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Abstract

A general three stage discrete-time population model is studied. The inherent
net reproductive number for this model is derived. Global stability of the origin
is established provided that the inherent net reproductive number is less than
one. If it is larger than one the existence of a unique positive fixed point is
proved and the persistence of the system is established. Finally, for certain
parameter ranges global stability of the positive fixed point is proved.

1 Introduction

Linear and nonlinear matrix models have played a central role in understanding the
dynamics of many populations (see [5, 11] and the reference therein) including en-
dangered species [4], invasive species [19] and species with rich dynamical behavior.
A recent well-known such model, is the nonlinear discrete three-stage LPA model
developed in [7] to describe the dynamics of a flour beetle population. The nonlinear-
ities in this model account for the cannibalism of eggs by both larvae and adults and
the cannibalism of pupae by adults and are of the Ricker type [3, 5]. The resulting
deterministic model and its stochastic counterparts were very successful in predicting
experimentally observed dynamics of flour beetles including cyclic and chaotic behav-
ior [8, 9, 10, 13]. This work has enriched the literature with yet another example of
the predictive power of such models.

The purpose of this paper is to theoretically study a matrix model which describes
the dynamics of a general closed (no immigration or migration) population composed
of individuals having one of the following three-stages: 1) juveniles, 2) sexually im-
mature adults (nonbreeders), and 3) reproductive adults (breeders). In addition, it is
assumed that juveniles depend on different resources than adults. Thus, no competi-
tion for resources takes place between them. Such life history is typical of amphibians
where larvae which are called tadpoles metamorphose into adults, where the adults are
composed of sexually immature and mature individuals. Also, for many amphibians
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tadpoles are herbivorous, while adults are carnivorous. Thus, juveniles and adults
depend on different resources. A particular amphibian example which motivated this
theoretical study is the green tree frog (Hyla cinerea) which we have been monitoring
since 2004 [18].

Stage structured models similar to the one presented here have been applied re-
cently to describe the dynamics of amphibian populations [23]. The model presented
in [23] assumes that the population is divided into two stages, namely juveniles and
adults (where all adults are reproductive). In contrast with the three dimensional
matrix model considered here, such a simplifying assumption results in a two di-
mensional nonlinear matrix population model which is related to a general class of
juvenile-adult models studied recently in [12]. The model in [23] was applied to two
amphibian species Bufo boreas and Ambystoma macrodactylum with different repro-
ductive strategies (the former species has a clutch size more then 100 times larger the
latter one). Local stability of the interior equilibrium was established and elasticity
analysis was used to determine the most influential stage survival rate on amphibian
declines, a problem which was extensively discussed in [6, 22].

In contrast with a two dimensional counterpart, the (Beverton-Holt type) nonlin-
earities in the three dimensional model presented here -which are due to competition
between sexually mature and immature adults- generally lead to a non-monotone
discrete dynamical system. For monotone systems, global stability can often be es-
tablished, thanks to the availability of a well-developed theory, see [20] and cited
references therein for a review. Non-monotone systems on the other hand lack a sim-
ilar theory, and their global stability analysis is therefore usually more complicated.
Our approach will be as follows. We first note that for a particular choice of some
of the parameters in the model, the system is monotone, and global stability can be
established. Secondly, we show that when the parameters are perturbed slightly away
from their above critical values, global stability is preserved despite the fact that the
perturbation destroys monotonicity of the model.

This paper is organized as follows. In section 2 we present the discrete model.
In section 3 we prove persistence for the general model and provide an existence-
uniqueness result for an interior fixed point. In sections 4 and 5 we establish global
stability results for special cases of the model. Finally, concluding remarks are pro-
vided in section 6.

2 The discrete model

As mentioned above, the discrete model we consider describes the dynamics of a
population divided into three stages where juveniles compete for one resource while
nonbreeders and breeders compete for another. The model is given by the following
system of difference equations:

J(t + 1) = bB(t) + (1− γ1)s1(J(t))J(t)
N(t + 1) = γ1s1(J(t))J(t) + (1− γ2)s2(N(t) + B(t))N(t)
B(t + 1) = γ2s2(N(t) + B(t))N(t) + s2(N(t) + B(t))B(t).

(1)
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The state variables J(t), N(t), B(t) represent the number of juveniles, non-breeders
and breeders, respectively, at time t. The parameter b > 0 is the birth rate, while
γ1, γ2 ∈ (0, 1] represent the fraction (in one time unit) of juveniles that become non-
breeders and non-breeders that become breeders, respectively. The functions s1 and
s2 are the survivorship functions of juveniles (tadpoles) and non-breeders/breeders
(adults), respectively. We assume that si, i = 1, 2, satisfy the following assumption:

(Σ1) si ∈ C1[0,∞), si(0) = ai, 0 < ai < 1,
d

dz
si(z) < 0,

d

dz
(si(z)z) > 0, lim

z→∞
si(z) =

0, and lim
z→∞

si(z)z = âi < ∞ for i = 1, 2.

The assumption (Σ1) is satisfied, for example, by the following Beverton-Holt func-
tion:

si(z) =
ai

1 + kiz
, i = 1, 2.

The above difference equation system (1) can be written in the following matrix
form:

x(t + 1) = A(x(t))x(t) (2)

where x(t) = (J(t), N(t), B(t))T and the projection matrix A has the form:

A(x) =




(1− γ1)s1(J) 0 b
γ1s1(J) (1− γ2)s2(N + B) 0

0 γ2s2(N + B) s2(N + B)


 .

Note that
x ≤ y, implies A(y) ≤ A(x). (3)

3 Existence-uniqueness of interior fixed point and

persistence

In this section we prove the existence of a unique interior fixed point for the model
(1) and show that the system is persistent. We first begin by finding the inherent net
reproductive number. To this end, following [5, 11] we let

G =




(1− γ1)a1 0 0
γ1a1 (1− γ2)a2 0

0 γ2a2 a2




and

F =




0 0 b
0 0 0
0 0 0


 .

Note that the inherent projection matrix of the nonlinear system

A(0) =




(1− γ1)a1 0 b
γ1a1 (1− γ2)a2 0

0 γ2a2 a2


 = F + G.
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Thus, the inherent net reproductive number R0 is the positive, simple and strictly
dominant eigenvalue of F (I −G)−1. Simple calculations show that

R0 =
bγ1γ2a1a2

(1− (1− γ1)a1)(1− (1− γ2)a2)(1− a2)
. (4)

When necessary we will use the notation A(0, (γ1, γ2)) and R0(γ1, γ2) to indicate the
dependency of A(0) and R0 on γ1 and γ2. We now have the following result:

Lemma 1. Suppose R0(γ1, γ2) < 1 then the origin E0 = (0, 0, 0) is a globally asymp-
totically stable fixed point of system (1).

Proof. Since the inherent projection matrix, A(0), of system (2) is nonnegative, ir-
reducible and primitive, it has a positive, simple and strictly dominant eigenvalue r.
Furthermore, since R0 < 1 it follows from [11] (Theorem 1.1.3, page 10) that r < 1 and
lim
t→∞

At(0) = 0. Now, for any x(0) we have that 0 ≤ x(1) = A(x(0))x(0) ≤ A(0)x(0)

by (3), and repeating this we get that 0 ≤ x(t) ≤ At(0)x(0). Since At(x(0))x(0)
converges to 0 as t →∞, the conclusion follows.

We now establish the existence and uniqueness of an interior fixed point as follows:

Theorem 1. Suppose R0(γ1, γ2) > 1 then (1) has a unique interior fixed point E∗ =
(J∗, N∗, B∗).

Proof. A positive fixed point of (1) is a point (J∗, N∗, B∗) ∈ int(R3
+) that satisfies

J = bB + (1− γ1)s1(J)J
N = γ1s1(J)J + (1− γ2)s2(N + B)N
B = γ2s2(N + B)N + s2(N + B)B.

(5)

From the first equation in (5) we get:

h(J) := (1− (1− γ1)s1(J))J = bB.

It is easy to see that h′(J) > 0, h(0) = 0, and limJ→∞ h(J) = ∞. Thus, h :
[0,∞) → [0,∞) is one to one and onto. Therefore, J(B) = h−1(bB). Furthermore,
limB→∞ J(B) = ∞, J(0) = 0 and J ′(B) > 0. Observe also that

J =
bB

1− (1− γ1)s1(J)
. (6)

Now letting W = N +B and adding the second and the third equations of (5) we get

W = N + B = γ1s1(J)J + s2(N + B)(N + B) = γ1s1(J)J + s2(W )W.

Thus,
h̃(W ) := (1− s2(W ))W = γ1s1(J)J.
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Therefore, noticing that h̃′(W ) > 0 by (Σ1), and arguing as above we get that W
can be solved as a function of B. In particular, W (B) = h̃−1(γ1s1(J(B))J(B)) and
W (0) = 0. Furthermore, using (Σ1) once again it follows by implicit differentiation
that W ′(B) > 0.

Using the notation s1(J) = s1 and s2(W ) = s2 we get from adding the second and
third equations of (5)

N(1− s2) = γ1s1J + (s2 − 1)B.

Solving for N yields

N =
γ1s1J + (s2 − 1)B

1− s2

. (7)

Plugging the equations (6) and (7) for J and N into the B equation of (5) results in

B =
γ1γ2s1s2bB

(1− s2)(1− (1− γ1)s1)
+ (1− γ2)s2B

Since we are interested in the existence and uniqueness of a positive equilibrium
dividing by B we obtain:

1 =
γ1γ2s1s2b

(1− s2)(1− (1− γ1)s1)
+ (1− γ2)s2.

This is equivalent to

1 = γ1γ2s1s2b + (1− γ1)s1(1− s2) + s2 + (1− γ2)s2(1− s2)(1− (1− γ1)s1)

= Ĥ(J(B),W (B))) := H(B).
(8)

Clearly, any interior equilibrium must satisfy (8).
Now differentiating H(B) with respect to B we see that

H ′ = γ1γ2s
′
1J

′s2b + γ1γ2s1s
′
2W

′b + s′1J
′(1− s2)(1− γ1)− s′2W

′(1− γ1)s1 + s′2W
′

+(1− γ2)s
′
2W

′(1− s2)(1− (1− γ1)s1))− (1− γ2)s2s
′
2W

′(1− (1− γ1)s1))

−(1− γ2)s2(1− s2)(1− γ1)s
′
1J

′

= γ1γ2s
′
1J

′s2b + γ1γ2s1s
′
2W

′b + s′1J
′(1− γ1)(1− s2)(1− (1− γ2)s2)

+s′2W
′(1− (1− γ1)s1)− (1− γ2)s

′
2W

′s2(1− (1− γ1)s1)

+(1− γ2)s
′
2W

′(1− s2)(1− (1− γ1)s1)

= γ1γ2s
′
1J

′s2b + γ1γ2s1s
′
2W

′b + s′1J
′(1− γ1)(1− s2)(1− (1− γ2)s2)

+s′2W
′(1− (1− γ1)s1)(1− (1− γ2)s2) + (1− γ2)s

′
2W

′(1− s2)(1− (1− γ1)s1) < 0,
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since J ′ > 0, W ′ > 0 and s′i < 0, i = 1, 2. Therefore, H is a decreasing function. Also
note that limB→∞ H(B) = 0. Thus, it follows that if H(0) > 1 then there exists a
unique B∗ such that 1 = H(B∗). (Clearly, H(0) > 1 is equivalent to R0(γ1, γ2) > 1).
From this and the above established relations between W , J and B it follows that
there exists a unique interior equilibrium E∗ = (J∗, N∗, B∗).

The next result establishes boundedness of solutions uniformly in the parameters.

Lemma 2. There is a compact set K ⊂ R3
+ such that every forward solution sequence

of (1) enters K in at most 2 time steps, and remains in K forever after.

Proof. It is clear that R3
+ is forward invariant. Consider now the dynamics of W (t +

1) = N(t + 1) + B(t + 1) then from (Σ1) we have

W (t + 1) = γ1s1(J(t))J(t) + s2(W (t))W (t) ≤ γ1â1 + â2 ≤ â1 + â2, ∀t = 0, 1, . . . ,

so that in particular

N(t), B(t) ≤ â1 + â2, ∀t = 1, 2, . . .

Therefore
J(t + 1) ≤ b(â1 + â2) + (1− γ1)â1, ∀t = 1, 2, . . . ,

hence
J(t) ≤ (b + 1)â1 + bâ2, ∀t = 2, 3, . . .

The conclusion of the lemma follows by defining

K = {(J,N, B) ∈ R3
+ |J ∈ [0, (b + 1)â1 + bâ2], N, B ∈ [0, â1 + â2] }.

Next we show that if the net reproductive number is greater than one then the
origin is unstable and system (1) is uniformly persistent.

Theorem 2. Suppose R0(γ1, γ2) > 1, then (1) has an unstable fixed point at the
origin. Moreover, it is uniformly persistent.

Proof. Since R0(γ1, γ2) > 1 it follows from Theorem 1.1.3 in [11] that A(0) has a
positive strictly dominant eigenvalue r > 1. This shows that the origin is unstable.
Uniform persistence will follow from an application of Theorem 4.1 in [16]. Using the
notation of that paper we let H = R3

+, Y = bd(R3
+), and f denote the map on the

right hand side of (1). Then clearly f(H \ Y) ⊂ H \ Y since int(R3
+) is positively

invariant for the system (1). By Theorem 2.1 in [15] and using Lemma 2, it follows
that there exists a global attractor X in H. Let M be the maximal compact invariant
set in Y . Here, M = {(0, 0, 0)}. Uniform persistence follows if we can prove that

1. M is isolated in X.

2. W s(M) ⊂ Y ,
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where W s(M), the stable set of M , denotes the set of points whose solution sequence
for (1) converges to M . In fact, we will prove the stronger result that M is a repeller
which by Theorem 2.1 in [16] is equivalent to showing

1. M is isolated in H.

2. W s(M) ⊂ M .

To prove that M is a repeller we will construct a continuous function P : R3
+ → R+

which is 0 on M . Furthermore, there is a neighborhood U of M such that for all
x ∈ U \ M , there exists a t > 0 where P (f t(x)) > P (x). Let us now construct P .
Since A(0) is non-negative and irreducible, its dominant eigenvalue r (which is larger
than 1) has a corresponding left eigenvector p > 0, i.e.,

p′A(0) = rp′.

Pick r∗ ∈ (1, r) such that p′A(0)− r∗p′ > 0. Then by continuity of A(x), there exists
a neighborhood U of M in H such that

p′A(x)− r∗p′ > 0.

Define P : R3
+ → R+ as follows:

P (x) = p′x.

Then P (x) = 0 for x ∈ U iff x ∈ M , and positive elsewhere in U . Moreover,

P (f(x)) = p′A(x)x > r∗p′x > P (x), ∀x ∈ U \M.

This establishes that system (1) uniformly persistent, i.e. there is some η > 0 such
that lim inft→∞ J(t), N(t), B(t) ≥ η for all nonzero orbits in R3

+.

4 Global stability for the case γ1 = γ2 = 1

Throughout this section we assume that γ1 = γ2 = 1. We begin by establishing a
convergence result for monotone maps. Consider a map T : Rn → Rn. We say that
T is monotone if x ≤ y implies that T (x) ≤ T (y). Here, x ≤ y denotes the usual,
componentwise partial order on Rn.

Lemma 3. Let T : Rn → Rn be a continuous, monotone map and a ≤ b be points
in Rn. If a ≤ T (a) and T (b) ≤ b, and if T has a unique fixed point x∗ in the order
interval [a, b] := {x ∈ Rn | a ≤ x ≤ b}, then every solution sequence of the discrete
system

x(t + 1) = T (x(t)), (9)

starting in [a, b], converges to x∗.
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Proof. Note that the assumptions on T imply that

a ≤ T (a) ≤ T (b) ≤ b,

so by induction the solutions sequences starting in a and b are non-decreasing and
non-increasing respectively. Since they also remain in the compact set [a, b], they
must converge, and since T is continuous, the limits must be fixed points of T in
[a, b]. As there is only one fixed point x∗ in [a, b], both limits are the same and equal
to x∗. Now for an arbitrary x ∈ [a, b], we have that a ≤ x ≤ b, hence monotonicity
of T implies that T k(a) ≤ T k(x) ≤ T k(b) for all k = 1, 2, . . . . This, and the fact that
T k(a), T k(b) → x∗ as k →∞, implies that T k(x) → x∗, concluding the proof.

The inherent net reproductive number for the case γ1 = γ2 = 1 is given by

R0(1, 1) =
ba1a2

1− a2

. (10)

If R0 > 1 then by Theorem 1 there exists a unique positive equilibrium E∗ =
(J∗, N∗, B∗) where B∗ solves (8) (see proof of Theorem 1) which here simplifies to

1 = bs2(s1(bB)bB + B)s1(bB) + s2(s1(bB)bB + B), (11)

J∗ = bB∗, and N∗ = s1(J
∗)J∗. We sometimes write E∗(1, 1) to denote the unique

positive fixed point for the case γ1 = γ2 = 1.

Lemma 4. Let R0(1, 1) =
ba1a2

1− a2

> 1. Then, the unique positive fixed point E∗(1, 1) =

(J∗(1, 1), N∗(1, 1), B∗(1, 1)) of system (1) is locally asymptotically stable.

Proof. Let W ∗ = N∗ + B∗. The linearized system at (J∗, N∗, B∗) has the following
coefficient matrix:

A∗ =




0 0 b
A∗

21 0 0
0 A∗

32 A∗
33


 ,

where A∗
21 = s′1(J

∗)J∗+s1(J
∗), and A∗

32 = A∗
33 = s′2(W

∗)W ∗+s2(W
∗). The character-

istic polynomial associated with this matrix is given by Q(s) = s3−A∗
33s

2−bA∗
21A

∗
32 =

0. In the following we shall verify that the following three Jury conditions [3] hold
and conclude that the roots of this polynomial have magnitude less then 1:

1) Q(1) > 0, 2) Q(−1) < 0, and 3) 1− b2(A∗
21)

2(A∗
32)

2 − |bA∗
33A

∗
21A

∗
32| > 0.

To this end, observe that A∗
21 > 0, A∗

32 > 0, and A∗
33 > 0 by our assumption (Σ1).

Since B∗ satisfies (11), J∗ = bB∗, and N∗ = s1(J
∗)J∗, we have by (11) that

1 = bs2(W
∗)s1(J

∗) + s2(W
∗). (12)

Substituting the above expression of 1 in Q(1) = 1− A∗
33 − bA∗

21A
∗
32 yields

Q(1) = −s′2(W
∗)W ∗ − bs′1(J

∗)J∗s2(W
∗)− bs′2(W

∗)W ∗[s′1(J
∗)J∗ + s1(J

∗)] > 0.
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It is also clear that
Q(−1) = −1− A∗

33 − bA∗
21A

∗
32 < 0

as A∗
21 > 0, A∗

32 > 0, and A∗
33 > 0. We proceed to verify the last inequality 1 −

b2(A∗
21)

2(A∗
32)

2 − |bA∗
33A

∗
21A

∗
32| > 0, which is equivalent to ξ := 1 − b2(A∗

21)
2(A∗

32)
2 −

bA∗
21A

∗
32A

∗
33 > 0. For notational convenience, we rewrite s1(J

∗) by s1 and s2(W
∗) by

s2. Replacing 1 by the square of the right hand side of (11), i.e.,

1 = b2s2
1s

2
2 + 2bs1s

2
2 + s2

2,

then
ξ = b2s2

1s
2
2 + 2bs1s

2
2 + s2

2 − b2(A∗
21)

2(A∗
32)

2 − bA∗
21A

∗
32A

∗
33. (13)

Notice b2s2
1s

2
2 − b2(A∗

21)
2(A∗

32)
2 = [bs1s2 + bA∗

21A
∗
32][bs1s2 − bA∗

21A
∗
32], where bs1s2 +

bA∗
21A

∗
32 > 0, and bs1s2−bA∗

21A
∗
32 = −bs′1J

∗(s′2W
∗+s2)−bs1s

′
2W

∗ > 0. Furthermore,

2bs1s
2
2 + s2

2 − bA∗
21A

∗
32A

∗
33 = 2bs1s

2
2 + s2

2 − bA∗
21A

∗
32s

′
2W

∗ − bA∗
21A

∗
32s2

> 2bs1s
2
2 + s2

2 − bA∗
21A

∗
32s2 = 2bs1s

2
2 − b(s′1J

∗ + s1)(s
′
2W

∗ + s2)s2

= 2bs1s
2
2 + s2

2 − bs′1s
′
2J

∗W ∗s2 − bs′1J
∗s2

2 − bs1s
′
2W

∗s2 − bs1s
2
2

> bs1s
2
2 + s2

2 − bs′1s
′
2J

∗W ∗s2 − bs′1J
∗s2

2

= bs1s
2
2 + s2

2 − bs′1s2J
∗[s′2W

∗ + s2] > 0.

Thus, ξ > 0. This completes the proof that E∗ is locally asymptotically stable.

Next we prove that if the net reproductive number is larger than one then the
unique positive fixed point is globally attractive.

Theorem 3. Suppose that R0(1, 1) =
ba1a2

1− a2

> 1. Then every solution of (1) starting

in R3
+ \ {(0, 0, 0)} converges to E∗(1, 1) = (J∗(1, 1), N∗(1, 1), B∗(1, 1)).

Proof. Notice that every solution starting on the boundary of R3
+, but not in (0, 0, 0)

enters the positively invariant set int(R3
+) in at most 2 time steps, so it is enough

to establish the lemma for solutions in int(R3
+). Pick x(0) = (J(0), N(0), B(0)) ∈

int(R3
+). In fact, by Lemma 2 it suffices to consider x(0) ∈ int(R3

+) ∩K. The unique
positive fixed point E∗ = (J∗, N∗, B∗) clearly belongs to K. Define b := sup K (this
is the maximal element in K). Then again by Lemma 2 we have that T (b) ≤ b
(where T (x) denotes the right hand side of (1), which is clearly monotone since
DT (x) is a nonnegative matrix for all x). Since A(0) is an irreducible non-negative
matrix, its spectral radius r (which we know is larger than 1) is an eigenvalue with a
corresponding positive eigenvector v:

A(0)v = rv.

In addition, for all ε > 0 sufficiently small, there holds that

T (εv) = rεv + o(ε) ≥ εv,

since r > 1. Now for a given x(0) in int(R3
+) ∩ K, we can pick a sufficiently small

ε > 0 such that
a := εv ≤ x(0) and a ≤ T (a).

The conclusion now follows from an application of Lemma 3.
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The global asymptotic stability of the unique interior fixed point (J∗, N∗, B∗)
follows from Theorem 3 and Lemma 4 (local asymptotic stability and global attrac-
tivity).

5 Global stability results for a perturbation around

γ1 = γ2 = 1

We start with an auxiliary result that establishes that the origin is a repeller for (1),
uniform in the parameters.

Lemma 5. Let R0(1, 1) =
ba1a2

1− a2

> 1. Then the fixed point at the origin for system

(1) is a repeller, uniform in the parameter γ = (γ1, γ2), near (1, 1). More precisely,
there is an open neighborhood N0 of 0 in R3

+, and constants gi ∈ (0, 1), i = 1, 2, such
that for every x(0) 6= 0 and every γ ∈ [g1, 1]× [g2, 1], there is some t̄ = t̄(x(0), γ) ≥ 0
such that

T t
γ(x(0)) /∈ N0, ∀t ≥ t̄,

where x(t) = (J(t), N(t), B(t)), and Tγ(x(t)) denotes the right hand side of system
(1).

Proof. The proof will follow from an application of a result due to Fonda -see Corollary
2.2 in [16]- applied to the following extended system.

J(t + 1) = bB(t) + (1− γ1(t))s1(J(t))J(t)
N(t + 1) = γ1(t)s1(J(t))J(t) + (1− γ2(t))s2(N(t) + B(t))N(t)
B(t + 1) = γ2(t)s2(N(t) + B(t))N(t) + s2(N(t) + B(t))B(t)
γ(t + 1) = γ(t).

(14)

Obviously all solution sequences of (1) can be embedded in solution sequences of (14).
Notice that the right hand side of this system can be rewritten in pseudo-linear form:

(
A(x(t), γ(t)) 0

0 I2

)(
x(t)
γ(t)

)

with

A(x, γ) =




(1− γ1)s1(J) 0 b
γ1s1(J) (1− γ2)s2(N + B) 0

0 γ2s2(N + B) s2(N + B)


 .

Let’s reconsider A(0, (1, 1)) (which is equal to the matrix A(0) above), which has
a spectral radius r > 1 by our assumption. Since this matrix is nonnegative and
irreducible, there is a vector p > 0 such that p′A(0, (1, 1)) = rp′. Consequently, there
is some r∗ ∈ (1, r) such that p′A(0, (1, 1))−r∗p′ > 0. In fact, by continuity of A(x, γ),
there are ε > 0 and fi ∈ (0, 1) such that

p′A(x, γ)− r∗p′ > 0, ∀x ∈ B+
ε (0), ∀γ ∈ (f1, 1]× (f2, 1],
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where B+
ε (0) := {x ∈ R3

+ | |x| < ε}. Let gi = (fi + 1)/2 for i = 1, 2, set z = (x, γ),
and let Z := R3

+× [g1, 1]× [g2, 1]. Then Z is invariant for system (14), and we restrict
the dynamics to Z henceforth. Define the continuous function P : Z → R+ as follows

P (z) = p′x.

Let M := {(0, 0, 0)} × [g1, 1]× [g2, 1]. Then clearly M is compact and invariant, and
Z \M is positively invariant for (14). Moreover P (z) = 0 iff z ∈ M . Finally, observe
that (we slightly abuse notation by also denoting the right hand side of (14) by T ),

P (T (z)) = p′A(z)x > r∗p′x > P (z), ∀z ∈ U \M,

where
U := B+

ε (0)× [g1, 1]× [g2, 1]

is a neighborhood of M in Z. Therefore, all conditions of Corollary 2.2 in [16] hold,
and hence M is a repellor for (14). This concludes the proof of this Lemma.

Theorem 4. Let R0(1, 1) =
ba1a2

1− a2

> 1. Then there is a continuous map E∗ : Γ →
int(R3

+) with Γ = (γl
1, 1] × (γl

2, 1] for some γl
i ∈ (0, 1), i = 1, 2 and E∗(γ1, γ2) =

(J∗(γ1, γ2), N
∗(γ1, γ2), B

∗(γ1, γ2)) is locally asymptotically stable and globally attrac-
tive fixed point of (1) with respect to nonzero initial conditions.

Proof. The proof follows from an application of Theorem 2.1 in [21]. Using the
notation from that theorem, we let X = R3

+, U = R3
+ \ {(0, 0, 0)}, Λ = [g1, 1]× [g2, 1]

(see Lemma 5), λ0 = (1, 1) and x0 = (J∗, N∗, B∗). Clearly, all the needed smoothness
requirements hold. The conditions on the unperturbed map follow from Lemma 4
(locally asymptotically stable positive fixed point) and Lemma 3 (globally attractive
positive fixed point). Condition (H1) in that paper holds by setting for all λ ∈ Λ,
Bλ = K∩(R3

+\N0), where K follows from Lemma 2 andN0 from Lemma 5. Condition
(H2) holds by the compactness of Bλ and by Lemma 5. This concludes the proof.

6 Concluding remarks

In this paper we have studied a three-stage structured population model. We have
established persistence results for the full model and global stability of the positive
fixed point only for γ1 and γ2 in an interval near one. The global attractivity result
given in Theorem 3 can be extended to the case where γ1 ∈ (0, 1] and γ2 = 1, since
in this case the map defined by the right hand side of (1) is still monotone. The
main difficulty in studying the global attractivity of the positive fixed point for the
full model (1) is that the nonlinear map governing the system is not monotone when
0 < γ2 < 1. Thus, the theory developed for monotone systems (see for example,
[14, 20]) and used to study global attractivity of other stage structured models (e.g.,
[1, 2, 17]) does not apply. Currently, no proof of global convergence to the unique
positive fixed point is known in case γ1, γ2 ∈ (0, 1] when the inherent net reproductive
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number R0(γ1, γ2) is larger than one, although a large number of simulations we
performed suggest that this might be the case.

We remark that the results in sections 3-5 can be extended to the following system
of difference equations:

J(t + 1) = bB(t) + (1− γ1)s1(J(t))J(t)
N(t + 1) = γ1s1(J(t))J(t) + (1− γ2)s2(N(t) + B(t))N(t)
B(t + 1) = γ2s2(N(t) + B(t))N(t) + s3(N(t) + B(t))B(t),

(15)

where si, i = 1, 2, 3 satisfy (Σ1), provided that the following assumption holds:

(Σ2) 0 < s2(0) ≤ s3(0) < 1 and s′2(x) ≤ s′3(x) for x ∈ (0,∞).

Clearly assumption (Σ2) implies that s2(x) ≤ s3(x) for x ∈ [0,∞), which states that
the survivorship of an individual in the nonbreeding stage is at most as high as that
of an individual in the breeding stage. This may happen, for instance, if the older
reproductive individuals (in comparison with newly metamorphosed juveniles) are
better at avoiding predators (perhaps due to their larger size and stronger muscles,
ability to move faster, or knowledge of predator locations), hence, increasing their
chance of survival. Furthermore, individuals in the nonbreeding stage may suffer
more severe density effects than individuals in the breeding stage, due to breeders
being better competitors for food/resources than nonbreeders.

Similarly, the results in sections 3-5 can also be extended to the case where non-
breeders are better competitors than breeders, and instead of (Σ2) the following
condition is satisfied by si, i = 2, 3:

(Σ3) 0 < s3(0) ≤ s2(0) < 1 and s′3(x) ≤ s′2(x) for x ∈ (0,∞),

which implies that s3(x) ≤ s2(x) for x ∈ [0,∞). Such a scenario may occur because
reproduction requires the expenditure of immense amounts of energy leaving repro-
ductive individuals more vulnerable to environmental conditions in comparison with
nonreproductive adults and hence reducing their survival chances .

The proof of Theorem 1 changes slightly and only requires that (Σ1) holds ((Σ2)
or (Σ3) are not needed here). But (Σ1) together with either (Σ2) or (Σ3) are required
to establish monotonicity of system (15) for the case γ1 ∈ (0, 1] and γ2 = 1. We defer
the details to the Appendix.

We conclude this paper by pointing out that frogs reproduce seasonally. Thus, the
birth rate is generally described by a periodic function which is positive during the
reproduction season and zero otherwise. This results in a non-autonomous version of
(1) where b is replaced with b(t). Our future efforts will focus on studying the long
term behavior of solutions to (1) with a periodic birth rate of this form.
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tional Science Foundation under grants DUE-0531915 and DMS-0718465. The re-
search of P. De Leenheer is supported in part by the National Science Foundation
under grant DMS-0614651.
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Appendix

First notice that for (15) the inherent net reproductive number changes to

R0(γ1, γ2) :=
bγ1γ2a1a2

(1− (1− γ1)a1)(1− (1− γ2)a2)(1− a3)
. (16)

Theorem 5. Let (Σ1) hold for i = 1, 2, 3. Suppose R0(γ1, γ2) > 1 then (15) has a
unique interior fixed point E∗ = (J∗, N∗, B∗).

Proof. A positive fixed point of (1) is a point (J∗, N∗, B∗) ∈ int(R3
+) that satisfies

J = bB + (1− γ1)s1(J)J
N = γ1s1(J)J + (1− γ2)s2(N + B)N
B = γ2s2(N + B)N + s3(N + B)B.

(17)

From the first equation in (17) we get:

h(J) := (1− (1− γ1)s1(J))J = bB.

Arguing as in the proof of Theorem 1, we have J(B) = h−1(bB) where limB→∞ J(B) =
∞, J(0) = 0 and J ′(B) > 0. Observe also that

J(B) =
bB

1− (1− γ1)s1(J(B))
. (18)

Define W = N + B and solve the second equation of (15) for N :

N(W,B) =
γ1s1(J(B))J(B)

1− (1− γ2)s2(W )
. (19)

Thus, adding the second and the third equations of (17) we get

W = γ1s1(J)J + s2(W )N + s3B.

Then

h̃(W,B) := W − s2(W )N(W,B)− s3(W )B − γ1s1(J(B))J(B) = 0,

and notice that h̃(0, 0) = 0. Now

h̃W = 1− s′2(W )N(W,B)− s2(W )NW (W,B)− s′3(W )B

and

h̃B = −s2(W )NB(W,B)− s3(W )− γ1s
′
1(J(B))J ′(B)J(B)− γ1s1(J(B))J ′(B).

From (19) it follows that NW (W,B) < 0 and NB(W,B) > 0 for any (W,B) > 0.
Thus, h̃W > 0 and h̃B < 0. Now, applying the Implicit Function Theorem we get
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that there is a smooth W (B) with W (0) = 0, h̃(W (B), B) = 0 and W ′(B) > 0 for all
B > 0.

Plugging the equations (18) and (19) for J and N into the B equation of (17)
results in

B =
γ1γ2s1s2bB

(1− (1− γ1)s1)(1− (1− γ2)s2)
+ s3B

As we are interested in a positive fixed point dividing by B we obtain:

1 =
γ1γ2s1s2b

(1− (1− γ1)s1)(1− (1− γ2)s2)
+ s3.

This is equivalent to

1 = γ1γ2s1s2b + (1− γ1)s1 + (1− γ2)s2(1− (1− γ1)s1)

+s3(1− (1− γ1)s1)(1− (1− γ2)s2)

= Ĥ(J(B),W (B))) := H(B).

(20)

It clear that any interior equilibrium must satisfy (20).
Now differentiating H(B) with respect to B and using the positivity of W ′ and J ′

together with a similar calculation as in the proof of Theorem 1 we get H ′ < 0 . Also
note that limB→∞ H(B) = 0. Thus, it follows that if H(0) > 1 then there exists a
unique B∗ such that 1 = H(B∗). (Clearly, H(0) > 1 is equivalent to R0(γ1, γ2) > 1).
From this and the above established relations between W , J and B it follows that
there exists a unique interior equilibrium E∗ = (J∗, N∗, B∗).

Finally, it is not difficult to show that if γ1 ∈ (0, 1] and γ2 = 1, then system (15)
is monotone provided that (Σ2) or (Σ3) holds.
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