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Abstract—The proper use of distributed scatterer (DS) can
improve both the density and quality of synthetic aperture
radar (SAR) interferometry (InSAR) measurements. A critical
step in DS interferometry (DSI) is the restoration of a consistent
phase series from SAR interferogram stacks. Most state-of-
the-art algorithms adopt an approximate likelihood function to
calculate the likelihood by replacing the true coherence matrix
with its estimation, more specifically, the sample coherence matrix
(SCM). However, this approximation has a drawback in that the
coherence estimates are greatly biased when the coherence is low.
In this study, we derive a new likelihood function without such an
approximation. Accordingly, a DSI framework using this function
for phase estimation and point selection is provided. In this
framework, the new likelihood function serves as a cost function
for phase estimation and a quality measure for DS selection. Its
performance is investigated by experiments in a simulation study
and a real-world case study using Sentinel-1 data over Shenzhen
airport in China. The results reveal that the proposed DSI
framework outperforms the existing state-of-the-art approaches
in different scenarios, in terms of providing a more accurate
estimation and improving DS density and coverage.

Index Terms— Distributed scatterer (DS), interferometry,
maximum likelihood, phase-linking (PL), synthetic aperture
radar (SAR).
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I. INTRODUCTION

YNTHETIC aperture radar (SAR) interferometry (InSAR)

has been proven to be a powerful technique for defor-
mation monitoring in the past decades [1], [2]. During the
early stages, two or three repeat-pass InSAR processes using
small image dataset were prevalent because large acquisitions
were often not available. Early attempts to achieve accurate
results were primarily focused on spatial filtering, and 2-D
unwrapping algorithms and time-dependent noise could not be
addressed because of the lack of time-series datasets in most
areas. However, with the increasing number of SAR satellites
launched in the 21st century, a large amount of SAR data
have become available, and an increasing number of stud-
ies have turned to developing times-series analysis methods
to exploit these large datasets (i.e., time-series images) for
measuring more precise deformation [3]. These time-series
methods can be primarily divided into two categories [4]: small
baseline subsets (SBASs) [5]-[7] and permanent scatterers
(PSs)-InSAR [8], [9]. They are still popular owing to their
publicly accessible open-source code [10].

Although both the methods can deal with time-series SAR
datasets, their theoretical fundamentals differ significantly
from each other. More specifically, the radar backscatter of one
pixel can be regarded as the summation of backscattering from
all the scatterers within the image pixel. Based on the different
scattering types, image pixels can be primarily classified as
PS pixels and distributed scatterer (DS) pixels. In SBAS,
PS and DS were normally not discriminatively processed; the
interferometric phase on all the pixels was equally filtered
using a multi-looking operator. A time-series analysis then is
applied in a certain number of multi-looked interferograms
with temporal and spatial baselines smaller than the given
thresholds. Despite the great interest from researchers, the loss
of spatial resolution and boxcar windows within SBAS limits
its application at a finer scale. The contamination of neighbor-
ing pixels with different backscattering properties is likely to
bias the optimal value to varying degrees, depending on scene
complexity [11], and possibly bear a higher influence from the
risk of bias [12]. PS-InSAR preserves the spatial resolutions
for PS targets, on which the phase noise is mostly small.
Therefore, PS-InSAR is more popular in urban environments,
where PS pixels are abundant [13]. Regardless, the sparse
distribution of permanent measurement points over natural
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landscapes presents the primary challenge for unwrapping and
atmospheric correction in InSAR time-series analyses [14].

The most recent advances in the InSAR community have
focused on the integration of PS and DS to derive reliable
and dense time-series deformation results [15], [16]. Among
them, SqueeSAR refers to a representative work. SqueeSAR
developed a DS interferometry (DSI) framework to inte-
grate DS and PS in the time-series processing, including
the statistical test for statistically homogeneous pixels (SHP)
identification and phase triangulation algorithm (PTA) for
consistent phase estimation [17]. Early efforts to optimize
the DS phase have been documented in [18]-[20], where
the authors attempted to estimate an accurate interferometric
phase on DSs from interferogram stacks by exploring the
target statistics and modeling the decorrelation characteristics.
Following previous studies [19], we use the term phase-linking
(PL) to refer to the estimation process of a consistent phase
series from interferogram stacks. The steps in the joint DS—PS
processing framework have been further refined by numerous
works [21]-[23]. New algorithms have been developed to
advance the speed and accuracy of identifying neighboring
pixels [24], [25] and to optimize the selection of DS [26].
Robust estimation tools were implemented to ensure consistent
quality of the coherence matrix under different statistical
distributions [27].

Several advanced PL estimators have been proposed in
recent years. For example, a sequential estimator was proposed
to efficiently process a large number of SAR images [28].
Principal component analysis (PCA) was used in several
studies to treat the multi-mechanism phenomenon in SAR
signals [29], [30]. The eigen-decomposition-based maximum-
likelihood estimator (MLE) of interferometric phase (EMI)
was proposed to avoid the drawbacks of the PTA iterative
method when estimating the non-positive coherence matrix
[31]. Moreover, a bootstrapping method was proposed to
balance the bias in covariance estimation for low-coherence
points [22]. Notably, we used the coherence matrix rather than
the covariance matrix in this study. This is a conventional
approach to compensate for possible backscattered power
imbalance by normalizing the amplitude values [29], [32].

From a mathematical point of view, these PL estimators
differ mainly in the cost functions used to solve consistent
phase series. Theoretically, MLE should be considered as the
optimum choice because its root mean square error (RMSE)
is asymptotically close to the expected lower boundary, that
is, the Cramér-Rao lower bound (CRLB). Although most of
these algorithms claim that they are MLEs, they use an approx-
imate likelihood function, where the coherence matrix in the
likelihood functions is approximated by the sample coherence
matrix (SCM). As pointed out in many previous works [28],
[33], the poor quality of the estimated coherence, which is
common for low-coherent scatterers, would significantly con-
taminate the estimated consistent phase series. Accordingly, if
a severely biased coherence matrix is used, PL resulting from
full exploitation of interferograms would even be much more
erroneous than some partial exploitation [21], [28]. Although
recent studies have noticed this problem for low-coherent
scatterers [33], [34], their attempts have primarily relied on
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developing distinct methods to calibrate the sampled coherence
matrix, so that the approximate likelihood value can be close
to the true value. These calibrations to the sampled coherence
matrix can also be considered as regularization, which will be
explained in more detail in Section III. Nevertheless, there is
still a lack of research on deriving the mathematical form of
the true likelihood function. Moreover, the benefits of using
precise likelihood values for phase estimation have rarely been
discussed.

In this study, we provide a mathematical formula to accu-
rately represent the likelihood value of consistent phase series.
Unlike the common approaches used in many PL methods,
the proposed formula does not use SCM for approximation to
calculate the likelihood value. A DSI framework using the new
likelihood function for consistent phase series estimation and
DS point selection is presented. Subsequently, we evaluated
the performance of the proposed DSI approach by comparing it
with the existing state-of-the-art approaches. The contributions
of this study are as follows.

1) A precise function is provided to evaluate the likelihood
of consistent phase series.

A multiple starting points’ strategy is designed to opti-
mize consistent phase series under the new likelihood
function.

Several regularization schemes on SCM are designed to
generate a series of PL solutions as starting points.
The advantage of the proposed likelihood function in
selecting high-quality scatterers is examined.

2)

3)
4)

The remainder of this article is organized as follows.
Section II describes the mathematical work used to derive
the new likelihood function. Section III presents the DSI
framework with a new likelihood function. The experimental
results are given in Section IV, and a real-world case study is
presented in Section V. Finally, conclusions and perspectives
are presented in Section VI.

II. DERIVATION OF THE NEW LIKELIHOOD FUNCTION
A. Role of Likelihood Function in DSI

Unlike PS pixels dominated by a stable scatterer with a
very small phase variance, DS pixels do not have a dom-
inant scatterer and the phase varies in a random manner.
However, DS phase quality can be improved using a well-
known PL process if the scatterers inside the DS pixel have
similar scattering mechanisms. Here, SAR observation of
one scatterer can be treated as a random complex variable.
In accordance with the central limit theorem, the combination
of a large number of independent scatterers tends toward a
normal distribution. Therefore, SAR observation of a pixel
with one scattering mechanism follows a circular complex
Gaussian (CCG) distribution.

Given a statistical model, a likelihood function can be
developed to describe the joint probability of the observed
data as a function of unknown parameters. This function
can be used to estimate unknowns and assess the quality
of estimation. Therefore, when the statistical properties of a
random variable are known, it is possible to make statistical
inferences regarding the parameters of the variable based
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on observations. PL is a process of statistical inference that
attempts to estimate the time-series consistent interferometric
phases of a DS pixel from its SAR observation samples.

There were three preliminary steps before PL. First, the
SHP for each pixel was identified to prepare the samples.
Second, pixels with an SHP number larger than a given
threshold were selected. Third, we calculated the sample
complex coherence matrix for these pixels using the identified
SHPs. Subsequently, PL was implemented to calculate a
consistent phase series from SCM. The potential DS pixels
that exhibit high quality can then be treated as PS pixels.
The original interferometric phases were replaced with the
estimated consistent phase series. The traditional PS time-
series processing algorithms can then be adopted to jointly
process DS and PS pixels. These steps form the standard DSI
procedure, as shown in Fig. 1.

Both PL and point selection in DSI require a quantitative
function to assess the quality of a consistent phase series
solution. The likelihood function describes the joint probability
of the observed data as a function of unknown parameters
of the chosen statistical model. It can naturally serve as a
quantitative criterion for PL and point selection. In Fig. 1,
we used a dashed arrow to connect the likelihood function
with the optimization criterion and selection criterion. This
is because the functions used by many DSI algorithms are
not the exact form of the likelihood function under the CGG
statistical model, as described below. However, these functions
also represent the acceptability or probability of a solution
given the SAR observations. They share similar forms or
characters with a true likelihood function.

Fig. 1. General procedure for DSI.

B. Mathematical Background of the Likelihood Function

According to CGG assumption, the probability den-
sity function (PDF) of the time-series data vector z
of a pixel conditioned on the coherence matrix is as
follows:

f@) =x""(det[G]) " exp(—2"OG ' ©"z)) )
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where

peN: number of single look complex (SLC)
images;

z € CP*':  random SLC observation vector along time
for a pixel;

G € RP*P:  real-value coherence matrix of the interfero-
grams for a pixel;

6 < RP*!:  consistent phase series for a pixel;

® € CP*P:  complex matrix containing consistent phase
series § with ©® = diag[eia];

det : determinant operator.

Under the one scattering mechanism assumption, the com-
plex coherence matrix I' € C?*? can be given as follows:

r =060 2

If G is known, the maximum likelihood estimation of phase
is given by

6 = argmax{(”)" (-G o I')e} 3)
where I' denotes the SCM, given by
. 1
F:E[zzH]%—ZZZH 4)
N zeQ

where Q denotes a homogeneous patch containing adjacent
pixels, N signifies the number of adjacent pixels in the
homogeneous patch, and E indicates the expectation operator.

Since the true real-value coherence matrix G is unknown,
generally the absolute values of the sample complex coherence
matrix |{"| are considered for replacement [17]. Equation (3)
can then be written as follows:

6 = argmax {(eio)H(—|f|_lof)eie}. 5)

The problem is that a poor estimation of SCM contaminates
the PL results. In addition, if SCM is not positive definite,
additional work on SCM is required, such as inserting a
damping factor [27] or including calibration parameters [31].

C. New Likelihood Function

Theoretically, the solution of an MLE should have max-
imum probability. However, as described above, the MLE
approach in existing studies often uses an SCM to replace the
true coherence matrix and provide estimated MLE solutions
that are only approximate. In this section, a mathematical
formula is derived to represent the true likelihood and achieve
true maximum likelihood estimation (TMLE).

We take the natural logarithm of PDF in (1) and obtain

N
L(6.G) = —Npln(z) — NIn[det(G) 1- > 2/ ©G ' 0"z
k=1

(6)

where In symbolizes the natural logarithm operator.

Here, the SAR complex data z are given as observation, and
the consistent phase series # and real-value coherence matrix
G are treated as unknown parameters. It differs from the state-
of-the-art PL algorithms that only consider § as unknowns and
use a sample covariance matrix to approximate G.
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Since the logarithm is a monotonic function, the maximum
of L(0, G) occurs at the same values of # and G as does the
maximum of PDF. The MLE of # and G can be achieved by
maximizing the L(#, G) function. Accordingly, the necessary
conditions for a maximum are

oL oL
O_aG,O_aa. (7)

Here, we introduce a new matrix parameter R, defined as

the inverse of G

R=G". (8)
For convenience, we define
1 N
0= NRe(Z 0zl @) 9)
k=1

where Re denotes the real part operator of complex values.
Equation (6) can be transferred to a simple form

L(0, R) = —Npln(w) + N[In(det[R]) — tr(R Q)] (10)

where tr denotes the trace operator.
To satisfy the maximum condition, we made a partial

derivative of L(6#, R) and obtain
oL
0=—=N(R"'-0).
-z = N Q)

Therefore, the MLE of G or R is derived

(1)

N
1 .
G=R'=90= NRe(E @szz,?@) =Re®"TO. (12)
k=1

For abbreviation, we introduced matrix variable W
W =0"Te.

Since RQ = I and G = R™' = Re(W), the function
L(#, R) can be rewritten as follows:

L(#) = —Npln(z) — Nin[det(Re[W])] — Np.

Here, the parameter G or R is eliminated from the func-
tion and only parameter 6 is left. Therefore, the maximum
likelihood estimation of phase @ is given by

0 = argmax{—Npln(z) — Nln[det(Re[W])] — Np}

= argmax{—det(Re[W])}. (13)

A significant difference between (5) and (13) is that we
use a maximum likelihood estimation of G rather than an
approximated one (i.e., f’). Thus, the likelihood function
strictly adheres to the statistical model and can truly represent
the likelihood value of a given solution. This is unaffected by
the poor estimation of SCM.

In summary, we successfully derived the mathematical form
of the new likelihood function, —det(Re[W]), which strictly
adheres to the assumed statistical model without any approx-
imation. We used the term —detR to represent the calculated
new likelihood value. Notably, detR and Ig(detR) are also used
to represent the negative and common logarithmic forms of the
likelihood value, respectively. In Section II, we demonstrate
how this function is used in phase estimation and DS point
selection for DSI.
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TABLE I
SUMMARY OF THE COMPARISON AMONG THE FOUR PL ALGORITHMS
Methods Coherence Optimization/Likelihood functions
model, I'
TMLE oGo" arg max{—det(Re[0"T@0])}
PTA o |r|e" arg max {(e“’)H (—|T‘|_1 o T‘) e‘”}
P
PCA Z 0,6,0," arg max {(|v,] o ) (F) (v, o )}
i=1 N ) PP )
EMI go” 0 0 |T'|e" arg max {(a o elf)H (—|I‘| ° I‘) (g0 e‘”)}

III. NEwW LIKELIHOOD FUNCTION FOR DSI

A. New Likelihood Function for PL

The principal role of the proposed likelihood function is PL.
Accordingly, we can obtain an optimal consistent phase series
by searching for its maxima. The new likelihood function (13)
is a determinant of the p-dimensional matrix (p = SLC image
number), which is a polynomial of degree p. However, the
likelihood functions of the PL algorithms listed in Table I
are only polynomials with a degree of two. The primary
challenges brought by the high-degree function were the high
time cost for optimization and the risk of falling into local
maxima. To increase the search speed, we used the solution
from other PL methods as the starting point for skipping
less meaningless searching. Moreover, we adopted a multiple
starting point strategy to avoid falling into local minima.
We used solutions from other PL methods as the potential
starting points. Subsequently, we evaluated them using their
likelihood values and then selected the best solution for the
final optimization. Since the true likelihood value was used,
we named this PL approach the TMLE.

Naturally, we can resort to the existing efficient PL algo-
rithms to generate initial guess solutions. Here, we first
demonstrate that many state-of-the-art PL algorithms can be
treated as estimators using regularized SCM (RSCM). The
differences between them were due to the regularization forms.
By unifying these PL algorithms in terms of regularization,
we can infer a new series of estimators using different regu-
larization parameters. The number of candidate solutions can
correspondingly increase and benefit solution optimization.

In most state-of-the-art PL algorithms, SCM is used as a
replacement for the true covariance matrix. If so, the positive
definite condition of SCM should be satisfied. Otherwise, (3)
cannot be calculated because the inverse of SCM does not
exist. To satisfy the positive definite requirement, regulariza-
tion is required when the smallest eigenvalues of the SCM
are numerically close to zero. A singular SCM is commonly
observed in two cases: 1) a small sample size and 2) high
coherence. A fundamental requirement for positive definite
SCM is to have sufficient uncorrelated samples. Undoubtedly,
samples smaller than the SLC image number will create a
rank-deficient SCM. Meanwhile, if the samples are highly
correlated, the SCM will also be non-positive definite even
when the size is sufficiently large (see Fig. 2). This is
because the highly coherent pixels are less affected by noise
and often have very similar temporal characteristics as their
neighboring homogeneous pixels. Therefore, the SHPs for a
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Fig. 2. Eigenvalues of SCMs in two scenarios (dash lines) requiring
regularization. The solid black line is considered a reference, denoting the
case that does not require regularization.

(a)

Fig. 3. Matrix after different regularization approaches. (a) Input coherence
model. (b) SCM. (c) RSCM by Reg 1. (d) RSCM by Reg 2. (e) RSCM by
Reg 3. (f) RSCM by Reg 4. (2) RSCM by Reg 5. (h) RSCM by Reg 6.

highly coherent pixel are often highly correlated and create an
ill-posed or rank-deficient SCM.

Regularization is an efficient approach to deal with unstable
estimations [35] and is widely applied to handle ill-posed
problems. The general idea of SCM regularization is to blend
a poor matrix estimate with a stable known matrix. Given an
SCM T, it can be regularized by forming an estimate

I, =al + K (14)
where o and £ denote the regularization factors, K indicates
the stable known matrix, and f, refers to the RSCM. Several
regularization methods are listed below, and many state-of-
the-art PL algorithms can be described in this regularization
form (see Fig. 3).

1) Regularization by gradually inserting a damping factor
(Reg 1) is a commonly used regularization method in
the PTA algorithm to treat rank-deficient SCM. It sets
oo =1 and K =1, and lets f gradually increase until
I', is positive definite.

2) Regularization using an identity matrix (Reg 2) sets f =
1—a and K = 1. a is considered a regularization factor
ranging from O to 1.

3) Regularization using pooled SCM (Reg 3) sets f = 1 —a
and K = T', where I', denotes the pooled estimate of
SCM. The idea behind the pooled estimate is to pool
samples from other classes to increase the sample size.

5227314

In our case, we can enlarge the search box to include
more SHPs in the pooled SCM estimation.

4) Regularization by masking long-term coherence (Reg
4)ysets « = f =1 and K = —I'y, where ['; sym-
bolizes a partial SCM with short-term elements (span-
ning days < d) masked. Then, the long-term coherence
in RSCM becomes zero. Therefore, this regularization
method can approach PL using a short temporal baseline
subset (StBAS) [28].

5) Regularization by singular value decomposition (SVD)
(Reg 5) is applied to SCM and only retains the compo-
nent associated with the largest eigenvalues. When only
the largest component is maintained, the new RSCM
naturally has a consistent interferometric phase, and the
consistent phase series can then be retrieved directly
from any row of the RSCM without optimization.
We note that this regularization method is the same as
that of the PCA PL method.

6) Regularization using calibration parameters (Reg 6) sets
o=pf=1and K = (00T — I)o I', where o denotes
the calibration vectors. Both EMI and bootstrapping
SCM bias corrections can be described in this form. The
difference between them lies in the determination of the
calibration parameters.

In the present study, we adopted the above regularization
methods to generate a series of RSCMs (different regular-
ization parameters are used), and then adopted the PTA to
generate the candidate PL solutions. The detR function is
taken to select the best initial guess and guide the final optimal
solution searching. It should be mentioned that the state-of-
the-art PL algorithms including PTA, PCA, and EMI are all
contained in this regularization framework, which corresponds
to regularization 1, 5, and 6, respectively

Furthermore, we want to point out that although we adopted
regularization during phase solving, our final optimal solution
should not be considered a regularized solution. This is
because regularization is implemented on SCM and not on
phase solution. Our likelihood function represents the true
likelihood, without including any regularization components.
Accordingly, the purpose of applying regularization to SCM is
to derive approximate MLE solutions and help locate globally
optimal solutions more easily. The TMLE solution inherits
the main statistical characteristics of MLE, that is, it is
asymptotically unbiased, asymptotically efficient, and consis-
tent. Conversely, a regularized estimator inevitably generates
a biased solution.

B. Comparison With Other PL Algorithms

We compared the TMLE with several prevalent estimators,
that is, PTA, EMI, and PCA, primarily in terms of the assump-
tions used in the models and their computational efficiency.
The investigated complex coherence matrix models and their
optimization functions are listed in Table I.

1) Model assumption: TMLE, PTA, and EMI assume a sin-
gle scatterer mechanism, whereas PCA assumes multiple
mechanisms. Among the single-mechanism approaches,
TMLE is the only method that strictly follows a
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single-mechanism assumption without any additional
assumptions. Meanwhile, the PTA method assumes that
the real-value coherence matrix is equal to SCM. The
EMI method also assumes a real-value coherence matrix,
but in a different form: some calibration parameters were
added to SCM to define the real-value coherence matrix.
For multiple mechanisms, PCA assumes a covariance
model combined with p (i.e., SLC number) orthogonal
scattering mechanisms.

Computational efficiency: EMI and PCA are based on
eigen decomposition, whereas PTA and TMLE rely on
iterative optimizations. Although eigen decomposition
is embedded with an iteration to obtain eigenpairs, the
availability of optimized numerical recipes promises a
highly efficient solution. In their existing forms, PTA
and TMLE require more computational cost than PCA
and EMI, and TMLE is more time-consuming than PTA.
However, the computational efficiency is expected to
improve if additional effort is put into the optimization
algorithm. In addition, the iteration number for TMLE
can be reduced to zero to save computational time.
A zero iteration means that the detR function is only
considered as a criterion to select the best solution from
the candidates.

2)

C. New Likelihood Function for Point Selection

In addition to its main role in PL, the new likelihood
function can be used as a quality measure for DS point
selection. Posterior coherence is the most commonly used
point selection criterion in PL methods. The form of posterior
coherence (y) is given as [31], [32]

2
pP=p

PP
Re Z Z exp(igi)exp(—il0; — G]) | (15)

i=1 k=i+1

y:

where ¢;; denotes the interferometric phase contained in the
sampled coherence matrix, I.

As shown by the formula, the posterior coherence represents
the equal-weighted phase fitness. It is also the cost function
used by the equal-weighted PTA [36]. However, a higher pos-
terior coherence does not necessarily indicate a less erroneous
solution, because if it does, the equal-weighted PTA would be
the optimum estimator, which, however, is not the case [36].

Therefore, we propose using the likelihood value calculated
by the new function as the DS point selection criteria. As detR
directly reveals the likelihood of a solution, it has the potential
to act as an index for DS selection. Different types of scatterers
are expected to be more distinguishable in detR map than
posterior coherence. Since the detR value varies in a large
range, we would use the common logarithm of detR below,
i.e., lg(detR), for better plotting.

D. Algorithm Summary

We provide a brief summary of the new DSI framework
using the proposed likelihood function (see Fig. 4). It follows
these steps.
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Fig. 4. Diagram of DSI using the proposed likelihood function.

TABLE II
TESTED ALGORITHMS AND DECORRELATION MODELS
Methods Decorrelation models
TMLE Short-term (Coh 1)
=0.6, Y»=0, y,=0, 7,=50d
PTA Yo=2:5 Yoo B 1o~ To
Periodic (Coh 2)
PCA Y0=0.6, ¥5=0, ¥,=0.2, 7,=50d
Long-term (Coh 3)
EMI
Y0=0.6, ¥e=0.2, ¥,=0, 7,=50 d

1) The SCM of pixels with SHP number larger than a given
threshold is calculated from the time-series images.
Multi-regularizations are applied to SCM with different
regularization approaches and regularization factors.
Phase triangulation is implemented on these RSCMs to
obtain a series of solutions.

An optimization is performed to maximize the likelihood
value represented by —detR, using the best solution
obtained from the third step as the starting point. The
outputs in this step include the estimated consistent
phase series and the corresponding likelihood value.
The candidate DS points are selected based on the detR
values, and these selected DSs are then integrated with
PSs for joint time-series analysis.

2)
3)

4)

5)

IV. SIMULATION
A. Experiment Setting

In the simulation, we used a modified exponential temporal
decorrelation model according to a previous study [31] that
can represent short-term, periodic, and long-term coherence.
The decorrelation model for a single-mechanism DS is given
by the following expression:

Gij=(yo—7p— yw)exp(ﬂ)
70

snenp( ) 4 e
where G, ; represents the real-value coherence between the ith
and jth SLC. yo, y,, and y denote the initial coherence, peri-
odic coherence, and long-term coherence, respectively. mod is
the modulo operation. #;; indicates the time between the two
SLCs. t, refers to the return period for the periodic coherence.
79 denotes a constant that represents the decorrelation speed.

We used a normalized amplitude (|z;| = 1), such that
the coherence was the same as the covariance. The CCG
process was assumed in SLC complex data simulation. The
stationarity and ergodicity assumptions were completely held;
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(a) (b)

Fig. 5. Coherence matrices for three decorrelation models. (a) Short-term.
(b) Periodic. (c) Long-term.

therefore, homogeneous samples were generated with the
same distribution. The temporal sampling interval was set to
12 days, according to Sentinel-1 SAR data. Moreover, the
initial coherence y, was set as 0.6 according to previous
studies [31], [33]. Examples of the short coherence, long
coherence, and periodic coherence decorrelation models are
illustrated in Fig. 5. Three state-of-the-art PL algorithms (PTA,
PCA, and EMI) were compared with the proposed TMLE
method (see Table II). Furthermore, CRLB was used as a
reference. Their performances were quantitatively assessed
by RMSE, which was calculated using the estimation results
from 1000 realizations. In the simulation, the period cover
was set to 600 days, which was equal to 50 SAR image
acquisitions. The sample size was set at 300. In addition
to containing the deformation signal, the phase to be solved
also contains atmospheric and orbital signals, which are often
distributed randomly temporally. Therefore, the true consistent
phase series was randomly initiated, without assuming any
temporal pattern.

B. Performance in PL

First, we investigated the influence of using detR for phase
estimation by examining the performance of TMLE (see
Fig. 6). Obviously, the proposed method outperforms other
methods significantly in the short-term (Coh 1) and periodic
decorrelation (Coh 2) models. In these two scenarios, RMSEs
are smaller than the others. TMLE has maximum RMSEs of
0.63 and 0.24 rad for the short-term model and the periodic
decorrelation models, respectively. Meanwhile, other PL meth-
ods give maximum RMSEs of 1.27-1.48 and 0.32-0.52 rad.
For very bad conditions (i.e., low coherence), such as the
phase estimation of the last SLC in the short-term model, the
TMLE results approach the real value much better than PTA,
with a reduction of approximately 1 rad RMSE. For the long-
term decorrelation model (Coh 3), the differences between PL
algorithms are not very significant. The maximum RMSEs
are very small (approximately 0.11 rad), which is very close
to the maximum value of CRLB (0.10 rad). It makes sense
because the challenge in good coherence conditions is small,
and the improvement from using more advanced algorithms is
not very significant. The PCA method underperforms the other
methods among all the decorrelation models. It is reasonable
as the assumption (multi scattering mechanisms) held in PCA
deviates from our simulation data setting (single scattering
mechanism).

C. Role of Initial Guess Solutions in TMLE

In Section III-A, we denote the new likelihood function
as a polynomial with a much higher degree than previous
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likelihood functions. Therefore, it is not possible to directly
search for the global maxima. Using an initial guess is a
practical method to determine the maxima in TMLE. The
choice of initial solutions and the searching time are two
crucial factors that affect TMLE performance. In this section,
we explore these factors.

First, we displayed the distribution of the selected starting
point to determine where the optimal solution originated.
In our experiment, the candidate starting points were from five
regularization methods, that is, Reg 1 and 2, and Reg 4-6.
Reg 3 was not used in the simulation because the pooled
samples could not be simulated fairly; however, it was adopted
in the real case. As mentioned above, the PTA, PCA, and
EMI methods can be grouped as Reg 1, Reg 5, and Reg 6,
respectively. Therefore, we used them to represent these
regularization methods. For Reg 2, the regularization factor
(a) was varied from 0.1 to 1, and nine candidate solutions
were created. For regularization 3, we set the regularization
factor (d, i.e., mask bandwidth) from 1 to 49 and obtained
49 candidate solutions. From the distribution of the selected
starting point, we found that solution selection is highly
related to the coherence model. The detR function prefers to
take the solution from Reg 2 and Reg 4 for relatively low
coherent models (Cohl and Coh2) and EMI for long-term
model (see Fig. 7).

It has been revealed that PL using an StBAS exhibits
better performance for the short-term coherence model com-
pared with using all interferograms [28]. In low-coherence
scenarios, long-term coherence is severely misestimated and
further affects the accuracy of phase estimation. StBAS ignores
interferograms with long temporal baselines and is therefore
immune to this type of coherence error. As denoted in Section
III, StBAS is equal to the fourth regularization (i.e., Reg 4).
Similar to StBAS, Reg 2 adopts an identity matrix to regu-
larize SCM and can also reduce the influence of off-diagonal
elements. As illustrated in Fig. 6, TMLE can adaptively pick
starting points from Reg 2 and Reg 4 for relatively low coher-
ent models (Cohl and Coh2), promising high performance in
these cases. Although Reg 2 and Reg 4 perform well in the
low-coherence case, they incur the cost of losing long-term
interferograms and fail in the long-term coherence model.
For Coh 3, it was found that TMLE takes starting points
from EMI and Reg 4 with slight regularization (large d)
and successfully avoided such problem that could be found
in Reg 2 and Reg 4. It validates that the detR function can
correctly provide a quantitative likelihood for each solution,
and the proposed estimator (TMLE) can adaptively select the
most suitable start solutions, ensuring high performance in all
the coherence models.

To determine how the search time affects the TMLE perfor-
mance, we limited the initial guess to only PTA solution and
gradually increased the number of iterations. Five maximum
iteration numbers were tested (100, 800, 2000, 3000, and
5000). We labeled them PTA1, PTA2, PTA3, PTA4, and PTAS,
respectively. The time cost was calculated based on 1000
realizations. The results show that the optimization step can
significantly reduce RMSE compared with the original PTA
solution. The more the searching efforts, the less RMSE can
be achieved. However, when the number of iterations reached
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Fig. 6. RMSE of the compared PL algorithms. (a) Short-term. (b) Periodic. (c) Long-term.
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Fig. 8. TMLE results with different iteration numbers. PTA1-PTAS are
TMLE solutions using only PTA as starting point with different iteration
numbers (100, 800, 2000, 3000, and 5000).

a certain value (>2000), the improvement was not significant.
However, the computational burden was very high (see Fig. 8).
For comparison, TMLE with more initial guess solutions but
fewer iterations (300) showed a much better performance.
It had a much lower RMSE and time cost. This implies that
initial guess solutions play an instrumental role in TMLE.
Increasing the source of the initial solutions is more significant
than increasing the search time. Therefore, in the TMLE
algorithm, we designed different regularization ways and used
various regularization parameters to generate sufficient initial
guess solutions.

D. Performance in Point Selection

After a consistent phase series estimation, the next critical
step in DSI entails selecting a high-quality scatterer for further
time-series processing. Posterior coherence is a widely used
criterion for high-quality DS selections. First, we took the
short-temporal coherence model as an example and compared
the values of detR and posterior coherence in the TMLE
and PTA methods. Previous studies have demonstrated that
the cost function of the PTA algorithm can be transformed
to a weighted interferometric phase fitness function [29].
Therefore, it is reasonable that the posterior coherence of
PTA would be higher than TMLE [see Fig. 9(a)]. Conversely,
when comparing the detR value between the TMLE and PTA
algorithms, we discovered that TMLE had lower detR than
PTA [see Fig. 9(b)]. Evidently, the TMLE solution is much
less erroneous than PTA [see Fig. 9(c)], particularly for cases
with small posterior coherence [see Fig. 9(d)]. It suggests
that higher posterior coherence does not mean smaller RMSE.
This finding implies that detR might be better than pos-
terior coherence in describing the temporal coherence of a
scatterer.

Furthermore, we explored whether detR can better dis-
tinguish scatterers with different coherences. Accordingly,
we extended the short-term model (Cohl) to three mod-
els, by setting the parameter initial coherences (yo) to 0.6,
0.65, and 0.75, respectively. It was found that the slight
variation in initial coherence (yo) did not inflict a signifi-
cant difference for the distribution of posteriori coherence.
Conversely, detR distributions using three input models are
easily distinguishable (see Fig. 10), implying detR value
can precisely distinguish scatterers with different statistical
properties, and DS selection based on detR will be more
accurate. Nevertheless, detR is not a normalized measurement.
Its range of variance depends on SLC numbers. In the real
case, we need to set a proper threshold according to specific
situation.

V. REAL-WORLD CASE STUDY
A. Study Area

We demonstrated the proposed method using a time-series
of Sentinel-1 data over Shenzhen Airport, China (see Fig. 11).
The test site included diverse land covers, such as buildings,
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Fig. 10.  (a) Histogram of detR using three different coherence models.

(b) Histogram of posteriori coherence using three different coherence models.

roads, soil, and grassland, providing opportunities to examine
different scatterer types. Sentinel-1 images were captured in
an ascending path using wide-swath mode. The observation
period was from January 1, 2019, to March 20, 2020. During
this period, 37 images were obtained with a revisit period of
12 days. The original SAR images were cut to 512 pixels x
1480 pixels size area. We adopted the Anderson—Darling test
(p-value = 0.05) to select SHPs in a 7 x 15 patch. Only
pixels with more than 50 SHPs were identified as candidate
DSs. SAR observations of SHPs were considered as samples to
calculate complex coherence matrices for each pixel. To better
satisfy the stationarity assumption, the topographic component
was removed from each SLC pair using a 12-m resolution
TerraSAR tandem product. Because the pooled samples could
not be simulated fairly, Reg 3 was not used in the simulation
study. Here, we added it back to the case study to generate
additional candidate solutions. For this regularization, we used
a larger patch (21 x 45) to select more samples. The relatively
large-size sample was used to calculate more stable pooled
SCM, which was then taken to regularize the original SCM.

B. Validation of Phase Estimation

We started by validating the performance of phase estima-
tion using the proposed likelihood function. The PTA algo-
rithm, sharing the same single-scatter mechanism assumption,
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Fig. 11.  Study area for the real-world case study in Shenzhen airport.
(a) Optical image. (b) Averaged SAR intensity image. The red triangles
correspond to the locations for three scatterers (A: grass, B: soil, and C:
road) investigated in Fig. 13.

was used for comparison. However, it is impossible to obtain
the true value in a real case. Therefore, two scenarios were
designed for comparison. In Scenario one, we compared
and investigated the difference between the retrieved consis-
tent phase series from the two algorithms. In Scenario two,
we implemented the validation using a parametric bootstrap
approach. The first scenario revealed whether the difference
caused by the proposed method was significant. The second
scenario further validates whether the proposed method can
perform well in a real coherence model.

To compare the differences, we used PTA and TMLE to
separately retrieve consistent phase series (see Fig. 12). Both
the PL approaches significantly improved the phase quality
compared with the original single-look interferogram. How-
ever, visual inspection revealed that the difference between
the phases retrieved using PTA and TMLE was not significant.
This is because the study area comprises an urban area with
many buildings and artificial infrastructure. There were a lot
of PS pixels with SHP number less than 50. The phases were
not re-estimated and were identical to the original single-look
interferograms. No differences were expected. However, for
DS-type pixels, the TMLE result was much less noisy than
PTA, particularly in low-coherence areas, such as bare soil
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140

160

600 650 700 750

Fig. 13. Enlarged view of Fig. 7. (a) TMLE. (b) PTA. Black rectangles
denote the areas with more obvious differences.

and grassland. In PTA, a slight regularization is allowed for
the ill-posed SCM. In this case, regularization is gradually
imposed and stops as long as the minimum eigenvalue is larger
than a threshold value (0.1 in the present case). However, the
proposed TMLE approach allows many attempts with different
regularization approaches and regularization factors, providing
opportunities for solutions using stronger regularization but
with a greater likelihood.

Zooming in into the bare soil area with a significant
difference, we found that the TMLE results were less noisy
than PTA (e.g., the black rectangles in Fig. 13). For low-
coherence pixels, SCM was poorly estimated and the like-
lihood function used in the PTA method was significantly
biased. Therefore, PTA cannot provide a high-quality solution.
Conversely, the TMLE approach relies on the true likelihood
function. Although it is difficult to obtain the global maxima
of likelihood, the traditional PL method using RSCMs with
different regularization factors can assist in searching for a
relatively optimal solution. It might not be the best method but
should have a larger likelihood than PTA solution. Therefore,

(b)
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Fig. 14. (a) Histogram of detR from the PTA and TMLE algorithms. (b) Phase
difference in the function of posterior coherence.

it is reasonable that TMLE provides smoother phase estimation
with less noise.

Furthermore, we explored the histogram of detR results
from two algorithms. The TMLE yielded smaller detR values
than PTA. The result indicated that in the real case, the
proposed method provides a solution with a larger likelihood.
The difference in function of posterior coherence was plotted.
Accordingly, the largest difference was distributed at the
lowest posterior coherence and decreased gradually with the
increase in posterior coherence (see Fig. 14). The result is con-
sistent with the finding in our simulated experiments. It makes
sense because the sampled complex coherence matrices have
larger bias for low-coherent pixels. The PTA algorithm uses it
to replace the real coherence matrix, and therefore bears more
risks of contaminating the PL results. However, the proposed
method can avoid this risk as it does not include such an
approximation.

In the second scenario, parametric bootstrapping was
applied to quantitatively compare the robustness of TMLE
and PTA. Bootstrapping is a commonly used approach for
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Fig. 15. SHP footprints and estimated coherence matrixes of three selected
pixels in the study area. (a)-(c) Grass, soil, and road pixel footprints.
(d)—(f) Grass, soil, and road pixel coherence matrixes.

evaluating estimator properties. We selected pixels from three
typical land covers in the test area, that is, grass, soil, and roads
[pixels A, B, and C in Fig. 9(a)]. The posterior coherences are
0.46, 0.80, and 0.78, respectively (see Fig. 15). A CGG dis-
tribution was assumed for time-series SAR observations. The
parameters (i.e., coherence matrix and consistent phase series)
were fitted using SAR observations. The fitted parameters were
then considered as the ground truth and used to generate new
random samples. The sample size was set to be the same as in
the real case, that is, 93 for grass (pixel A), 84 for soil (pixel
B), and 72 for road (pixel C).

As expected, the proposed TMLE algorithm had a lower
RMSE than that of the PTA method for the three land types
(see Fig. 16). According to our previous simulation, the
proposed algorithm improved the results more significantly for
low-coherence pixels. In this case, the selected road and grass
pixels were less coherent than the soil pixels. Thus, we can
observe more significant improvements in the grass and road
pixels than in the soil. Maximum improvements of 0.43, 0.10,
and 0.08 rad of RMSE were observed in the picked grass, road,
and soil pixels, respectively. Compared with the simulation
study as discussed in Section IV, TMLE exhibited a far greater
improvement in the highly coherent pixels (soil and road)
in the real case. This is because the sample size in the real
case was relatively smaller than that used in the experiment.
The SCM for highly coherent pixels is likely to be ill-posed,
and regularization is required. The proposed TMLE approach
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searches for the optimal solution from a series of approximate
MLE solutions using different regularization approaches and
regularization factors. Therefore, it is expected to perform bet-
ter than the conventional method with a single regularization
parameter. Meanwhile, for the selected low-coherence glass
pixel, the calculated coherence might be overestimated and
has better coherence than the Coh 1 model in the simulation.
Therefore, the improvement in TMLE is not as significant
as that of the Coh 1 model in the simulation study. Overall,
the parametric bootstrapping test indicates that the proposed
TMLE is robust in a real-world case study. More specifically,
it outperforms the conventional phase triangulation method for
different complex coherence matrices and time-series phase
patterns.

C. Validation of DS Selection

At present, posterior coherence is commonly used as an
indicator to evaluate whether a consistent phase series is
solved effectively and can provide support for high-quality
DS point selection. Since detR directly reveals the likelihood
of a solution, we believe it has the potential to act as an
index for DS selection. As illustrated in Fig. 17, different
land objects are more distinguishable in the detR map than
posterior coherence. As depicted in Fig. 11(a), a large area in
the upper left corner of the study area is covered by the ocean.
It can be observed that water pixels have significantly smaller
—lg(detR) (i.e., smaller likelihood) than soil. Conversely, the
posterior coherence of water pixels is indistinguishable from
most soil scatterers.

Three typical pixels were selected to investigate the coher-
ence matrices. Pixel 1 was a water scatterer with a low
posterior coherence (0.25333). Pixels 2 and 3 were soil
scatterers with low posterior coherence (0.23373) and high
posterior coherence (0.72998), respectively (see Fig. 18). The
coherence matrices indicate that Pixel 2 (soil scatterer) has
a larger coherence than Pixel 1 (water scatterer) in most of
the interferograms. This is reasonable, because a soil scatterer
should be more stable than a water scatterer. The phase
estimation likelihood (—detR) agrees with the expectation,
where likelihood of Pixel 2 was significantly larger than
Pixel 1. Conversely, the posterior coherence illustrates that
Pixel 2 is less coherent than Pixel 1, failing to represent their
true coherence in this case. Therefore, it is evident that the
detR value can better describe the coherence of pixels than
posterior coherence, agreeing with the findings given in the
simulation study.

Furthermore, we selected detR as selection criterion to pick
DS points. Accordingly, a threshold was set to ensure that
water scatterers were not selected. For comparison purpose,
we implemented PS-InSAR and conventional PTA DSI. DSs
were jointly processed with PS points in the Stanford method
for persistent scatterers (StaMPS) software. After re-estimating
the temporal coherence in StaMPS, 31 313, 123 629, and
155 552 scatterers were left for PS-InSAR, conventional DSI,
and the proposed approach, respectively. The deformation
patterns shown in the velocity maps from the three process-
ing frameworks mostly agree with each other. The primary
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Fig. 17.  Comparison of two DS selection criteria. (a) —lg(detR) map.
(b) Posterior coherence map.
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Fig. 18. Coherence matrixes for three typical scatterers. (a) Water. (b) Low-
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Fig. 19. Displacement rate maps. (a) PS-InSAR. (b) Conventional DSI.
(c) Our proposed DSI.

difference originates from measurement density and coverage.
The proposed approach further improved the density and
coverage by integrating DSs and adopting the proposed detR
function for phase estimation and DS selection (see Fig. 19).
Due to increased density, more deformation details can be wit-
nessed. Such improvement in the final deformation map ben-
efits from two aspects by adopting the proposed framework:
1) TMLE gives more reliable consistent phase series results

and 2) proper criterion based on detR function help pick high-
quality pixels. The first reason guarantees that the estimated
phase for DS has high quality, while the second reason
ensures that these high-quality DSs will not be abandoned
by improper selection criterion. Therefore, the combination of
the two factors can ensemble more low-coherent pixels to the
deformation map while retaining estimation quality.

VI. CONCLUSION

In this study, a new function (—detR) was proposed to eval-
uate the likelihood of consistent phase series. Unlike previous
work, this function truly represents the likelihood without
any assumption or approximation. Therefore, the proposed
function can better describe the quality of a candidate solution.
Based on this function, a DSI framework using this new
function for phase optimization and DS selection was pro-
posed. To mitigate the difficulty in searching global maxima
of —detR, we adopted multiple starting points’ strategy, which
originates from phase triangulation solutions using a series of
RSCMs with different regularization approaches and factors.

The simulation study reveals that the proposed phase
estimation method (TMLE) outperforms the existing PL
methods with significantly less RMSE, particularly for the
low-coherence scenario, that is, short-term and periodic decor-
relation models. Meanwhile, detR can better distinguish solu-
tions from different coherence models than the widely used
posterior coherence, exhibiting decent performance to serve
as a quality measure for PL.

The real-world case study shows a finding similar to that
of the simulation experiments. The difference between TMLE
and PTA is distributed in a wide posterior coherence range,
whereas it is more obvious for low-coherence pixels. TMLE
provides a less noisy estimated interferogram than conven-
tional PTA. The results from parametric bootstrapping show
that TMLE has a lower RMSE than PTA for different types
of scatterers. Furthermore, detR map also exhibits better per-
formance than posterior coherence in distinguishing different
scatterers. In particular, the water scatterer is more easily
distinguished from the soil scatterer by detR than the pos-
terior coherence. The final deformation map derived from the
proposed DSI framework has significantly better DS density
and coverage than the conventional approaches.

Future work needs to be done from two aspects: 1) fur-
ther refining the solving algorithms in TMLE to reduce the
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computational cost and make them efficiently converge to the
global maxima and 2) extending the likelihood function from
a single-scatter mechanism to multiple scatter mechanisms
to enable the support of all types of scatterers in real-world
applications.
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