5: Uniform Series

- Cash flows of uniform series
 - Equal
 - Occur each compounding period
- Also known as *annuities*, even if not yearly
- Use one series factor instead of several single payment factors

5.1 Compound Amounts

- Two situations
 - Given the cash flows, determine the compound amount
 - Given the compound amount, determine the cash flows

Uniform Series Compound Amount Factor

\[
E_S = U \left(F \mid A, i, s-r \right)
\]

\[
E_S = U \left(F \mid A, 1/2\%, 36-0 \right) = 7,867.22
\]

Example 5.1 Uniform Series CA

- Purchase a car in 3 years
 - Save $200 per month
 - 36 end-of-month deposits
 - \(i = 1/2 \% \) per month
- Amount in savings
 - \(E_{36} = 7,867.22 = 200 \left(F \mid A, 1/2\%, 36-0 \right) \)

Example 5.2 Delayed CA

- 36 deposits of $200 at 1/2\% / mo
 - Beginning-of-month deposits
 - Savings at \(t = 36 \) and \(t = 48 \)?
 - CA must be at time of last flow to use \(F \mid A \), so multi-step problem
First Determine \(E_{35} \)
\[
E_{35} = \$7,867.22 = 200 \left(\frac{F}{A}, 1/2\%, 35 - (-1) \right)
\]
- Have $7,867.22 in savings at \(t = 35 \)
 - No longer need original cash flows

Then Other Equivalents
\[
E_{36} = \$7,906.56 = E_{35} \left(\frac{F}{P}, 1/2\%, 36 - 35 \right)
\]
\[
E_{48} = \$8,394.32 = E_{35} \left(\frac{F}{P}, 1/2\%, 48 - 35 \right)
\]

Sinking Funds
- Equal deposits to accumulate a given CA
 - Given CA, find prior flows
 - Relationship of CA to its prior deposits known from \(F/A \)
 \[
 CA = US \times \left[\frac{(\gamma^s - r - 1)}{i} \right]
 \]
 \[
 US = CA \times \left[\frac{i}{(\gamma^s - r - 1)} \right]
 \]
 \[
 E_U = c_s \left(\frac{A}{F}, i, s-r \right)
 \]

Observations
- Sinking fund factor also known as “\(A|F \)”
 - Find prior annuity given future CA, interest rate, and number of payments
 \[
 E_U = c_s \left(A|F, i, s-r \right)
 \]

Example 5.3 End-of-Month Sinking Fund
- Want $10,000 for car in 3 years
 - 36 end-of-month deposits
 - \(i = 1/2 \% / \text{mo} \)
 - Amount of each deposit?
 \[
 E_U = \$254.22 = 10,000 \left(\frac{A}{F}, 1/2\%, 36-0 \right)
 \]

Different Diagrams – Same Meaning
- Preceding diagram shows equivalents
 - Dashed, same direction
- Could show deposit flows
 - Solid lines
 - Depositor’s viewpoint
 - Deposits flow from
 - Withdrawal flows to
Example 5.4 Beginning-of-Month Sinking Fund

- Still make 36 deposits at 1/2 % per month
 - Beginning-of-month
- Need CA at \(t = 35 \) to use \(A|F \)

So ask, “How much is needed at time 35 to have $10,000 at time 36?”

If diagram does not exactly match diagram used to derive factor, then multi-step problem!

First Step

- Amount necessary at \(t = 35 \) to have $10,000 at \(t = 36 \) is its discounted amount

\[
E_{35} = $9,950.25 = 10,000 \ (P \mid F, \frac{1}{2}\%, \ 36-35)
\]

Second Step

- What deposits at 0, 1, 2, …, 35 compound to \(E_{35} = $9,950.25 \)?

\[
E_U = $252.95 = E_{35} \ (A \mid F, \frac{1}{2}\%, \ 35 – (-1))
\]

Challenges

- Position of equivalents
- Fourth parameter

5.2 Discounted Amounts

- Two situations
 - Given the cash flows, determine the discounted amount
 - Given the discounted amount, determine the cash flows

Uniform Series DA Factor

\[
E_r = U(P \mid A, i, s-r)
\]

\[
E_r = U\gamma^{-r} (r + 1 - r) + U\gamma^{-r} (r + 2 - r) + \ldots + U\gamma^{-s-r}
\]

\[
E_r = U \left[\gamma^{-1} + \gamma^{-2} + \ldots + \gamma^{-(s-r)} \right]
\]

\[
E_r = U \left[1 – (1+i)^{-(s-r)} \right] / i
\]

\[
E_r = U(P/A, i, s-r)
\]
Observations

- \(E_r = U(P | A, i, s-r) \)
- Number of flows = Last – One Before
- Uniform series discounted amount factor
- “\(P | A \)” since looking for prior given annuity

Example 5.5 Uniform Series DA

- **Borrow for car**
 - Afford $200 / mo
 - 36 end-of-month payments
 - \(i = 3/4\% / \text{mo} \)
- **How much car?**
 - Amount loaned = Discounted payments
 - \(E_0 = 6,289.36 = 200(P | A, 3/4\%, 36-0) \)
 - Have $1,577.86 \((7,867.22 - 6,289.36) \) more for car by saving $200 / mo instead

Example 5.6 DA with Delayed Series

- **Still 36 notes of $200 at 3/4\% / \text{mo}**
 - Delay for 12 months
- **Determine amount borrowed**
 - \(P / A \) requires equivalent to be before first cash flow, so multi-step problem
- **First Step**
 - What must the debt be at \(t = 12 \) to require payments of $200?
 - Time 12 chosen so that \(P | A \) can be used
 - One period before first flow!
 - \(E_{12} = 6,289.36 = 200(P | A, 3/4\%, 48-12) \)
- **Second Step**
 - If the debt is \(E_{12} \) at time 12, then what was it at time 0?
 - \(E_0 = 5,749.97 = E_{12}(P | F, 3/4\%, 12-0) \)
 - Now can borrow only $5,749.97
 - The incredible shrinking car

The Moral to These Examples Is ...

- Borrowing instead of saving and delaying payments decreases the amount available for a purchaser
Capital Recovery Factor

- At what rate must invested capital be recovered to earn a specified rate of return?
- Know from deriving P/A

 \[DA = US \times \left[1 - (1+i)^{-(s-r)} \right] / i \]

 \[US = DA \times i / \left[1 - (1+i)^{-(s-r)} \right] \]

 \[E_U = c_r \times i / \left[1 - (1+i)^{-(s-r)} \right] \]

 \[E_U = c_r (A/P,i,s-r) \]

Observations

- (Uniform series) Capital recovery factor
- “A given P” since finding an equivalent annuity given a prior cash flow

Example 5.7 Capital Recovery

- Borrow $10,000 to buy a car
 - 36 EOM notes
 - $i = 3/4\% / mo
- Payments that provide a return of 3/4\% / mo?
 \[E_U = $318.00 = 10,000(A/P, 3/4\%, 36-0) \]
- Saved $10,000 with 36 deposits of $254.22, so $63.78 ($318.00 − 254.22) more each mo

Example 5.8 CR with Delayed Payments

- Same loan but delay payments by 12 months
- Determine payments
 - A/P requires equivalent to be one period before first cash flow, so multi-step problem

First Step

- If $10,000 owed at time 0, then how much owed at time 12?
- Time 12 chosen one period before notes so A/P can be used in step 2

 \[E_{12} = $10,938.07 = 10,000(F/P, 3/4\%, 12-0) \]

Second Step

- Know debt at time 12 ($10,938.07), so no longer need original cash flows

 - Note position of E_{12}, one before payments

 \[E_U = $347.83 = E_{12} (A/P, 3/4\%, 48-12) \]
- Delay costs $94.88 ($347.83 − 252.95) more per month than saving for the car
5.3 Multiple Series

- Series of deposits followed by series of withdrawals fairly common
- Strategy
 - Use $F|A$ or $P|A$ on known series
 - Use $F|P$ or $P|F$ on single equivalent
 - Move to either last flow or one period before first flow of unknown series
 - Use $A|F$ or $A|P$ for unknown series
- Number flows = First - One before

Ex 5.9 Known Deposits, Unknown Withdrawals

First Step a)

- How much in savings at $t = 30$?

$$E_{30} = 3,000 (F|A, 8\%, 30-1)$$

Drawn from account’s perspective

First Step b)

- How much in savings at $t = 30$?

First Step c)

- How much in savings at $t = 30$?

$$E_{30} = 3,000 (F|A, 8\%, 30-1)$$

No longer need original flows
First Step d)
- Original problem is now
 \[E_{30} = 311,897.81 = 3,000(F/A, 8\%, 30-1) \]
- Next question?

Second Step a)
- How much in savings at \(t = 38 \)?
 \[E_{38} = 577,301.08 = E_{30}(F/P, 8\%, 38-30) \]
- Next question?

Second Step b)
- How much in savings at \(t = 38 \)?
 \[E_{38} = 577,301.08 = E_{30}(F/P, 8\%, 38-30) \]

Second Step c)
- How much in savings at \(t = 38 \)?
 \[E_{38} = 577,301.08 = E_{30}(F/P, 8\%, 38-30) \]
- Next question?

Third Step
- Withdrawals?
 \[X = 54,080.86 = E_{38}(A/P, 8\%, 63-38) \]
- Deposits?
 \[X = 54,080.86 = E_{38}(A/P, 8\%, 63-38) \]
- What is the first question?

Ex 5.10 Known Withdrawals, Unknown Deposits
- As before, but want withdrawals of \$60,000
 \[X = 54,080.86 = E_{38}(A/P, 8\%, 63-38) \]
- Deposits?
 \[X = 54,080.86 = E_{38}(A/P, 8\%, 63-38) \]
- What is the first question?
First Step a)

- What must be in savings at \(t = 38 \)?

\[E_{38} = 60,000 \]

First Step b)

- What must be in savings at \(t = 38 \)?

\[E_{38} = 640,486.57 = 60,000 \left(P/A, 8\%, 63-38 \right) \]
- Do not need original flows

First Step c)

- What must be in savings at \(t = 38 \)?

\[E_{38} = 640,486.57 = 60,000 \left(P/A, 8\%, 63-38 \right) \]
- Next question?

Second Step a)

- What must be in savings at \(t = 30 \)?

\[E_{30} = 346,034.97 = E_{38} \left(P/F, 8\%, 38-30 \right) \]

Second Step b)

- What must be in savings at \(t = 30 \)?

\[E_{30} = 346,034.97 = E_{38} \left(P/F, 8\%, 38-30 \right) \]

Second Step c)

- What must be in savings at \(t = 30 \)?

\[E_{30} = 346,034.97 = E_{38} \left(P/F, 8\%, 38-30 \right) \]
- Next question?
Third Step

- Deposits?

\[X = $3,328.35 = E^{30} (A/F, 8\%, 30-1) \]

5.4 Bonds

- Government and private industry borrow directly from the public
 - Bypass banks
- Contract to make future payments
 - Sold on open market
 - Max price = Discounted payments
- Terminology

Terminology

- *Maturity date*: time of final payment (10)
- *Coupon*: series paid to bondholder ($80)
- *Redemption, face, or par value*: paid at maturity date in addition to coupon ($1,000)
- *Coupon rate*: rate used to compute the series payments (8%)

\[\text{Coupon} = \text{Face Value} \times \text{Coupon Rate} \]
\[80 = 1,000 \times 8\% \]

- Max to pay \(E_0 \)

Example 5.11 Purchase of a New Bond

- Max to pay to earn 9%?
 \[E_0 = $935.82 = 80(P/A, 9\%, 10-0) \]
 \[+ 1,000 (P/F, 9\%, 10-0) \]
 - Offer ($935.82) is *below par* ($1,000) when IRR > Coupon Rate

Purchase @ 8%

- Max to pay to earn 8%?
 \[E_0 = $1,000 = 80(P/A, 8\%, 10-0) \]
 \[+ 1,000 (P/F, 8\%, 10-0) \]
 - Offer ($1,000) is *at par* ($1,000) when IRR = Coupon Rate

Purchase @ 7%

- Max to pay to earn 7%?
 \[E_0 = $1,070.24 = 80(P/A, 7\%, 10-0) \]
 \[+ 1,000 (P/F, 7\%, 10-0) \]
 - Offer ($1,070.24) is *above par* ($1,000) when IRR < Coupon Rate
Example 5.12 Purchase of an Existing Bond

- Max to pay at time 3 for same bond if third coupon just paid to earn an IRR of 9%

\[
E_3 = 949.67 = 80 \left(P | A, 9\%, 10 - 3 \right) + 1,000 \left(P | F, 9\%, 10 - 3 \right)
\]

- Offer ($949.67) is below par ($1,000) when IRR > Coupon Rate

5.5 Loans

- Balloon notes
 - Final payment larger or “balloons”
- Principal and interest
 - Components of each payment
- Early repayment
 - Effect on duration of loan

Example 5.13 Balloon Note

- Borrow $80,000 for house
 - 3/4% / mo for 5 years
 - M as for 30 yr loan
 - Balance B due @ t = 60

First, determine monthly note

\[
M = 80,000 \left(A | P, \frac{3}{4}\%, 360 - 0 \right) = 643.70
\]

- Second, determine balloon payment
 - At time 60, with payment 60 just made
 - Payments 61, ..., 360 remain
 - Easiest to discount remaining payments

\[
B = 76,704.11 = 643.70 \left(P | A, \frac{3}{4}\%, 360 - 60 \right)
\]

Alternative Step 2

- Could use balance equation once M known

\[
0 = 80,000 \left(F | P, \frac{3}{4}\%, 60 - 0 \right) - 643.70 \left(F | A, \frac{3}{4}\%, 60 - 0 \right) - B
\]

\[
\Rightarrow B = 76,704.11, \text{ as before}
\]

- Discounting easier

Principal and Interest

- Two parts of each note or payment

\[
\text{Loan Payment} = \text{Interest} + \text{Principal}
\]

- Principal component reduces the debt
- Interest reduces individual’s income tax
 - Home loan
 - Business loan

- Interest on several payments

\[
\Sigma \text{Interest} = \Sigma \text{Loan Payments} - \text{Debt Reduction}
\]

- Easier than period-by-period balances
Example 5.14 Principal and Interest Payment

- House loan for $100,000
 - 3/4% / mo
 - 30 years
- Notes 3, 4, …, 14 in next tax year. Interest?
- First, determine the monthly payment

\[M = \$804.62 = \frac{100,000}{A/P, \frac{3}{4}\%, 360-0} \]

\[\Sigma \text{Interest} = \Sigma \text{Loan Payments} - \text{Debt Reduction} \]
\[\Sigma \text{Loan Payments} = \$9,655.44 = 804.62 \times 12 \]
\[\text{Debt Reduction} = \text{Debt before} - \text{Debt after} \]

Step 2

Before = \(E_2 = \$99,890.35 \)
\[= 804.62 \left(P | A, \frac{3}{4}\%, 360-2 \right) \]

After = \(E_{14} = \$99,196.86 \)
\[= 804.62 \left(P | A, \frac{3}{4}\%, 360-14 \right) \]

Reduction = Before - After
\[= \$693.48 \]

\[\Sigma \text{Interest} = \$8,961.96 \]

Example 5.15 Early Loan Repayment

- Same loan
 - $100,000 @ 3/4%
 - 360 notes of $804.62
- Pay $10,000 extra at \(t = 12 \)
 - Before = $804.62 \((P | A, \frac{3}{4}\%, 360-12) \) = \$99,316.48
 - After = $89,316.48 = 99,316.48 - 10,000
- $804.62 / mo continues until time \(s \) when $89,316.48 = DA of Remaining Payments

Step 2

89,316.48 = $804.62 \((P | A, \frac{3}{4}\%, s-12) \)
\[(P | A, \frac{3}{4}\%, 252-12) = 111.145 \]
\[(P | A, \frac{3}{4}\%, 251-12) = 110.979 \]
\[(P | A, i, m) = \frac{1 - (1+i)^{-m}}{i} \]
\[\text{Note}_{252} = \$125.75 = 124.81 \left(F | P, \frac{3}{4}\%, 252-251 \right) \]
Step 3
- Eliminate 108 (360 - 252) notes of $804.62
- Invest savings at 1/2% / mo until $t = 360
 \[\$116,015 = (804.62 - 252)(F/P, 1/2\%, 360-252) + 804.62 (F/A, 1/2\%, 360-252) \]
- $116,015 more @ 360 than $10,000 on car
- If invest $10,000 @ 12 at 1/2% instead of paying off 3/4% loan
 \[\$56,727 = 10,000(F/P, 1/2\%, 360-12) \]
- Eliminate debt @ 3/4% – Invest @ 1/2%
 \[\$59,288 = 116,015 - 56,727 \]

5.6 Multiple Interest Rates
- Same concepts as single rates
- Might not be able to use easy formulas
- Simplifications for constant regions

Example 5.16 Multiple Rate Series and CAs
- \[U = 1,000, CA? \]
 \[$4,417.47 = 1,000 \left[\frac{1}{1.06}(1.065)(1.07) \right] \]
 \[+ (1.065)(1.07) + 1.07 + 1 \]
- \[CA = 2,000, U? \]
 \[$452.74 = 2,000 \left[\frac{1}{1.06}(1.065)(1.07) \right] \]
 \[+ (1.065)(1.07) + 1.07 + 1 \]

Discounted Amounts
- \[DA = U(\gamma_{r+1})^{-1} + \ldots + U(\gamma_{r+1}\gamma_{r+2}\ldots\gamma_s)^{-1} \]
- \[DA = U[(\gamma_{r+1})^{-1} + \ldots + (\gamma_{r+1}\gamma_{r+2}\ldots\gamma_s)^{-1}] \]
- \[U = DA/[\gamma_{r+1}]^{-1} + \ldots + (\gamma_{r+1}\gamma_{r+2}\ldots\gamma_s)^{-1} \]
Example 5.17 Multiple Rate Series and DA

\[\text{U} = \$1,000, \text{DA} \]

\[= \$3,427.19 = 1,000 \left[(1.06)^{-1} + (1.06 \times 1.065)^{-1} + (1.06 \times 1.065 \times 1.07)^{-1} + (1.06 \times 1.065 \times 1.07 \times 1.075)^{-1} \right] \]

Step 2

\[\text{DA} = \$2,000, \text{U} \]

\[= \$583.56 = 2,000 / \left[(1.06)^{-1} + (1.06 \times 1.065)^{-1} + (1.06 \times 1.065 \times 1.07)^{-1} + (1.06 \times 1.065 \times 1.07 \times 1.075)^{-1} \right] \]

Regions with Constant Rates

- Discount and compound up to boundaries
- Equation relating series and DA or CA
- Solve equation for unknown

Example 5.18 Series CA with Regions

\[E_7 = \text{U} (F | A, 5\%, 7-4) \]

\[CA = E_7 (F | P, 6\%, 12-7) + \text{U} (F | A, 6\%, 12-7) \]

\[CA = 9.8558\text{U} \]

Step 2

\[CA = 9.8558\text{U} \]

- If \(\text{U} \) equals $1,000, then
 \[CA = 9,855.80 = 9.8558 \times 1,000 \]
- If \(CA \) equals $20,000, then
 \[\text{U} = 2,029.26 = 20,000 / 9.8558 \]

Example 5.19 Series DA with Regions

\[E_7 = \text{U} (P | A, 6\%, 12-7) \]

\[DA = E_7 (P | F, 5\%, 7-4) + \text{U} (P | A, 5\%, 7-4) \]

\[DA = 6.3620\text{U} \]
Step 2

\[DA = 6.3620U \]

- If \(U \) equals $1,000, then
 \[DA = 6,362.00 = 6.3620 \times 1,000 \]

- If \(DA \) equals $20,000, then
 \[U = 3,143.67 = \frac{20,000}{6.3620} \]

Au revoir

Making money is rough work!