-
uant (deleterious) or resonant (advantageous). In [9] the authors conjectured that
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cycles in a population governed by a scalar Beverton-Holt nonlinear difference equa-
tion with periodic carrying capacity are attenuant for all periods. This conjecture
was confirmed in many papers including [12, 13, 14, 24, 25, 26].

Such investigations were recently extended to age and stage structured models.
For instance, in [5], the author studied the following model:

{
J(t + 1) = b(t)φ(c1J(t), c2A(t))A(t)

A(t + 1) = s1(t)σ1(c11J(t), c12A(t))J(t) + s2(t)σ2(c12J(t), c22A(t))A(t).

where b(t) and si(t) are the (periodic) inherent fertility and survival rates, and φ and
σi account for the effects of stage specific population densities on these rates. The
ci and cii are constant competition coefficients. The author showed that a global
branch of positive cycles exists. Furthermore, he showed that periodic oscillations
can be either advantageous or deleterious with the phase relationship among the
oscillations in the inherent fertility and survival rate being a determining factor.

In [15], the authors studied the following age-structure Leslie model





x1(t + 1) =
∑N

i=1 xi(t)gi(t, xi(t))

x2(t + 1) = x1(t)
...

xN(t + 1) = xN−1(t),

where xi(t) is the population size of the ith age class at time t and gi(t, xi) is the
periodic fecundity of the ith age class. They showed that a periodic environment is
disadvantageous for a population whenever there is no synchrony between the number
of age classes and the period of the environment.

Motivated by a population of green tree frogs, Hyla cinerea, the authors in [3]
fully analyzed the two-stage discrete model with stage specific competition,

{
x(t + 1) = b(t)y(t)

y(t + 1) = x(t)
α1+k1x(t)

+ y(t)
α2+k2y(t)

where x(t) and y(t) are the number of juveniles and adults, respectively, at time t, and
b(t) is the time-dependent birth rate. The authors showed that the globally attracting
cycles generated by period-2 birth rates of the form b(2t) = 0 and b(2t + 1) = b̂ are
advantageous for low birth rates and are deleterious for high birth rates.

In [2], the global asymptotic stability results were extended to the three-stage
model given by 




x(t + 1) = b(t)z(t)

y(t + 1) = s1(x(t))x(t)

z(t + 1) = s2(y(t))y(t) + s3(z(t))z(t),

where x(t), y(t), and z(t) represent the number of juveniles, nonbreeding adults and
breeding adults, respectively, at time t. The function b(t) is the time-dependent birth
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rate, and si is the nonlinear survivorship rate for stage i. Here, it was demonstrated
that unlike the two stage model, period-2 birth rates are not advantageous for low
birth rates. The arguments in [2, 3] rely on reducing the model to a higher order scalar
difference equation and applying a result on monotone scalar difference equations from
[19].

In general, the juvenile stage for some species is longer than the breeding season
(e.g., the Bafo Boreas frog [29]). Thus, when the time unit is assumed to be the length
of the breeding season, only a fraction of the juvenile population will transition to
the adult stage in one-time unit and the rest remain juveniles. This assumption leads
to a model which cannot be reduced to a single equation. Thus, we provide different
arguments than those in [2, 3] to study global stability. Furthermore, the Jacobian in
this case is a full matrix. Therefore, the local stability analysis involves much more
complicated calculations.

The paper is organized as follows: In Section 2, we develop the model and analyze
two cases: continuous breeding and seasonal breeding with period-2 birth rate. In
both cases, we show that if the inherent net reproductive number is less than one, the
population will become extinct. If it is greater than one, then in the continuous case,
the unique interior equilibrium is globally asymptotically stable, and in the case of
seasonal breeding, we have a globally asymptotically stable unique 2-cycle. In Section
3, we provide conditions under which the population with seasonal breeding survives
while the population with continuous breeding goes to extinction. In Section 4 we
summarize our results and give concluding remarks. Finally, in the Appendix we
provide the calculations for the local asymptotic stability of the periodic solution for
the seasonal birth rate.

2 Two-stage discrete model

The model developed here is a juvenile-adult discrete model where it is assumed that
the juveniles and adults only compete with themselves and not with each other. Let
J(t) and A(t) denote the number of juveniles and adults, respectively, at time t. Let
S1(J) represent the survivorship of the juveniles and S2(A) represent the survivorship
of the adults at time t. We will denote the time-dependent birth rate as b(t). Thus,
we obtain the following model:





J(t + 1) = (1− γ)S1(J(t))J(t) + b(t)A(t)

A(t + 1) = γS1(J(t))J(t) + S2(A(t))A(t)

(J(0), A(0)) ∈ R2
+ \ (0, 0),

(2.1)

where γ is the fraction of the juveniles that become adults in one time unit. Hence,
we assume 0 < γ ≤ 1. Also, we assume for the remainder of this paper that S1 and
S2 have the following properties:

(H1) For i = 1, 2, Si(x) ∈ C1[0,∞), S ′i(x) < 0, (Si(x)x)′ > 0, limx→∞ Si(x) = 0,
limx→∞ Si(x)x = âi < ∞, and Si(0) = ai (0 < ai < 1).
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Clearly, (H1) is satisfied by the Beverton-Holt dynamics given by Si(x) = ai

1+kix
for

i = 1, 2.
A model similar to (2.1) has been used in [29] to assess the contribution of egg

mortality to amphibian declines. Specifically the authors focused on two species (Bufo
boreas and Ambystoma macrodactylum) with contrasting life-history strategies (one
has a birth rate more than one hundred times larger than the other). Their elasticity
analysis showed that for a range of density dependence scenarios both species were
more sensitive to changes in post-embryonic survival parameters, particularly juvenile
survival.

We will analyze the model (2.1) for two cases. In the first case, we assume b(t) = b,
a positive constant, and in the second case, we assume b(t) is periodic with period 2.
The following result follows from [1]. Here, P : R2

+ → R2
+ is said to be monotone if

x ≤ y implies P (x) ≤ P (y), where vector inequalities hold componentwise.

Lemma 1. Let P : R2
+ → R2

+ be a continuous, monotone map and c ≤ d be points
in R2

+. If c ≤ P (c) and P (d) ≤ d, and if P has a unique fixed point x∗ in the order
interval [c, d] ≡ {x ∈ R2

+|c ≤ x ≤ d}, then every solution sequence of the discrete
system x(t + 1) = P (x(t)), starting in [c,d], converges to x∗.

2.1 Continuous breeding

We now consider (2.1) with continuous breeding. For the remainder of the section,
we assume b(t) = b, a positive constant, in (2.1). The model (2.1) can be written as

x(t + 1) = B(x(t))x(t), (2.2)

where x(t) = (J(t), A(t))T and B has the form

B(x) =

(
(1− γ)S1(J) b

γS1(J) S2(A)

)
.

First, we will use the techniques in [10] to find the net reproductive number R0, which
is the expected number of offspring per juvenile over the course of its lifetime. Define
the fertility matrix as

G =

(
0 b
0 0

)

and the transition matrix as

T =

(
(1− γ)a1 0

γa1 a2

)
. (2.3)

Note that the inherent projection matrix B(0) = G + T . Thus, the net reproduc-
tive number is the positive strictly dominant eigenvalue of the matrix G(I − T )−1.
Therefore, we get

R0 ≡ γba1

(1− a2)(1− (1− γ)a1)
.
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Now, the system (2.1) always has the trivial steady state E0 = (0, 0). If (2.1) has a
nontrivial interior steady state E1 = (J̄ , Ā), then E1 must satisfy

1 = (1− γ)S1(J) + γbS1(J) + (1− (1− γ)S1(J))S2(A(J)) ≡ F (J), (2.4)

where

A(J) =
1

b
J(1− (1− γ)S1(J)).

Note that

A′(J) =
1

b
(1− (1− γ)(S1(J)J)′) > 0,

since 0 < (S1(J)J)′ = S ′1(J)J + S1(J) ≤ S1(J) < 1 by (H1). Therefore,

F ′(J) = (1− γ)S ′1(J)(1− S2(A)) + γbS ′1(J) + (1− (1− γ)S1(J))S ′2(A)A′ < 0.

Since F ′(J) < 0 and limJ→∞ F (J) = 0, we see that if F (0) = (1− γ)a1 + γba1 + a2−
(1 − γ)a1a2 > 1, which is equivalent to R0 > 1, then (2.1) has a nontrivial unique
interior steady state E1 = (J̄ , Ā). Furthermore, it can be shown that (2.1) is point
dissipative. In fact, it is clear that R2

+ is positively invariant and from (H1), it follows
that

A(t + 1) = γS1(J)J(t) + S2(A)A(t) ≤ γâ1 + â2 ≤ â1 + â2

∀t = 0, 1, . . . . Therefore, we have

A(t) ≤ â1 + â2 ∀t = 1, 2, . . . .

Using this we get

J(t + 1) ≤ (1− γ)â1 + b(â1 + â2) ∀t = 1, 2, . . . ,

hence
J(t) ≤ (b + 1)â1 + bâ2 ∀t = 2, 3, . . . .

Thus, every forward solution enters the following compact set in at most two time
steps and remain there forever:

K = {(J,A) ∈ R2
+|J ∈ [0, (b + 1)â1 + bâ2], A ∈ [0, â1 + â2]}. (2.5)

Now, we prove the following stability result for system (2.1).

Theorem 2.1. Let b(t) = b, a positive constant, for t = 0, 1, . . . .

(a) If R0 < 1, then the system (2.1) has only the trivial steady state E0 = (0, 0),
and E0 is globally asymptotically stable.

(b) If R0 > 1, then there exists a (unique) nontrivial interior steady state E1 =
(J̄ , Ā) in addition to E0, and E1 is globally asymptotically stable.
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Proof: (a) Assume R0 < 1. The system (2.1) only has the trivial steady state
E0 = (0, 0) since F (0) < 1. Define the map P : R2

+ → R2
+ to be the right side of

(2.1). Linearizing the system (2.1) and evaluating the resulting Jacobian matrix at
E0 gives us

DP (E0) =

(
(1− γ)a1 b

γa1 a2

)
.

Then, it follows from [27] that the eigenvalues of DP (E0) have magnitude less than
one, and thus, E0 is locally asymptotically stable.

To establish global asymptotic stability of E0, note that the inherent projection
matrix B(0) of the system (2.2) is nonnegative, irreducible, and primitive. There-
fore we know that B(0) has a positive, simple, and strictly dominant eigenvalue r.
Also, since R0 < 1, it follows from [6] (Theorem 1.1.3, pg. 10) that r < 1 and
limt→∞ Bt(0) = 0. Since (2.2) has the property

x ≤ y implies B(x) ≥ B(y),

where vector and matrix inequalities hold componentwise, we have that for any
x(0), 0 ≤ x(1) = B(x(0))x(0) ≤ B(0)x(0). Repeating this process we get that
0 ≤ x(t) =

∏t−1
i=0 B(x(i))x(0) ≤ Bt(0)x(0) → 0 as t → ∞. Thus, E0 is globally

asymptotically stable. This completes the proof of (a).

(b) Assume R0 > 1. This implies that F (0) > 1 and a unique interior steady state
E1 exists. For simplicity, for the remainder of this proof, we will write S1(J̄) as S1

and S2(Ā) as S2.
Define the map P : R2

+ → R2
+ to be the right side of (2.1). Linearizing the system

(2.1) and evaluating the resulting Jacobian matrix at E1 = (J̄ , Ā) gives us

DP (E1) =

(
(1− γ)(S1 + S ′1J̄) b

γ(S1 + S ′1J̄) S2 + S ′2Ā

)
.

To show local asymptotic stability of E1, we need to show that the following inequal-
ities hold (see Theorem 2.37 in [11]):

|tr(DP (E1))| < 1 + det(DP (E1)) < 2. (2.6)

It is clear that tr(DP (E1)) > 0 and det(DP (E1)) < 1. Thus, we only need to check
tr(DP (E1)) < 1 + det(DP (E1)). Note first that from (2.4) we have 1 = F (J̄).
Therefore,

1 + det(DP (E1))− tr(DP (E1))
= −(1− γ)S ′1J̄ − S ′2Ā + (1− γ)S1S

′
2Ā + (1− γ)S ′1J̄S2 + (1− γ)S ′1J̄S ′2Ā− bγS ′1J̄

= −S ′2Ā(1− (1− γ)S1)− S ′1J̄(1− γ)(1− (S2 + S ′2Ā))− bγS ′1J̄ > 0

since 0 < S2 + S ′2Ā < 1 by (H1), 0 < γ ≤ 1, and J̄ , Ā, and b are all positive. Thus
(2.6) holds, and E1 is locally asymptotically stable.

Now we will establish global attractivity of E1 by following an approach similar
to that in [1]. Since DP (x) is a nonnegative matrix for all x, we have that P (x) is
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monotone. Also every solution starting on the boundary of R2
+ , but not in E0, enters

the positively invariant set int(R2
+) in at most two time steps. Thus, it suffices to show

that the result holds for solutions in int(R2
+). Pick x(0) = (J(0), A(0)) ∈ int(R2

+).
Since all solutions enter the compact set K in at most two time steps, it is enough
to consider x(0) ∈ int(R2

+) ∩ K, where K is defined by (2.5). Clearly, E1 ∈ K.
Define d ≡ sup K (the maximal element in K). Then we have that P (d) ≤ d. Now,
since B(0) is an irreducible non-negative matrix, we know that the spectral radius
r > 1 of B(0) is an eigenvalue with a corresponding positive eigenvector v such that
B(0)v = rv. Also, ∀ε > 0 sufficiently small, we have P (εv) = rεv + o(ε) ≥ εv, as
r > 1. Therefore, given x(0) ∈ int(R2

+) ∩K , we can choose ε > 0 sufficiently small
such that

c ≡ εv ≤ x(0) and c ≤ P (c).

Hence, by Lemma 1, we have that E1 is globally attractive, and therefore globally
asymptotically stable. This concludes the proof of (b).

2.2 Seasonal breeding

We now assume that breeding is seasonal and we let the birth rate b(t) be periodic
of period 2. So, we assume b(0) = 0, b(1) = b̂ > 0, b(2) = 0, b(3) = b̂, .... The net
reproductive number R̂0 for the seasonal breeding case is more subtle than in the
continuous breeding case. We will use similar techniques to the ones used in [10] to
define R̂0. To motivate the construction of R̂0, consider the periodic linear system

x(t + 1) = M(t)x(t), (2.7)

where

M(t) =

(
(1− γ)a1 b(t)

γa1 a2

)
.

With b(t) defined above, we have that

M(2t) = M0 =

(
(1− γ)a1 0

γa1 a2

)
= G0 + T

and

M(2t + 1) = M1 =

(
(1− γ)a1 b̂

γa1 a2

)
= G1 + T,

where G0 ≡ 0, and G1 =

(
0 b̂
0 0

)
, and T is given by (2.3). Therefore, the projection

matrix over a full cycle composed of two time units is given by the constant matrix

M̄ = M1M0 = (G1 + T )T = G1T + T 2 = Ĝ + T̂ ,

where Ĝ = G1T represents the fertility matrix over a full cycle, and T̂ = T 2 represents
the transition matrix over a full cycle (two time units). Thus, the net reproductive
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number of (2.7) is the positive strictly dominant eigenvalue of the matrix Ĝ(I− T̂ )−1.
Applying the above approach to our model (2.1), we define R̂0 to be

R̂0 ≡ b̂γa1(1 + (1− γ)a1a2)

(1− a2
2)(1− (1− γ)2a2

1)
.

Although R̂0 is defined mathematically, it has the biological interpretation of the
expected number of offspring produced by an individual over the course of its life. To
see this clearly, let γ = 1. Then

R̂0 =
b̂a1

1− a2
2

= b̂a1(1 + a2
2 + a4

2 + . . . ).

The even powers of a2 in R̂0 reflect the fact that adults must survive two time units
with a probability of a2

2 in order to reproduce repeatedly .
Now using a similar argument as in the continuous case, we see that there exists

a compact set K̂ such that every forward solution enters this set in at most two time
steps and remains there forever.

Let J(0) = J∗ and A(0) = A∗ be given positive real numbers. Then
{

J(1) = (1− γ)S1(J
∗)J∗

A(1) = γS1(J
∗)J∗ + S2(A

∗)A∗,

as b(0) = 0, which gives us




J(2) = b̂(γS1(J
∗)J∗ + S2(A

∗)A∗) + (1− γ)S1((1− γ)S1(J
∗)J∗)((1− γ)S1(J

∗)J∗)

A(2) = γS1((1− γ)S1(J
∗)J∗)((1− γ)S1(J

∗)J∗)+

S2(γS1(J
∗)J∗ + S2(A

∗)A∗)(γS1(J
∗)J∗ + S2(A

∗)A∗).

Now, in order for a solution (J(t), A(t)) of (2.1) to be periodic with period 2, we must
have {

J∗ = J(2)

A∗ = A(2).
(2.8)

Therefore, solving the first equation of (2.8) for A∗ and substituting it into the second
equation, we see that a periodic solution must satisfy

1 = (1− γ)2S1(J
∗)S1((1− γ)S1(J

∗)J∗)(1− S2(A
∗)S2(γS1(J

∗)J∗ + S2(A
∗)A∗))

+b̂γS1(J
∗)(1 + (1− γ)S2(A

∗)S1((1− γ)S1(J
∗)J∗))

+S2(A
∗)S2(γS1(J

∗)J∗ + S2(A
∗)A∗) ≡ F̂ (J∗).

Using similar calculations as before, one can show that F̂ ′(J) < 0 and limJ→∞ F̂ (J) =
0. Thus, if F̂ (0) > 1, which is equivalent to R̂0 > 1, then (2.1) has a nontrivial unique
2-cycle exists and is given by

{(J∗, A∗), ((1− γ)S1(J
∗)J∗, γS1(J

∗)J∗ + S2(A
∗)A∗)}. (2.9)

The following theorem summarizes the stability analysis of (2.1) with periodic birth
rate.
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Theorem 2.2. Let b(2t) = 0 and b(2t + 1) = b̂ > 0, for t = 0, 1, ....

(a) If R̂0 < 1, then E0 = (0, 0) is globally asymptotically stable.

(b) If R̂0 > 1, then the 2-periodic solution Ê1 given by (2.9) is globally asymptoti-
cally stable.

Proof: (a) Assume R̂0 < 1. Let E0 = (0, 0). Define the map P : R2
+ → R2

+ to
be the right side of (2.1). From [4], the local stability of E0 can be determined by
investigating the eigenvalues of the product of matrices

D0 =

(
(1− γ)a1 0

γa1 a2

)(
(1− γ)a1 b̂

γa1 a2

)
=

(
(1− γ)2a2

1 b̂(1− γ)a1

(1− γ)γa2
1 + γa1a2 b̂γa1 + a2

2

)
.

We will use condition (2.6) to show that the eigenvalues of D0 have magnitude less
than one. It is clear that tr(D0) > 0 and det(D0) < 1. Thus, we only need to check
tr(D0) < 1 + det(D0). To this end,

tr(D0)− det(D0) = (1− γ)2a2
1(1− a2

2) + b̂γa1(1 + (1− γ)a1a2) + a2
2 < 1,

since R̂0 < 1. Therefore, E0 is locally asymptotically stable.
We now establish the global attractivity of E0. From (2.1), we see that

J(2t + 1) = (1− γ)S1(J(2t))J(2t) (2.10)

as b(2t) = 0, and

A(2t + 1) = γS1(J(2t))J(2t) + S2(A(2t))A(2t). (2.11)

From this, we get

J(2t + 2) = b̂γS1(J(2t))J(2t) + b̂S2(A(2t))A(2t)
+(1− γ)2S1((1− γ)S1(J(2t))J(2t))S1(J(2t))J(2t)

and
A(2t + 2) = γ(1− γ)S1((1− γ)S1(J(2t))J(2t))S1(J(2t))J(2t)

+S2(γS1(J(2t))J(2t) + S2(A(2t))A(2t))×
(γS1(J(2t))J(2t) + S2(A(2t))A(2t)).

Let τ + i = 2(t + i) for i ≥ 0. Then we get the system





J(τ + 1) =b̂(γS1(J(τ))J(τ) + S2(A(τ))A(τ)))

+ (1− γ)2S1((1− γ)S1(J(τ))J(τ))S1(J(τ))J(τ)
A(τ + 1) =γ(1− γ)S1((1− γ)S1(J(τ))J(τ))S1(J(τ))J(τ)

+ S2(γS1(J(τ))J(τ) + S2(A(τ))A(τ))×
(γS1(J(τ))J(τ) + S2(A(τ))A(τ)))

(2.12)
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which can be written as
x(τ + 1) = B̂(x(τ))x(τ). (2.13)

Here x(τ) = (J(τ), A(τ))T and B̂ has the form

B̂(x) =

(
B̂11 B̂12

B̂21 B̂22

)

where

B̂11 = b̂γS1(J) + (1− γ)2S1((1− γ)S1(J)J)S1(J)

B̂12 = b̂S2(A)

B̂21 = γ(1− γ)S1((1− γ)S1(J)J)S1(J) + γS1(J)S2(γS1(J)J + S2(A)A)

B̂22 = S2(γS1(J)J + S2(A)A)S2(A).

Therefore, the inherent projection matrix B̂(0) of the system (2.13) is given by

B̂(0) =

(
b̂γa1 + (1− γ)2a2

1 b̂a2

γ(1− γ)a2
1 + γa1a2 a2

2

)

Note the B̂(0) is nonnegative, irreducible, and primitive. Thus, by a similar argument
as in the proof of Theorem 2.1, we have E0 is globally attractive for (2.12). Thus,
limt→∞ J(2t) = 0 and limt→∞ A(2t) = 0. As a result, we get limt→∞ J(2t+1) = 0 and
limt→∞ A(2t + 1) = 0. Hence, E0 is globally asymptotically stable. This completes
the proof of (a).

(b) Assume R̂0 > 1. We know that (2.1) has a nontrivial, unique period-2 solution
Ê1 given by (2.9). For the remainder of this proof, for simplicity, we will write S1(J

∗)
as S1, S2(A

∗) as S2, (1 − γ)S1(J
∗)J∗ as Ĵ , γS1(J

∗)J∗ + S2(A
∗)A∗ as Â, S1((1 −

γ)S1(J
∗)J∗) as Ŝ1, and S2(γS1(J

∗)J∗ + S2(A
∗)A∗) as Ŝ2. The local stability of Ê1

can be determined by investigating the eigenvalues of the product of matrices

D1 =

(
(1− γ)(S1 + S ′1J

∗) 0
γ(S1 + S ′1J

∗) S2 + S ′2A
∗

)(
(1− γ)(Ŝ1 + Ŝ ′1Ĵ) b̂

γ(Ŝ1 + Ŝ ′1Ĵ) Ŝ2 + Ŝ ′2Â

)

We need to show condition (2.6) holds. It is clear that tr(D1) > 0. Now, to establish
det(D1) < 1 and tr(D1) < 1 + det(D1) requires some complicated calculations the
details of which are provided in the appendix. Thus, we have that Ê1 is locally
asymptotically stable.

Now we need to show that Ê1 is globally attracting. Define the map P̂ : R2
+ → R2

+

to be the right side of (2.12). The Jacobian matrix DP̂ (x) is given by

DP̂ (x) =

(
DP̂11 DP̂12

DP̂21 DP̂22

)

10



where

DP̂11 = b̂γ(S1(J) + S ′1(J)J)
+(1− γ)2(S1(J) + S ′1(J)J)(S1((1− γ)S1(J)J)
+(1− γ)2S1(J)JS ′1((1− γ)S1(J)J)((1− γ)(S1(J) + S ′1(J)J))

DP̂12 = b̂(S2(A) + S ′2(A)A)

DP̂21 = γ(1− γ)(S1(J) + S ′1(J)J)(S1((1− γ)S1(J)J))
+γ(1− γ)S1(J)JS ′1((1− γ)S1(J)J)((1− γ)(S1(J) + S ′1(J)J))
+γ(S1(J) + S ′1(J)J)(S2(γS1(J)J + S2(A)A)
+S ′2(γS1(J)J + S2(A)A)(γ(S1(J) + S ′1(J)J))(γS1(J)J + S2(A)A))

DP̂22 = (S2(A) + S ′2(A)A)(S2(γS1(J)J) + S2(A)A)
+S ′2(γS1(J)J + S2(A)A)(S2(A) + S ′2(A)A)(γS1(J)J + S2(A)A)).

Combining like terms and using arguments as above which rely on assumption (H1),
it is not difficult to show that DP̂ (x) is a nonnegative matrix for all x. Therefore,
P̂ (x) is monotone. Note that P̂ has a unique, positive fixed point (J∗, A∗) as R̂0 >
1. Following a similar argument in Theorem 2.1 (b), we have that (J∗, A∗) is the
globally attractive fixed point for (2.12). Thus, we have that limt→∞ J(2t) = J∗ and
limt→∞ A(2t) = A∗. Consequently, from (2.10)-(2.11) we have limt→∞ J(2t + 1) =
(1− γ)S1(J

∗)J∗ and limt→∞ A(2t + 1) = γS1(J
∗)J∗ + S2(A

∗)A∗. Thus, Ê1 is globally
asymptotically stable.

3 Comparing seasonal and continuous breeding

In this section, we provide a comparison between seasonally breeding and continuously
breeding populations. In particular, we focus on two questions: 1) Is seasonal breeding
advantageous? 2) How does the length of the breeding season influence such an
advantage?

3.1 Period-2 versus continuous birth rate

We are interested in knowing whether there are birth rate values b for which seasonal
breeding is advantageous over continuous breeding (i.e., results in higher average of
total population in the long term). Note that during a full cycle (two time units)
each adult in a population with a continuous breeding strategy produces b + b = 2b
juveniles, while each adult in a population with a seasonal birth strategy produces
0 + b̂ = b̂ juveniles. To compare the two reproduction strategies on an equal basis,
we let b̂ = 2b. Therefore, an adult belonging to a population with either of the two
reproduction strategies will produce 2b juveniles in a full cycle. In this case, Theorems
2.1 and 2.2 require, respectively, that

b >
(1− a2)(1− (1− γ)a1)

γa1

and b >
(1− a2

2)(1− (1− γ)2a2
1)

2γa1(1 + (1− γ)a1a2)
.

for the population to persist. It is not hard to check that

(1− a2
2)(1− (1− γ)2a2

1)

2(1 + (1− γ)a1a2)
< (1− a2)(1− (1− γ)a1).

11



Thus, for birth rates satisfying

(1− a2
2)(1− (1− γ)2a2

1)

2γa1(1 + (1− γ)a1a2)
< b <

(1− a2)(1− (1− γ)a1)

γa1

the seasonally breeding population survives while the one with continuous breeding
goes to extinction. Hence, for such values of birth rates the seasonal breeding is
advantageous.

To understand the effects of γ (which in effect is related to the length of the
juvenile stage) on these birth rate values, let

g(γ) =
(1− a2

2)(1− (1− γ)2a2
1)

2γa1(1 + (1− γ)a1a2)
and f(γ) =

(1− a2)(1− (1− γ)a1)

γa1

.

Observe that g′(γ) < 0 and f ′(γ) < 0. Therefore, for 0 < γ ≤ 1, we have that

g(γ) > g(1), f(γ) > f(1).

Thus, smaller γ values (i.e., longer juvenile stage) cause a shift in the interval of birth
rates b where seasonal breeding is advantageous to the right.

Next we provide numerical results showing that for low birth rates the periodic
solution has total population average larger than that of the continuous solution,
while for large birth rates, the opposite happens. For the following examples, we
will use γ = 0.75, S1(J) = a1/(1 + k1J) and S2(A) = a2/(1 + k2A) where a1 = 0.1,
k1 = 0.01, a2 = 0.8, and k2 = 0.1. The initial conditions used are J(0) = 0 and
A(0) = 1. First, we let b = 2.5. Then for continuous breeding, we get R0 = 0.96 < 1,
hence the population goes to extinction as t →∞. For seasonal breeding, we get that
R̂0 = 1.06 > 1, thus the population persists. Therefore, seasonal breeding is clearly
advantageous for the low birth rate b = 2.5. In Figure 1, we let b = 3. In this case
both populations persist, but the seasonal reproduction strategy is advantageous as
it results in higher total population average for large t values. We then let b = 20 and
present the results in Figure 2. In this case continuous breeding is advantageous. In
Figure 3, we provide the bifurcation diagrams for the continuous and seasonal birth
rates (with the birth rate used as a bifurcation parameter). This diagram shows that
for the above choice of parameters the seasonal breeding is advantageous for birth
rates b in the (approximate) interval [2.35, 12] and deleterious for birth rates b > 12.

3.2 Length of breeding season effect

We want to understand how the length of breeding season influences the dynamics of
(2.1). Thus, for definiteness, we assume that the cycle length is one year divided into
p time units where the breeding season length is equal to one time unit. So, during
the p time units adults produce during one time unit and not produce for p− 1 time
units. Therefore, the birth rate function satisfies b(0) = 0, b(1) = 0, . . . , b(p−2) = 0,
b(p − 1) = b̂. For simplicity we assume throughout this section that γ = 1 in (2.1).

12
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Figure 1: A plot of the total population for the seasonal and continuous birth rates.
For seasonal birth rate, the cycle average is plotted.
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Figure 2: A plot of the total population for the seasonal and continuous birth rates.
For seasonal birth rate, the cycle average is plotted.
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Figure 3: Bifurcation diagrams for the continuous and seasonal birth rates. The
bifurcation diagram of the seasonal case is the cycle average of the total population.

Thus, following a similar approach as in Section 2, the net reproductive number can
be derived as follows: Let Ĝ = G1T

p−1 and T̂ = T p, where

T =

(
0 0
a1 a2

)
and G1 =

(
0 b̂
0 0

)
.

Then the inherent projection matrix over of full cycle composed of p time units can be
written as Ĝ+ T̂ . Thus, the net reproductive number is the positive strictly dominant
eigenvalue of Ĝ(I − T̂ )−1, which is given by

R̂0 =
b̂a1a

p−2
2

1− ap
2

.

Note that for p = 2, the net reproductive number reduces to the one discussed in
Section 2.2 (when γ = 1). Using similar arguments as before, one can show that if
R̂0 < 1, then the population goes to extinction. Letting b̂ = pb (so that each adult
produces pb juveniles in one year in both continuous and seasonal populations), and
comparing this to the continuous case, we see that if

1− ap
2

pap−2
2

< 1− a2, (3.1)

then there are values of b for which R̂0 > 1 while R0 < 1. If the opposite inequality
holds, then there are b values for which the continuously breeding population survives
while the one with seasonal breeding goes to extinction. Simple calculations reveal
that (3.1) holds for p = 2 only. Thus, for model (2.1) periods p > 2 (i.e., shorter
breeding season) result in disadvantage for low birth rates.
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4 Conclusion

In this paper, we develop and analyze a general discrete juvenile-adult population
model with time-dependent birth rate and nonlinear survivorship rates. We show that
the survival of a population with either continuous or seasonal breeding depends on
the inherent net reproductive number of the population, which is the expected number
of juvenile recruits per juvenile per life time. Although the inherent net reproductive
number is well-known for the continuous breeding case, we show that for the seasonal
breeding case with period 2 birth rate satisfying b(2t) = 0 and b(2t + 1) = b̂, the
inherent net reproductive number is the positive strictly dominant eigenvalue of the
matrix Ĝ(I − T̂ )−1 = G1T (I −T 2)−1. This form reflects the fact in order for an adult
to transition to the next cycle, it must survive two time units, hence the T 2. We
show that for continuous breeding, the model has a unique globally asymptotically
stable positive equilibrium provided the net reproductive number is larger than one.
If it is smaller than one, then the extinction equilibrium is globally asymptotically
stable. We also show that when breeding is seasonal, there exists a unique globally
asymptotically stable periodic solution provided the net reproductive number is larger
than one. When this value is less one, the population goes to extinction.

In section 3, we give conditions on the birth rate where the population with
seasonal breeding survives while that with continuous breeding becomes extinct. We
show that for low birth rates, seasonal breeding produces a total population average
larger than that of continuous breeding. This is due to the fact that the inherent net
reproductive number for seasonal breeding R̂0 with b̂ = 2b is larger than the inherent
net reproductive number for continuous breeding R0. So it is possible for low birth
rates b that continuous breeders become extinct while seasonal breeders survive. We
also show in section 3 that smaller γ values (i.e., longer juvenile stage) cause a shift in
the interval of birth rates b where seasonal breeding is advantageous to the right. This
is because for small γ values, there are less juveniles making the transition into the
adult stage in one time unit. Therefore for the population to persist, the birth rates
must be larger to compensate for the smaller fraction of juveniles making transition
to adults.
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Appendix

To establish local asymptotic stability of the period-2 solution in Theorem 2.2 (b) we
must show 1− det(D1) > 0 and tr(D1)− det(D1)− 1 < 0. After lengthy calculations
and combining like terms, we get 1 − det(D1) = (1) + (2) + (3) + (4) + (5) + (6) +
(7) + (8) + (9) + (10) > 0 where:

(1) = γ(1− γ)AbJS ′1S
′
2(Ŝ1 + Ŝ ′1Ĵ)

(2) = −(1− γ)2AJÂŜ ′2S
′
1S

′
2(Ŝ1 + Ŝ ′1Ĵ)
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(3) = γ(1− γ)bS2((Ŝ1 + Ŝ ′1Ĵ)(S1 + S ′1J) + S1Ŝ1)
(4) = γbS1(1− (1− γ)AS ′2(Ŝ1 + Ŝ ′1Ĵ))
(5) = −(1− γ)2AS ′2Ŝ2(Ŝ1 + Ŝ ′1Ĵ)(S1 + S ′1J)
(6) = −(1− γ)2JS2S

′
1(Ŝ1 + Ŝ ′1Ĵ)(Ŝ2 + Ŝ ′2Â)

(7) = −(1− γ)2ÂŜ ′2S1(Ŝ1 + Ŝ ′1Ĵ)(S2 + S ′2A)
(8) = Ŝ2S2(1− (1− γ)2S1Ŝ1)
(9) = (1− γ)2Ŝ1S1(1− Ŝ2S2)
(10) = −(1− γ)2Ŝ2S1S2Ĵ Ŝ ′1.

Also, we have that tr(D1)−det(D1)−1 = (11)+(12)+(13)+(14)+(15)+(16)+
(17) + (18) + (19) + (20) + (21) + (22) + (23) < 0 where:

(11) = γ(1− γ)AbŜ1S
′
2(S1 + S ′1J)

(12) = −(1− γ)2AJŜ1S
′
1S

′
2(Ŝ2 + Ŝ ′2Â)

(13) = γ(1− γ)bJS ′1S2(Ŝ1 + Ŝ ′1Ĵ)
(14) = −(1− γ)2JÂŜ ′2S

′
1S2(Ŝ1 + Ŝ ′1Ĵ)

(15) = γ(1− γ)bĴŜ ′1S1(S2 + S ′2A)
(16) = −(1− γ)2AĴŜ ′1Ŝ2S

′
2(S1 + S ′1J)

(17) = AŜ2S
′
2(1− (1− γ)2Ŝ1S1)

(18) = (1− γ)2Ŝ ′1S1(Ĵ − ĴS2Ŝ2)
(19) = (1− γ)2JS ′1(Ŝ1 + Ŝ ′1Ĵ)(1− S2Ŝ2)
(20) = ÂŜ ′2(S2 + S ′2A)(1− (1− γ)2S1(Ŝ1 + Ŝ ′1Ĵ))
(21) = bJγS ′1
(22) = γ(1− γ)AbJÂĴŜ ′1S

′
1S

′
2

(23) = −(1− γ)2AJÂĴŜ ′1Ŝ
′
2S

′
1S

′
2.

Thus, we have that E1 is locally asymptotically stable.
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