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Abstract: A saddlepoint approximation to a nonlinear function of a sum of inde-

pendent and identically distributed random variables is provided, using Watson’s

lemma applied to a double integral. The accuracy of the expansion depends on the

smoothness of the nonlinear function. The result is applied to variance approxima-

tion, inverse moments, convergence rate, likelihood ratio statistics, and harmonic

mean, and compared with results in the literature.
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1. Introduction

While the basic ideas of saddlepoint approximation date back to Laplace

(1774), the approximation was introduced to statistics by Daniels (1954, 1987),

who derived saddlepoint expansions for the density and distribution function of

the sample mean. Barndorff-Nielsen and Cox (1989, 1994) give a detailed treat-

ment and a number of examples relevant for statistical theory and higher order

approximation for high order inference, and Kolassa (1994) provides a careful

derivation of several expansions based on saddlepoint techniques. Jensen (1995)

and Butler (2007) provide book length treatments. Butler and Wood (2004) dis-

cuss approximating the moment generating function of truncated random vari-

ables, Zhao, Cheng, and Yang (2011) introduce approximation of the moments

for the stop-loss premium in insurance and Broda and Paolella (2012) give a

recent review.

These applications typically consider a single integral, but we are interested

in the moments of nonlinear functions of a sum that are determined by a double

integral. Although a Taylor series expansion can be used to approximate the

nonlinear moment, it is more difficult to control the order of the error terms

when the sum in unnormalized. In this note, we derive a saddlepoint expansion

for this double integral by first applying Daniels’ method to approximate the

probability density function, and then using Watson’s lemma. Since Daniels’

method itself uses Watson’s lemma, this is a double application of the technique.

http://dx.doi.org/10.5705/ss.2012.333
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2. Main Result

Let Zi, i = 1, . . . , n be a sequence of independently identical distributed (iid)
random variables with probability density function p(x) = p1(x) for x ∈ (x−, x+).
The moment generating function is

M(T ) = eK(T ) =

∫ x+

x−

eTxp(x)dx, (2.1)

which we assume converges for real T in some nonvanishing interval containing
the origin. As in Daniels (1954), let −c1 < T < c2 be the largest such interval,
where 0 ≤ c1 ≤ ∞ and 0 ≤ c2 ≤ ∞ but c1 + c2 > 0. By Lebesgue’s Dominated
Convergence Theorem, the moment generating function is analytically defined in
the strip {T ∈ C : −c1 < ℜ(T ) < c2}.

The probability density function pn(x) for the sum Xn =
∑n

i=1 Zi is deter-
mined by the inverse Fourier integral

pn(x) =
1

2πi

∫ i∞

−i∞
enK(T )−TxdT, (2.2)

where −c1 < ℜ(T ) < c2 on the path of integration. For a given function f(·),

E{f(Xn)} =

∫ nx+

nx−

f(x)pn(x)dx =
1

2πi

∫ nx+

nx−

∫ i∞

−i∞
f(x)enK(T )−TxdTdx, (2.3)

where we assume the expectation exists. To find an asymptotic expansion for
E{f(Xn)} for large n, we make use of Watson’s lemma (see Jeffreys and Jeffreys
(1950)).

Lemma 1 (Watson’s Lemma). Let ψ(w) be analytic in a neighbourhood of w = 0
and bounded for real w ∈ [−A,B] with positive A and B. For any m ∈ N we
have as n→ ∞,( n

2π

)1/2
∫ B

−A
e−nw2/2ψ(w)dw =

m∑
k=0

ψ(2k)(0)

(2n)kk!
+O(n−m−1). (2.4)

Remark 1. Following convention, (2.4) can be expressed as( n

2π

)1/2
∫ B

−A
e−nw2/2ψ(w)dw ∼

∞∑
k=0

ψ(2k)(0)

(2n)kk!
;

more precisely,

G(n) ∼
m∑
k=0

ak
nk
,

if G(n) −
∑m

k=0 ak/n
k = O(n−m−1), and if this holds for any m ∈ N, we write

G(n) ∼
∑∞

k=0 ak/n
k.
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We make a change of variable x = nK ′(y) to transform the double integral

in (2.3) into

E{f(Xn)} =
n

2πi

∫ y+

y−

∫ i∞

−i∞
f{nK ′(y)}K ′′(y)en{K(T )−TK′(y)}dTdy, (2.5)

where y− < 0 is the root of K ′(y−) = x−, and y+ > 0 is the root of K ′(y+) = x+.

Note that

K ′(y) =
M ′(y)

M(y)
=

∫ x+

x−
xexyp(x)dx∫ x+

x−
exyp(x)dx

> x−

for any y ∈ R, which implies y− = −∞. To illustrate the transformation from x−
and x+ to y− and y+, we take two distributions as examples. For the binomial

distribution with expectation denoted by θ, we have x− = 0 and x+ = 1,M(y) =

1− θ + θey, K(y) = ln(1− θ + θey), K ′(y) = 1/[1 + e−y(1− θ)/θ], so y− = −∞
and y+ = ∞. For the normal distribution with mean µ and variance σ2, we have

x− = −∞ and x+ = ∞, M(y) = exp(µy + σ2y/2), K(y) = µy + σ2y/2 and

K ′(y) = µ+ σy, so y− = −∞ and y+ = ∞.

Let u = u(T, y) be the solution in T to the equation

K(T )− TK ′(y) = K(y)− yK ′(y) +
u2

2
. (2.6)

It follows that the first integral in (2.5) becomes∫ i∞

−i∞
en{K(T )−TK′(y)}dT =

∫ u(i∞,y)

u(−i∞,y)
en{K(y)−yK′(y)}+nu2/2ϕ(u, y)du, (2.7)

where

ϕ(u, y) =
∂T

∂u
(u, y). (2.8)

Following Daniels (1954), we transform the integral contour of u in (2.7) into the

steepest-descent curve (−iA, iB) through the saddle point u = 0, where A > 0

and B > 0. An application of Watson’s lemma yields

n

2πi

∫ i∞

−i∞
en{K(T )−TK′(y)}dT ∼

( n

2π

)1/2
en{K(y)−yK′(y)}

∞∑
k=0

(−1)kϕ(2k)(0, y)

(2n)kk!
,

(2.9)

where the derivatives of ϕ are partial derivatives with respect to u. Substituting

this into (2.5) gives

E{f(Xn)} ∼
( n

2π

)1/2
∫ y+

y−

f{nK ′(y)}K ′′(y)ϕ̃(y)en{K(y)−yK′(y)}dy, (2.10)
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where

ϕ̃(y) ∼
∞∑
k=0

(−1)kϕ(2k)(0, y)

(2n)kk!
. (2.11)

We make the second transformation

K(y)− yK ′(y) = −w
2

2
, (2.12)

from which we have

E{f(Xn)} ∼
( n

2π

)1/2
∫ y+

y−

e−nw2/2ψ(w)dw, (2.13)

where

ψ(w) = f{nK ′(y)}K ′′(y)ϕ̃(y)
dy

dw
. (2.14)

A further application of Watson’s lemma yields the following.

Theorem 1. Assume that

(A1) κr := K(r)(0) exists for any 0 ≤ r ≤ 2m.

(A2) f ∈ C2m(nx−, nx+) and fr := nrf (r)(nκ1) = O(|f0|) for any 0 ≤ r ≤ 2m.

Then we have the m-th order approximation

E{f(Xn)} =
m∑
r=0

ψ(2r)(0)

(2n)rr!
+O(|f0|n−m−1). (2.15)

Remark 2. If the condition fr = O(|f0|) is violated, as for example in the case of

an exponential function f(·), we can modify the definition of w in (2.12) according

to the expression of f(x) and then apply Watson’s lemma. For example, if f(x)

is replaced by f(x)eβx with f satisfying (A2) and −c1 < β < c2 (where c1 and

c2 are given in the first paragraph in Section 2) and the moment exists, we need

to change (2.3), (2.5), and (2.10) into

E{f(Xn)e
βXn} =

1

2πi

∫ nx+

nx−

∫ i∞

−i∞
f(x)enK(T )−Tx+βxdTdx

=
n

2πi

∫ y+

y−

∫ i∞

−i∞
f{nK ′(y)}K ′′(y)en{K(T )−TK′(y)+βK′(y)}dTdy

∼
( n

2π

)1/2
∫ y+

y−

f{nK ′(y)}K ′′(y)ϕ̃(y)en{K(y)−yK′(y)+βK′(y)}dy.

Consequently, the transformation (2.12) becomes

K(y)− yK ′(y) + βK ′(y)−K(β) = −w
2

2
.
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We still have (2.15) with ψ(w) in (2.14) replaced by

ψ(w) = enK(β)f{nK ′(y)}K ′′(y)ϕ̃(y)
dy

dw
.

3. Approximations

To illustrate how our theorem can be applied to obtain an approximation up
to a given order, we provide details for obtaining an explicit approximation from
our main result; the higher-order terms can be obtained in a similar manner.
Our goal is to obtain the coefficients ci in the asymptotic expansion

E{f(Xn)} = c0 +
c1
n

+
c2
n2

+
c3
n3

+
c4
n4

+O(|c0|n−5).

First, from (2.6) we obtain

u =
√
K ′′(y)(T−y) + K(3)(y)

6
√
K ′′(y)

(T−y)2+3K(4)(y)K ′′(y)−{K(3)(y)}2

72{K ′′(y)}3/2
(T−y)3

+
5{K(3)(y)}3 − 15K ′′(y)K(3)(y)K(4)(y) + 18{K ′′(y)}2K(5)(y)

2160{K ′′(y)}5/2
(T − y)4

+u5(y)(T − y)5 +O(|T − y|6), (3.1)

where
51840{K ′′(y)}7/2u5(y) = 72{K ′′(y)}3K(6)(y)− 72{K ′′(y)}2K(3)(y)K(5)(y)

−45{K ′′(y)}2{K(4)(y)}2 + 90K ′′(y){K(3)(y)}2K(4)(y)

−25{K(3)(y)}4.

Inverting this yields

T (u, y) = y +
u√
K ′′(y)

− K(3)(y)

6{K ′′(y)}2
u2 +

5{K(3)(y)}2 − 3K(4)(y)K ′′(y)

72{K ′′(y)}3
√
K ′′(y)

u3

+
45K ′′(y)K(3)(y)K(4)(y)− 40{K(3)(y)}3 − 9{K ′′(y)}2K(5)(y)

1080{K ′′(y)}5
u4

+T5(y)u
5 +O(|u|6), (3.2)

where
17280T5(y){K ′′(y)}13/2 = 385{K(3)(y)}4 − 630K ′′(y){K(3)(y)}2K(4)(y)

+105{K ′′(y)}2{K(4)(y)}2+168{K ′′(y)}2K(3)(y)K(5)(y)

−24{K ′′(y)}3K(6)(y).

By applying this to (2.8) and (2.11), we obtain

ϕ̃(y) =
1√
K ′′(y)

− 1

2n

5{K(3)(y)}2 − 3K(4)(y)K ′′(y)

12{K ′′(y)}7/2
+
ϕ̃2(y)

n2
+O(n−3), (3.3)

where
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1152ϕ̃(y){K ′′(y)}13/2 = 385{K(3)(y)}4 − 630K ′′(y){K(3)(y)}2K(4)(y)

+105{K ′′(y)}2{K(4)(y)}2 + 168{K ′′(y)}2K(3)(y)K(5)(y)

−24{K ′′(y)}3K(6)(y).

On the other hand, denoting K(r)(0) by κr for convenience, we obtain from the

second transformation (2.12) that

w =
√
κ2y +

κ3
3
√
κ2
y2 +

9κ4κ2 − 4κ23

72κ
3/2
2

y3 +
20κ33 − 45κ2κ3κ4 + 36κ22κ5

1080κ
5/2
2

y4

+w5y
5 +O(|y|6), (3.4)

where

51840w5κ
7/2
2 = 360κ32κ6 − 576κ22κ3κ5 − 405κ22κ

2
4 + 1080κ2κ

2
3κ4 − 400κ43.

Inverting this asymptotic expansion yields

y =
w

√
κ2

− κ3
3κ22

w2 +
20κ23 − 9κ4κ2

72κ
7/2
2

w3 +
135κ2κ3κ4 − 160κ33 − 18κ22κ5

540κ52
w4

+y5w
5 +O(|w|6), (3.5)

where

17280y5κ
13/2
2 = 6160κ43 − 7560κ2κ

3
3κ4 + 945κ22κ

2
4 + 1344κ22κ3κ5 − 120κ32κ6.

Therefore, it follows from (3.5) and (A2) that

f{nK ′(y)} = f0 + f1κ2y + (f2κ
2
2 + f1κ3)y

2/2 + (f3κ
3
2 + 3f2κ2κ3 + f1κ4)y

3/6

+(f4κ
4
2 + 6f3κ

2
2κ3 + 3f2κ

2
3 + 4f2κ2κ4 + f1κ5)y

4/24 +O(|f0||y|5)

= f0 + f1
√
κ2w + (

f2κ2
2

+
f1κ3
6κ2

)w2

+
12f3κ

4
2 + 12f2κ

2
2κ3 − 4f1κ

2
3 + 3f1κ2κ4

72κ
5/2
2

w3

+
A4

1080κ42
w4 +O(|f0||w|5), (3.6)

where

A4 = 45f4κ
6
2 + 90f3κ

4
2κ3 − 45f2κ

2
2κ

2
3 + 40f1κ

3
3 + 45f2κ

3
2κ4

−45f1κ2κ3κ4 + 9f1κ
2
2κ5.
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Moreover, we obtain from (3.5) that

K ′′(y) = κ2 + κ3y + κ4y
2/2 + κ5y

3/6 + κ6y
4/24 +O(|y|5)

= κ2 +
κ3√
κ2
w +

3κ2κ4 − 2κ23
6κ22

w2 +
20κ33 − 33κ2κ3κ4 + 12κ22κ5

72κ
7/2
2

w3

+
45κ32κ6−216κ22κ3κ5−135κ22κ

2
4+630κ2κ

3
3κ4−320κ43

1080κ52
w4+O(|w|5), (3.7)

dy

dw
=

1
√
κ2

− 2κ3
3κ22

w +
20κ23 − 9κ4κ2

24κ
7/2
2

w3 +
135κ2κ3κ4 − 160κ33 − 18κ22κ5

135κ52
w4

+5y5w
5 +O(|w|6). (3.8)

Multiplying (3.3), (3.6), (3.7), and (3.8), and taking into account (2.14), gives

ψ(0) = f0 +
f0(3κ2κ4 − 5κ23)

24κ32n

+
f0(385κ

4
3 − 630κ2κ

2
3κ4 + 105κ22κ

2
4 + 168κ22κ3κ5 − 24κ32κ6)

1152κ62n
2

+O(|f0|n−3), (3.9)

ψ′′(0) =
12f2κ

4
2 + 5f0κ

2
3 − 3f0κ2κ4

12κ32
+
ψ2
1

n
+O(|f0|n−2), (3.10)

with

288ψ2
1κ

6
2 = 36f0κ

3
2κ6 − 300f0κ

2
2κ3κ5 + 72f2κ

4
2κ5 − 201f0κ

2
2κ

2
4 + 1338f0κ2κ

2
3κ4

−382f1κ
3
2κ3κ4 + 36f2κ

5
2κ4 − 925f0κ

4
3 + 360f1κ

2
2κ

3
3 − 60f2κ

4
2κ

2
3,

and

ψ(4)(0) = ψ4
0 +O(|f0|n−1), (3.11)

with

144ψ4
0κ

6
2 = 144f4κ

8
2 + 192f3κ

6
2κ3 + 120f2κ

4
2κ

2
3 − 720f1κ

2
2κ

3
3 + 1465f0κ

4
3

−72f2κ
5
2κ4 + 768f1κ

3
2κ3κ4 − 2046f0κ2κ

2
3κ4 + 297f0κ

2
2κ

2
4

−144f1κ
4
2κ5 + 432f0κ

2
2κ3κ5 − 48f0κ

3
2κ6.

Applying (3.9), (3.10), and (3.11) to (2.15) yields

E{f(Xn)} = f0 +
f2κ2
2n

+
3f4κ

2
2 + 4f3κ3
24n2

+O(|f0|n−3), (3.12)

as n → ∞. Recall the notations κr = K(r)(0) and fr = nrf (r)(nκ1). A similar

approach can give an approximation up to any order; the terms to O(n−4) are,
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with the details omitted,

E{f(Xn)} = f0 +
f2κ2
2n

+
3f4κ

2
2 + 4f3κ3
24n2

+
f6κ

3
2 + 4f5κ2κ3 + 2f4κ4

48n3

+
15f8κ

4
2 + 120f7κ

2
2κ3 + 80f6κ

2
3 + 120f6κ2κ4 + 48f5κ5

5760n4

+O(|f0|n−5). (3.13)

Remark 3. By using Taylor series approximation, we have

E{f(Xn)} = f0 +
f2κ2
2n

+
f3E(Xn − nκ1)

3

6n3
+
f4E(Xn − nκ1)

4

24n4
+ · · · ,

where the order of successive terms is governed by the order of the central mo-
ments of Xn, and it is not straightforward to determine the order of the remain-
der term when the Taylor series expansion is truncated; for example, see Rosén
(1970) for bounds on even moments. The saddlepoint expansion, being built on
the cumulant generating function, provides an easier method for obtaining an
approximation up to a desired order.

4. Examples

Example 1. Approximate variance compared to the delta method. Assume the
Zi are nonnegative. Using the delta method, Garcia and Palacios (2001, Theorem
1) proved

√
n
{(

1 +
n∑

i=1

Zi

n

)−α
− (1 + κ1)

−α
}
→d N

{
0, α2(1 + κ1)

−2(α+1)κ2

}
. (4.1)

Letting f(x) = (1+x/n)−α with x ≥ 0, which satisfies the conditions of Theorem
1, we have

E
{(

1 +
n∑

i=1

Zi

n

)−α}
= (1 + κ1)

−α
{
1 +

c1(α)

n
+
c2(α)

n

2

+O(
1

n3
)
}
, (4.2)

where c1(α) = −α(−α− 1)κ2/{2(1 + κ1)
2} and

c2(α) =
1

24

{
3(−α)(−α− 1)(−α− 2)(−α− 3)κ22

(1 + κ1)4
+

4(−α)(−α− 1)(−α− 2)κ3
(1 + κ1)3

}
.

Further, we have

Var
{√

n
(
1 +

n∑
i=1

Zi

n

)−α}
= n{Ef2(Xn)− E2f(Xn)}

= n(1+κ1)
−2α

[
1+

c1(2α)

n
+
c2(2α)

n2
−{1 + c1(α)

n
+
c2(α)

n2
}2+O(

1

n3
)
]

= (1+κ1)
−2α

[
{c1(2α)−2c1(α)}+

{c2(2α)−c21(α)−2c2(α)}
n

+O(
1

n2
)
]
. (4.3)
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Note that (1+κ1)
−2α{c1(2α)−2c1(α)} = α2(1+κ1)

−2(α+1)κ2. Thus the leading
term in (4.3) agrees with the variance approximation in (4.1).

Example 2. Inverse moment. Let Xn follow a binomial distribution with mean
nθ. A formula was given in Chao and Strawderman (1972) for the inverse moment
E(a +Xn)

−α, for positive integers a and α. In particular for a = 1 and α = 1,

they obtained

E

(
1

1 +Xn

)
=

1− (1− θ)n+1

(n+ 1)θ
. (4.4)

The corresponding leading term approximation is

E

(
1

1 +Xn

)
=̇

1

1 + nθ
, (4.5)

see Garcia and Palacios (2001) and Shi, Wu, and Liu (2010). An upper bound
given by Pittenger (1990) is

1

1 + nθ/(1− θ)
+

1

(1− θ + nθ)(1 + (1 + θ(1− θ))/(nθ))
. (4.6)

Since f(x) = 1/(1 + x) satisfies the conditions of Theorem 1, we have the
fourth order approximation (3.13), where κr = {log(1 − θ + θeT )}(r)(0) and
fr = nrf (r)(nθ).

We compare the exact result (4.4), the leading term approximation (4.5),
the fourth order approximation (3.13), and the upper bound (4.6) for different
values of n and θ in Figure 1. It shows that the fourth order approximation is
better than the leading term approximation and is closest to the exact result. To

obtain more accurate approximation requires either larger values of n or more
terms in the saddlepoint expansion. The upper bound is not as accurate as the
leading term approximation.

The inverse moment approximation for other values of a and α can be useful
in theoretical analysis, as closed-form expressions are difficult to obtain. Ap-
plications of (4.4) for non-integer a and α include Stein estimation and post-
stratification, evaluation of risks of estimators or powers of tests, reliability and
life testing, insurance and financial mathematics, complex systems and other

problems; see Wu, Shi, and Miao (2009). Recent applications include Au and
Zhang (2011) and Jordan (2011).

Example 3. Convergence rate. In this example, assuming that f(x) satisfies the
conditions of Theorem 1, we are interested in the convergence rate of f(Xn) to
f(nκ1). Using Markov’s inequality, we have for arbitrary ε, r > 0,

P{|f(Xn)− f(nκ1)| ≥ ε} ≤ E|f(Xn)− f(nκ1)|r

εr
. (4.7)
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Figure 1. Comparison of inverse moment approximations for n = 1, . . . , 20
and θ = 0.1 (top) and θ = 0.5 (bottom). The exact result (E) is obtained by
Chao and Strawderman (1972), the leading term approximation (L) is given
by Garcia and Palacios (2001) and Shi, Wu, and Liu (2010), the fourth order
approximation (F) is shown in (3.13), and the upper bound (U) is obtained
by Pittenger (1990).

To obtain the convergence rate, we need to find an accurate bound on E|f(Xn)−
f(nκ1)|r. In view of the general inequality

E|f(Xn)− f(nκ1)|s ≤ [E|f(Xn)− f(nκ1)|r]s/r

for s ≤ r, it suffices to consider the case when r is an even integer. For simplicity,
we assume r = 4; the other cases can be studied similarly. We intend to show
E|f(Xn)− f(nκ1)|4 = O(|f(nκ1)|4/n2). This formula reduces to the well known
bound if f(x) = x. Now

E|f(Xn)− f(nκ1)|4 = E{f4(Xn)} − 4E{f3(Xn)}f(nκ1) + 6E{f2(Xn)}f2(nκ1)
− 4E{f(Xn)}f3(nκ1) + f4(nκ1). (4.8)
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By Theorem 1, we have

E{f(Xn)} = f(nκ1) + f ′′(nκ1)nκ2/2 +O(|f(nκ1)|n−2),

E{f2(Xn)} = f2(nκ1) + [{f ′(nκ1)}2 + f(nκ1)f
′′(nκ1)]nκ2 +O(|f2(nκ1)|n−2),

E{f3(Xn)} = f3(nκ1) + [6f(nκ1){f ′(nκ1)}2 + 3f2(nκ1)f
′′(nκ1)]nκ2/2

+O(|f3(nκ1)|n−2),

E{f4(Xn)} = f4(nκ1) + [6f2(nκ1){f ′(nκ1)}2 + 2f3(nκ1)f
′′(nκ1)]nκ2

+O(|f4(nκ1)|n−2).

Substituting these into (4.8) gives E|f(Xn) − f(nκ1)|4 = O(|f(nκ1)|4/n2) and

hence

P (|f(Xn)− f(nκ1))| ≥ ε) ≤ C|f(nκ1)|4

n2ε4
. (4.9)

Example 4. Likelihood ratio statistic. Consider a single Poisson process of rate

ρ with the null hypothesis that ρ = ρ0. If n points are observed in the total time

of observation t, the log-likelihood function is

ℓ(ρ) = n log(ρt)− ρt, (4.10)

and the likelihood ratio statistic for the hypothesis is

w(ρ0) = 2[n log
{ n

ρ0t

}
− (n− ρ0t)]. (4.11)

Suppose n is preassigned, so that 2ρ0t follows a χ2
2n distribution. Barndorff-

Nielsen and Cox (1994, Example 7.4) have shown that

E0{w(ρ0)} = 1 +
1

6n
+O(

1

n2
). (4.12)

Since ρ0t follows a gamma distribution with shape n and rate 1, we can write

E0{w(ρ0)} = 2n log n− 2nE(logXn), (4.13)

where Xn =
∑n

i=1 Zi, and Zi follows an exponential distribution with rate 1.

Then the conditions of Theorem 1 are satisfied for f(x) = log x, x > 0. Substi-

tuting (3.13) into (4.13) gives

E0{w(ρ0)} = 1 +
1

6n
− 1

60n3
+O(n−4), (4.14)

where the first order term 1/(6n) is consistent with (4.12), there is no second

order term n−2, and for the last term we use the fact that |fr| = O(1) with

r > 0.
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Example 5. Harmonic mean. The harmonic mean is used to measure the price

ratio in finance, and the program execution rate in computer engineering. Some

statistical applications are given in Pakes (1999, Section 3). Jones (2003) de-

scribes the role of the harmonic mean in assessing results of multi-center clinical

trials, and we use the model in that paper. Let ξ1, . . . , ξn be iid positive Poisson

random variables with parameter λ and

P (ξ1 = k) =
1

1− e−λ

λk

k!
e−λ, for k = 1, 2, . . .

Set Hn = n/Xn to be the harmonic mean of random variables ξ1, . . . , ξn,

where Xn =
∑n

i=1 Zi and Zi = 1/ξi. Assuming λ→ ∞, Jones (2003) derived the

approximations κ1 = E(1/ξ1) = 1/λ + 1/λ2 + 2/λ3 + O(1/λ4) and E(1/ξ21) =

1/λ2 + 3/λ3 + O(1/λ4), which imply that κ2 = 1/λ3 + O(1/λ4) and κ2/κ1 =

1 +O(1/λ).

Letting f(x) = n/x, the first order approximation is

E(Hn) = E{f(Xn)}=̇
1

κ1
+

κ2
(nκ31)

= λ− 1 +
1

n
+O(

1

λ
),

by (3.13), which is consistent with Jones (2003, Section 3.3). In addition, we are

able to obtain higher-order approximations using (3.12). First, making use of

the identity

1

k(k +m)!
=

∞∑
j=m+1

(j − 1)!

(k + j)!m!
,

we can extend the asymptotic formulas in Jones (2003) as follows:

E1 := E

(
1

ξ1

)
∼

∞∑
j=1

(j − 1)!

λj
;

E2 := E

(
1

ξ21

)
∼

∞∑
j2=2

j2−1∑
j1=1

(j2 − 1)!

j1λj2
;

E3 := E

(
1

ξ31

)
∼

∞∑
j3=3

j3−1∑
j2=2

j2−1∑
j1=1

(j3 − 1)!

j1j2λj3
;

Em := E

(
1

ξm1

)
∼

∑
1≤j1<j2<···<jm<∞

(jm − 1)!

j1 · · · jm−1λjm
.
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In particular, we obtain

E1 := E

(
1

ξ1

)
∼ 1

λ
+

1

λ2
+

2

λ3
+

6

λ4
+ · · · ;

E2 := E

(
1

ξ21

)
∼ 1

λ2
+

3

λ3
+

11

λ4
+

50

λ5
+ · · · ;

E3 := E

(
1

ξ31

)
∼ 1

λ3
+

6

λ4
+

35

λ5
+

225

λ6
+ · · · .

Using the identities κ1 = E1, κ2 + κ21 = E2 and κ3 + 3κ1κ2 + κ31 = E3, it follows

that

κ1 ∼
1

λ
+

1

λ2
+

2

λ3
+

6

λ4
+ · · · ;

κ2 ∼
1

λ3
+

6

λ4
+

34

λ5
+ · · · ;

κ3 ∼
5

λ5
+

68

λ6
+ · · · .

With f(x) = n/x and fr := nrf (r)(nκ1), we have

f0 =
1

κ1
, f1 =

−1

κ21
, f2 =

2

κ31
, f3 =

−6

κ41
, f4 =

24

κ51
,

and from (3.12),

E(Hn) = E{f(Xn)} ∼ 1

κ1
+

κ2
nκ31

+
3κ22 − κ1κ3

n2κ51

∼
(
λ− 1− 1

λ
− 3

λ2

)
+

1

n

(
1 +

3

λ
+

16

λ2

)
+

1

n2

(
−2

λ
+

−27

λ2

)
.

The above approximation neglects terms that are O(n−3) +O(λ−3).

5. Discussion

Using the saddlepoint approximation and Watson’s lemma, we provided a

general framework to derive an asymptotic expansion to nonlinear moments of a

sum of independent, identically distributed random variables. We have illustrated

this on several examples, and compared our result to existing approximations in

literature. Our method can be applied to more general nonlinear moments.

We conclude with a short remark on some potential applications of our re-

sults. Rice (2008) uses Taylor series approximations to nonlinear moments that

arise in the study of evolutionary theory. For example, the ratio of individual

fitness to mean population fitness is important in studying the effects of selection.
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In Shi, Wu, and Reid (2014) we extended the methods of this paper to approxi-

mate the moments of Zi/
∑n

i=1 Zi, which could in turn be used to approximate

this fitness ratio.

Reviewers of an earlier version asked about simulating the moments by Monte

Carlo methods, and this is certainly possible and potentially accurate enough for

numerical work, but is not as useful for theoretical analysis of the type provided

in Example 3. Analytical approximations are much faster, which may not be

an issue for a single computation, but if the computation is embedded in a

larger iteration and needs to be carried out repeatedly then the time savings

may become important.

It would be of interest, although challenging, to relax the assumption of

identical distributions, or of independence.
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Mathématique et de Physique, Tome Sixième. (English translation by S. M. Stigler 1986.

Statist. Sci. 1, 364-378).

Pakes, A. G. (1999). On the convergence of moments of geometric and harmonic means. Statist.

Neerlandica 53, 96-110.

Pittenger, A. O. (1990). Sharp mean-variance bounds for Jensen-type inequalities. Statist.

Probab. Lett. 10, 91-94.

Rice, S. H. (2008). A stochastic version of the Price equation reveals the interplay of determin-

istic and stochastic processes in evolution. BMC Evolutionary Biology 8, 262.

Rosén, B. (1970). On bounds on the central moments of even order of a sum of independent

random variables. Ann. Math. Statist. 41, 1074-1077.

Shi, X., Wu, Y. and Liu, Y. (2010). A note on asymptotic approximations of inverse moments

of nonnegative random variables. Statist. Probab. Lett. 80, 1260-1264.

Shi, X., Wu, Y. and Reid, N. (2014). Approximation to the moments of ratios of cumulative

sums. Canad. J. Statist. 42, 325-336.

Wu, T.-J., Shi, X. and Miao, B. (2009). Asymptotic approximation of inverse moments of

nonnegative random variables. Statist. Probab. Lett. 79, 1366-1371.

Zhao, K., Cheng, X. and Yang, J. (2011). Saddlepoint approximation for moments of random

variables. Front. Math. China 6, 1265-1284.

Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University,

Antigonish, Nova Scotia, B2G 2W5, Canada.

E-mail: shermanshixp@gmail.com

Department of Mathematics, Southeast Missouri State University, Cape Girardeau, Missouri

63701, USA.

E-mail: xswang@semo.edu

Department of Statistical Sciences, University of Toronto, Toronto, Ontario, M5S 3G3, Canada.

E-mail: reid@utstat.utoronto.ca

(Received November 2012; accepted November 2013)

shermanshixp@gmail.com
xswang@semo.edu
reid@utstat.utoronto.ca

	1. Introduction
	2. Main Result
	3. Approximations
	4. Examples
	5. Discussion

