Computer Parallel Interface Program 3 – Course Tracing Program

This program is used with the PC computer parallel interface.

This program allows you to enter a letter corresponding to the command to be given to the robot. (EXAMPLE: The letter F = FORWARD). The computer will then trace the intended route for the robot on the computer’s CRT screen, by placing the instruction letter at each point as the command is entered.

To keep track of the robot's course, the program stores the robot's heading in the variable DIR (Direction). There are 8 possible headings, 1 through 8. As the robot makes a turn, DIR is either incremented (Right Turn) or decremented (Left Turn), thereby allowing the computer to keep track of the robot's intended navigation (lines 260-280). The computer then executes the proper cursor control statements based upon the heading stored in DIR. Lines 300 through 310 correct DIR if the calculated value is less than 1 or greater than 8.

10 REM *****ROBOT COURSE TRACING PROGRAM****
20 REM
90 CLS
100 PRINT "F = FORWARD"
110 PRINT "R = TURN RIGHT"
120 PRINT "L = TURN LEFT"
130 PRINT "B = SOUND BEEPER"
140 PRINT "X = LIGHT LED"
150 FOR S = 1 TO 16
160 PRINT
170 NEXT S
180 PRINT TAB(40); "X";
190 '
200 DIR = 1
210 '
220 '
230 A$ = INKEY$
240 IF A$ = "" THEN 230
250 '
260 IF A$ = "F" THEN DIR = DIR
270 IF A$ = "R" THEN DIR = DIR + 1
280 IF A$ = "L" THEN DIR = DIR - 1
290 '
300 IF DIR > 8 THEN DIR = DIR - 8
310 IF DIR < 1 THEN DIR = 8 - DIR
320 '
```
400 IF DIR = 1 THEN P$ = CHR$(29) + CHR$(30): REM CURSOR UP
410 IF DIR = 2 THEN P$ = CHR$(30) + CHR$(28): REM CURSOR UP, RIGHT
420 IF DIR = 3 THEN P$ = CHR$(28): REM CURSOR RIGHT
430 IF DIR = 4 THEN P$ = CHR$(31) + CHR$(28): REM CURSOR DOWN, RIGHT
440 IF DIR = 5 THEN P$ = CHR$(29) + CHR$(31): REM CURSOR DOWN
450 IF DIR = 6 THEN P$ = CHR$(29) + CHR$(29) + CHR$(29) + CHR$(31):
460 IF DIR = 7 THEN P$ = CHR$(29) + CHR$(29) + CHR$(29): REM CURSOR LEFT
470 IF DIR = 8 THEN P$ = CHR$(29) + CHR$(29) + CHR$(29) + CHR$(30):
480 IF A$ = "B" THEN P$ = CHR$(29)
490 IF A$ = "X" THEN P$ = CHR$(29)
500 ' PRINT P$; A$;
510 ' PRINT P$; A$;
520 ' PRINT P$; A$;
530 ' PRINT P$; A$;
550 IF A$ = "F" THEN Z = 12: REM BINARY 1100 (BOTH MOTORS)
560 IF A$ = "R" THEN Z = 4: REM BINARY 1000 (LEFT MOTOR)
570 IF A$ = "L" THEN Z = 8: REM BINARY 0100 (RIGHT MOTOR)
580 IF A$ = "B" THEN Z = 2: REM BINARY 0010 (SOUND BEEPER)
590 IF A$ = "X" THEN Z = 1: REM BINARY 0001 (LIGHT LED)
600 '
610 W = Z + 64
620 LPRINT CHR$(W);: REM SEND TO ROBOT
630 '
640 GOTO 230
```

Computer Serial Interface Program – Course Tracing Program

This program is used with the PC computer serial interface.

This program allows you to enter a letter corresponding to the command to be given to the robot. (EXAMPLE: The letter F = FORWARD). The computer will then trace the intended route for the robot on the computer's CRT screen, by placing the instruction letter at each point as the command is entered.

To keep track of the robot's course, the program stores the robot's heading in the variable DIR (Direction). There are 8 possible headings, 1 through 8. As the robot makes a turn, DIR is either incremented (Right Turn) or decremented (Left Turn), thereby allowing the computer to keep track of the robot's intended navigation (lines 260-280). The computer then executes the proper cursor control
statements based upon the heading stored in DIR. Lines 300 through 310 correct DIR if the calculated value is less than 1 or greater than 8.

10 REM ***ROBOT COURSE TRACING PROGRAM***
20 REM ***FOR IBM COMPATIBLE ONLY***
30 REM
40 OPEN "COM1:300,N,8" FOR RANDOM AS #1
90 CLS
100 PRINT "F = FORWARD"
110 PRINT "R = TURN RIGHT"
120 PRINT "L = TURN LEFT"
130 PRINT "B = SOUND BEEPER"
140 PRINT "X = LIGHT LED"
150 FOR S = 1 TO 16
160 PRINT
170 NEXT S
180 PRINT TAB(40); "X";
190 '
200 DIR = 1
210 '
220 '
230 A$ = INKEY$
240 IF A$ = "" THEN 230
250 '
260 IF A$ = "F" THEN DIR = DIR
270 IF A$ = "R" THEN DIR = DIR + 1
280 IF A$ = "L" THEN DIR = DIR - 1
290 '
300 IF DIR > 8 THEN DIR = DIR - 8
310 IF DIR < 1 THEN DIR = 8 - DIR
320 '
400 IF DIR = 1 THEN P$ = CHR$(29) + CHR$(30): REM CURSOR UP
410 IF DIR = 2 THEN P$ = CHR$(30) + CHR$(28): REM CURSOR UP, RIGHT
420 IF DIR = 3 THEN P$ = CHR$(28): REM CURSOR RIGHT
430 IF DIR = 4 THEN P$ = CHR$(31) + CHR$(28): REM CURSOR DOWN, RIGHT
440 IF DIR = 5 THEN P$ = CHR$(29) + CHR$(31): REM CURSOR DOWN
450 IF DIR = 6 THEN P$ = CHR$(29) + CHR$(29) + CHR$(29) + CHR$(31): REM CURSOR DOWN, LEFT
460 IF DIR = 7 THEN P$ = CHR$(29) + CHR$(29) + CHR$(29): REM CURSOR LEFT
470 IF DIR = 8 THEN P$ = CHR$(29) + CHR$(29) + CHR$(29) + CHR$(30): REM CURSOR UP, LEFT
480 IF A$ = "B" THEN P$ = CHR$(29)
490 IF A$ = "X" THEN P$ = CHR$(29)
500 '

510 PRINT P$; A$;
520 '
530 '
550 IF A$ = "F" THEN Z = 12: REM BINARY 1100 (BOTH MOTORS)
560 IF A$ = "R" THEN Z = 4: REM BINARY 1000 (LEFT MOTOR)
570 IF A$ = "L" THEN Z = 8: REM BINARY 0100 (RIGHT MOTOR)
580 IF A$ = "B" THEN Z = 2: REM BINARY 0010 (SOUND BEEPER)
590 IF A$ = "X" THEN Z = 1: REM BINARY 0001 (LIGHT LED)
600 '
610 Z = Z + 64
620 PRINT #1, CHR$(Z);: REM SEND TO ROBOT
630 '
640 GOTO 230

Serial Interface BAUD Rate:

The BAUD rate is the speed at which the interface communicates with the computer. The interface has been designed so that you can select one of the five most popular BAUD rates.

To set the BAUD rate the appropriate switch must be set to the ON position. The important thing is that the BAUD rate of the interface must match that of the computer.

<table>
<thead>
<tr>
<th>BAUD RATE</th>
<th>Switch Section ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>1</td>
</tr>
<tr>
<td>600</td>
<td>2</td>
</tr>
<tr>
<td>1200</td>
<td>3</td>
</tr>
<tr>
<td>2400</td>
<td>4</td>
</tr>
<tr>
<td>4800</td>
<td>5</td>
</tr>
</tbody>
</table>

Parity:

Along with the data bits, an extra PARITY BIT is often sent to provide for ERROR checking.

<table>
<thead>
<tr>
<th>Parity</th>
<th>Switch 6 ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Parity</td>
<td>Switch 6 OFF</td>
</tr>
</tbody>
</table>
Number of STOP bits:

After sending the data bits, a serial interface sends out either one or two STOP bits, which informs the receiving equipment that a complete set of bits have been sent.

<table>
<thead>
<tr>
<th>One Stop Bit</th>
<th>Switch 7 ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Stop Bits</td>
<td>Switch 7 OFF</td>
</tr>
</tbody>
</table>

Number of Bits:

Some computers send out 7 bits at a time, others send out 8. The computer and interface must match.

<table>
<thead>
<tr>
<th>7 Bits</th>
<th>Switch 8 ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Bits</td>
<td>Switch 8 OFF</td>
</tr>
</tbody>
</table>