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Abstract
In this paper, we study asymptotics of the thermal parti-

tion function of a model of quantum mechanical fermions

with matrix-like index structure and quartic interactions.

This partition function is given explicitly by a Wron-

skian of the Stieltjes-Wigert polynomials. Our asymptotic

results involve the theta function and its derivatives. We

also develop a new asymptotic method for general 𝑞-

polynomials.
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T I O N :
33D90, 41A60

1 INTRODUCTION AND STATEMENT OF RESULTS

In the past few decades, matrix models have attracted a lot of research interests due to their close

relations and various applications in many areas of mathematics and physics; for example, see Refs.

1 and 2. Quite recently, to better understand the physics of a large number of fermionic degrees of

freedom subject to nonlocal interactions, Anninos and Silva3 studied models of quantum mechanical

fermions with matrix-like index structure. Given 𝐿,𝑁 ∈ ℕ, they considered a fermionic matrix model

consisting of 𝑁𝐿 complex fermions {𝜓𝑖𝐴, 𝜓̄𝐴𝑖} with 𝑖 = 1,… , 𝑁 and 𝐴 = 1,… , 𝐿. Note that the

indices 𝑖 and 𝐴 transform in the bifundamental of a 𝑈 (𝑁) × 𝑈 (𝐿) symmetry. They showed that the

thermal partition function is given by

𝑍𝐿×𝑁 = ∫
∏
𝑖<𝑗

sinh2
(
𝜇𝑖 − 𝜇𝑗

2

) 𝑁∏
𝑖=1

cosh𝐿
(𝜇𝑖
2

)
𝑒−𝐿𝛾̃𝜇

2
𝑖

𝑁∏
𝑖=1

𝑑𝜇𝑖, (1)
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where 𝛾̃ > 0 is a positive parameter and the normalization constant  is

 = 2−𝐿 ∫
∏
𝑖<𝑗

sinh2
(
𝜇𝑖 − 𝜇𝑗

2

) 𝑁∏
𝑖=1

𝑒−𝐿𝛾̃𝜇
2
𝑖

𝑁∏
𝑖=1

𝑑𝜇𝑖. (2)

It is interesting to point out that the sinh term in the above integrals also appears in the study of matrix

models in Chern-Simons-matter theories; for example, see Refs. 2 and 4.

Later, Tierz5 realized that the partition function in (1) can be written explicitly as a Wronskian of

the Stieltjes-Wigert polynomials. Let the constant 𝐶 be given as

𝐶 = 2𝑁(𝑁−1)−𝑁𝐿 exp
(
− 𝑁3

4𝐿𝛾̃
− 3𝑁𝐿

16𝛾̃
− 𝑁2

2𝛾̃

)
,

Tierz showed that

𝑍𝐿×𝑁 =
𝑍𝐿×𝑁

2𝐿𝐶
= (−1)𝐿𝑁∏𝐿−1

𝑗=0 𝑗!

||||||||||||

𝑆𝑁 (𝜆) 𝑆𝑁+1(𝜆) … 𝑆𝑁+𝐿−1(𝜆)

𝑆′
𝑁
(𝜆) 𝑆′

𝑁+1(𝜆) … 𝑆′
𝑁+𝐿−1(𝜆)

⋮ ⋮ ⋮ ⋮

𝑆
(𝐿−1)
𝑁

(𝜆) 𝑆
(𝐿−1)
𝑁+1 (𝜆) … 𝑆

(𝐿−1)
𝑁+𝐿−1(𝜆)

||||||||||||
, (3)

where the spectral parameter is

𝜆 = −𝑞−𝑁−𝐿∕2. (4)

Here 𝑞 = exp(− 1
2𝛾̃𝐿 ) ∈ (0, 1) and 𝑆𝑛(𝑥) is the monic Stieltjes-Wigert polynomial

𝑆𝑛(𝑥) = (−1)𝑛𝑞−𝑛2−𝑛∕2
𝑛∑

𝑘=0

[
𝑛

𝑘

]
𝑞

𝑞𝑘
2+𝑘∕2(−𝑥)𝑘; (5)

see Refs. 6 and 7. After studying the partition function𝑍𝐿×𝑁 for some finite𝐿 and𝑁 , Tierz5 raised the

question of analyzing its large𝑁 limit. He discussed briefly the case𝐿 = 1 and pointed out a connection

to the Rogers-Ramanujan identities and possibly to their 𝑚 version of Garrett et al.8 However, he did

not prove any asymptotic results rigorously.

In this paper, we further develop an asymptotic approach of Wang and Wong9, to find the asymptotics

of 𝑍𝐿×𝑁 as 𝑁 → ∞ for general 𝐿 ∈ ℕ. Our asymptotic technique applies to general 𝑞-polynomials,

which are not even required to be orthogonal. To express our results, we need the following notation

for the theta function:

Θ(𝑧) ∶=
∞∑

𝑘=−∞
𝑞𝑘

2
𝑧𝑘; (6)

see Whittaker and Watson.10 For convenience, let us also introduce the function related to the deriva-

tives of the theta function as follows:

Θ𝑗(𝑧) ∶= 𝑧𝑗Θ(𝑗)(𝑧) =
∞∑

𝑘=−∞
𝑞𝑘

2
𝑧𝑘(−𝑘)𝑗(−1)𝑗 . (7)
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It is easy to see that, when 𝑗 = 0, the above formula reduces to the theta function in (6); and when

𝑗 = 1, we have

Θ1(𝑧) = 𝑧Θ′(𝑧) =
∞∑

𝑘=−∞
𝑘 𝑞𝑘

2
𝑧𝑘. (8)

Now, we are in a position to state one of our main results in the following theorem:

Theorem 1.1. Let 𝑞 ∈ (0, 1), 𝐿,𝑁 ∈ ℕ, 𝑚 = ⌊𝑁∕2⌋ and 𝛼 = 2𝑚 −𝑁 . With the partition function
𝑍𝐿×𝑁 defined in (3), we have, for all 𝐿 ∈ ℕ,

𝑞
5𝐿𝑁2

4 +𝐿2𝑁
2 𝑍𝐿×𝑁 ∼ 𝑞

𝐿(𝐿−𝛼−1)2
4

(𝑞; 𝑞)𝐿∞
∏𝐿−1

𝑗=0 𝑗!
det(𝑅), as 𝑁 → ∞, (9)

where 𝑅 is an 𝐿 × 𝐿 matrix with entries involving functions Θ𝑗(𝑧) in (7) as follows:

𝑅𝑖𝑗 = Θ𝑖

(
𝑞𝛼−𝑗−

𝐿−1
2
)
=

∞∑
𝑘=−∞

𝑞𝑘
2
𝑞
𝑘
(
𝛼−𝑗−𝐿−1

2

)
(−𝑘)𝑖(−1)𝑖 (10)

for 0 ≤ 𝑖, 𝑗 ≤ 𝐿 − 1.

For simplicity, we use the symbol ∼ to denote asymptotic equal; namely, we write 𝑎(𝑁) ∼ 𝑏(𝑁) as

𝑁 → ∞ if

lim
𝑁→∞

𝑎(𝑁)
𝑏(𝑁)

= 1.

When 𝐿 = 1, 2, the asymptotic results in Theorem 1.1 may be put into a more concrete form.

Corollary 1.2. For 𝐿 = 1, 2, we have

𝑞
5𝑁2
4 +𝑁

2 𝑍1×𝑁 ∼ 𝑞
𝛼2
4 Θ(𝑞𝛼)
(𝑞; 𝑞)∞

=
𝑞
𝛼2
4 (−𝑞1+𝛼; 𝑞2)∞(−𝑞1−𝛼; 𝑞2)∞

(𝑞; 𝑞2)∞
(11)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(−𝑞; 𝑞2)2∞
(𝑞; 𝑞2)∞

, if 𝑁 is even;

𝑞
1
4 (−1; 𝑞2)∞(−𝑞2; 𝑞2)∞

(𝑞; 𝑞2)∞
, if 𝑁 is odd

and

𝑞
5𝑁2
2 +2𝑁𝑍2×𝑁 ∼ 𝑞

(𝛼−1)2
2

4
(−𝑞; 𝑞)∞(−1; 𝑞)∞

×
[
−(𝑞; 𝑞)2∞(𝑞; 𝑞2)2∞

(
𝑞𝛼−

1
2 ; 𝑞

)
∞

(
𝑞

3
2−𝛼; 𝑞

)
∞
+
(
−𝑞𝛼−

1
2 ; 𝑞

)
∞

(
−𝑞

3
2−𝛼; 𝑞

)
∞

]
. (12)
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Remark 1.3. In Ref. 5 Tierz conjectured that

lim
𝑁→∞

𝑞6𝑁
2+ 21𝑁

2 𝑍1×𝑁 = 1
(𝑞; 𝑞5)2∞(𝑞4; 𝑞5)2∞

− 1
(𝑞2; 𝑞5)2∞(𝑞3; 𝑞5)2∞

. (13)

Here, our asymptotic formula (11) is different from what Tierz conjectured in Ref. 5.

Remark 1.4. It will be of interest to evaluate the determinant of the matrix𝑅 in Theorem 1.1 for general

𝐿. We strongly believe that it has a simple close form.

The rest of this paper is organized as follows: In Section 2, we formulate a new technique to derive

the asymptotics of 𝑞-polynomials. This technique is applicable to all classical 𝑞-polynomials which

are orthogonal on unbounded intervals. We also prove an asymptotic symmetry property of zeros of

𝑞-polynomials with positive zeros. This property states that the product of the 𝑘th largest zero and the

𝑘th smallest zero is asymptotically independent of 𝑘. In the case of the Stieltjes-Wigert polynomials,

this property is known; see Refs. 11 and 12. Based on the general asymptotic results in Section 2, the

proofs of Theorem 1.1 and Corollary 1.2 are done in Section 3. We also give another proof for the

particular case 𝐿 = 1 at the end of this section. In Section 4, we continue the development of a new

asymptotic technique started in Section 2 by considering the asymptotics in the nonoscillatory range.

2 ASYMPTOTICS OF 𝒒-POLYNOMIALS AND SYMMETRY OF
ZEROS

2.1 Asymptotics of 𝒒-polynomials in the oscillatory interval
To prove Theorem 1.1, we actually develop a new asymptotic technique to study asymptotics of general

𝑞-polynomials. Consider the following general 𝑞-polynomials with real coefficients:

𝑃𝑛(𝑥) =
𝑛∑

𝑘=0
𝑞𝑘

2
𝑓𝑛(𝑘)(−𝑥)𝑘, (14)

and the related derivative functions

𝑃𝑛,𝑗(𝑥) ∶= 𝑥𝑗𝑃 (𝑗)
𝑛 (𝑥) =

𝑛∑
𝑘=0

𝑞𝑘
2
𝑓𝑛(𝑘)(−𝑥)𝑘(−𝑘)𝑗(−1)𝑗 (15)

with 𝑗 ∈ ℕ. Define

𝑋𝑗,𝑚(𝑥) ∶=
∞∑

𝑘=−∞
𝑞𝑘

2
𝑥𝑘(−𝑘 − 𝑚)𝑗(−1)𝑗 . (16)

Note that this function is related to the functions Θ(𝑧) and Θ𝑗(𝑧) in (6) and (7) as 𝑋0,𝑚(𝑥) = Θ(𝑥) and

𝑋𝑗,0(𝑥) = Θ𝑗(𝑥).
Next, we state our asymptotic results for general 𝑞-polynomials in (14).

Theorem 2.1. Assume that 𝑓𝑛(𝑘) is uniformly bounded for 𝑛 ≥ 0 and 0 ≤ 𝑘 ≤ 𝑛; moreover, for some
𝑙 ∈ (0, 1) and 0 < 𝛿 < min(𝑙, 1 − 𝑙),

sup
𝑛(𝑙−𝛿)≤𝑘≤𝑛(𝑙+𝛿)

|𝑓𝑛(𝑘) − 1| ≤ 𝜀(𝑛, 𝑙, 𝛿) = 𝑜(𝑛−𝑗), with 𝑗 ∈ ℕ, (17)
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as 𝑛 → ∞. Let 𝑚 = ⌊𝑛𝑙⌋, 𝑑 = ⌊𝑛𝛿⌋, and 𝑀 be a fixed large number. Then, for the functions 𝑃𝑛,𝑗(𝑥)
given in (15), we have

𝑃𝑛,𝑗(𝑞−2𝑚𝑦) = 𝑞−𝑚
2 (−𝑦)𝑚[𝑋𝑗,𝑚(−𝑦) + 𝑂(𝑛𝑗𝜀(𝑛, 𝑙, 𝛿)) + 𝑂(𝑞𝑑2𝑀𝑑𝑛𝑗)], (18)

uniformly for 1∕𝑀 ≤ |𝑦| ≤ 𝑀 .

Proof. By a shift of variable 𝑘 → 𝑘 + 𝑚, we have

𝑃𝑛,𝑗(𝑞−2𝑚𝑦) =
𝑛−𝑚∑
𝑘=−𝑚

𝑞𝑘
2−𝑚2

𝑓𝑛(𝑘 + 𝑚)(−𝑦)𝑘+𝑚(−𝑘 − 𝑚)𝑗(−1)𝑗 = 𝑞−𝑚
2 (−𝑦)𝑚(𝐼1 + 𝐼2),

where

𝐼1 =
−𝑑∑

𝑘=−𝑚
𝑞𝑘

2
𝑓𝑛(𝑘 + 𝑚)(−𝑦)𝑘(−𝑘 − 𝑚)𝑗(−1)𝑗 +

𝑛−𝑚∑
𝑘=𝑑

𝑞𝑘
2
𝑓𝑛(𝑘 + 𝑚)(−𝑦)𝑘(−𝑘 − 𝑚)𝑗(−1)𝑗 ,

and

𝐼2 =
𝑑−1∑

𝑘=−𝑑+1
𝑞𝑘

2 [𝑓𝑛(𝑘 + 𝑚) − 1](−𝑦)𝑘(−𝑘 − 𝑚)𝑗(−1)𝑗 +
𝑑−1∑

𝑘=−𝑑+1
𝑞𝑘

2 (−𝑦)𝑘(−𝑘 − 𝑚)𝑗(−1)𝑗 .

Note that 0 < (−𝑘 − 𝑚)𝑗(−1)𝑗 < (𝑘 + 𝑚 + 𝑗)𝑗 < (𝑑 + 𝑚 + 𝑗)𝑗(1 + 𝑘 − 𝑑)𝑗 for all 𝑘 ≥ 𝑑. It then follows

that

∞∑
𝑘=𝑑

𝑞𝑘
2
𝑀𝑘(−𝑘 − 𝑚)𝑗(−1)𝑗 ≤

∞∑
𝑘=0

𝑞𝑘
2+2𝑘𝑑+𝑑2𝑀𝑘+𝑑(1 + 𝑘)𝑗(𝑑 + 𝑚 + 𝑗)𝑗 = 𝑂

(
𝑞𝑑

2
𝑀𝑑𝑛𝑗

)
,

which implies that 𝐼1 = 𝑂(𝑞𝑑2𝑀𝑑𝑛𝑗). Furthermore, it is easily seen that 𝐼2 = 𝑋𝑗,𝑚(−𝑦) +
𝑂(𝑛𝑗𝜀(𝑛, 𝑙, 𝛿)) + 𝑂(𝑞𝑑2𝑀𝑑𝑛𝑗). Consequently, we obtain

𝑃𝑛,𝑗(𝑞−2𝑚𝑦) = 𝑞−𝑚
2 (−𝑦)𝑚

[
𝑋𝑗,𝑚(−𝑦) + 𝑂(𝑛𝑗𝜀(𝑛, 𝑙, 𝛿)) + 𝑂

(
𝑞𝑑

2
𝑀𝑑𝑛𝑗

)]
.

This completes the proof. □

To illustrate the application of the above theorem, we provide asymptotics of the Stieltjes-Wigert

polynomials with a scaled variable 𝑥 = 𝑞−𝑛𝑡𝑢, where 𝑡 ∈ (0, 2). Let 𝑙 = 𝑡∕2 and 𝑚 = ⌊𝑛𝑙⌋. We obtain

from (5) that

𝑆𝑛(𝑞−𝑛𝑡𝑢) =
(−1)𝑛𝑞−𝑛2−𝑛∕2

(𝑞; 𝑞)𝑛

𝑛∑
𝑘=0

𝑞𝑘
2
𝑓𝑛(𝑘)(−𝑞−2𝑚𝑦)𝑘,

where

𝑓𝑛(𝑘) = (𝑞; 𝑞)𝑛
[
𝑛

𝑘

]
𝑞

,

and 𝑦 = 𝑞−𝑛𝑡+2𝑚+1∕2𝑢. For any 0 < 𝛿 < min(𝑙, 1 − 𝑙), we have

|𝑓𝑛(𝑘) − 1| = 1 − (𝑞𝑘+1; 𝑞)𝑛−𝑘(𝑞𝑛−𝑘+1; 𝑞)𝑘 ≤ 𝑞𝑘+1 +… + 𝑞𝑛 + 𝑞𝑛−𝑘+1 +… + 𝑞𝑛
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≤ 𝑞𝑘+1 + 𝑞𝑛−𝑘+1

1 − 𝑞
≤ 1

1 − 𝑞
[𝑞𝑛(𝑙−𝛿) + 𝑞𝑛(1−𝑙−𝛿)]

for all 𝑛(𝑙 − 𝛿) ≤ 𝑘 ≤ 𝑛(𝑙 + 𝛿). It then follows from Theorem 2.1 (with 𝑗 = 0) that

𝑆𝑛(𝑞−𝑛𝑡𝑢) =
Θ(−𝑞−𝑛𝑡+2𝑚+1∕2𝑢) + 𝑂(𝑞𝑛(𝑙−𝛿) + 𝑞𝑛(1−𝑙−𝛿))
(−1)𝑛(𝑞; 𝑞)𝑛𝑞𝑛

2−𝑚2+𝑛𝑚𝑡+(𝑛−𝑚)∕2(−𝑢)−𝑚
. (19)

Similarly, Theorem 2.1 also gives us asymptotic results for the 𝑞−1-Hermite polynomials

ℎ𝑛(sinh 𝜉) =
𝑛∑

𝑘=0

[
𝑛

𝑘

]
𝑞

𝑞𝑘
2−𝑛𝑘(−1)𝑘𝑒(𝑛−2𝑘)𝜉

= (−1)𝑛𝑞𝑛2+𝑛∕2𝑒𝑛𝜉𝑆𝑛(𝑞−𝑛−1∕2𝑒−2𝜉) (20)

and the 𝑞-Laguerre polynomials

𝐿(𝛼)
𝑛 (𝑥; 𝑞) =

(𝑞𝛼+1; 𝑞)𝑛
(𝑞; 𝑞)𝑛

𝑛∑
𝑘=0

[
𝑛

𝑘

]
𝑞

𝑞𝑘
2+𝛼𝑘 (−𝑥)𝑘

(𝑞𝛼+1; 𝑞)𝑘
. (21)

For the 𝑞−1-Hermite polynomials, let 𝜉 = −𝑛𝑡 ln 𝑞 + ln 𝑢 with 𝑡 ∈ (−1∕2, 1∕2). By choosing 𝑓𝑛(𝑘) =
(𝑞; 𝑞)𝑛

[𝑛
𝑘

]
𝑞
, we obtain

ℎ𝑛(sinh 𝜉) =
Θ(−𝑞−𝑛(1−2𝑡)+2𝑚𝑢−2) + 𝑂(𝑞𝑛(𝑙−𝛿) + 𝑞𝑛(1−𝑙−𝛿))

(−1)𝑚(𝑞; 𝑞)𝑛𝑞𝑛
2𝑡−𝑚2+𝑛𝑚(1−2𝑡)𝑢2𝑚−𝑛

, (22)

where 𝑙 = 1∕2 − 𝑡, 𝑚 = ⌊𝑛𝑙⌋, and 𝛿 > 0 is any small positive number such that 𝛿 < min(𝑙, 1 − 𝑙).
Regarding the 𝑞-Laguerre polynomials, for 𝑡 ∈ (0, 2), by choosing 𝑓𝑛(𝑘) = (𝑞𝛼+𝑘+1; 𝑞)𝑛−𝑘(𝑞; 𝑞)𝑛

[𝑛
𝑘

]
𝑞
,

we obtain

𝐿(𝛼)
𝑛 (𝑞−𝑛𝑡𝑢; 𝑞) = Θ(−𝑞−𝑛𝑡+2𝑚+𝛼𝑢) + 𝑂(𝑞𝑛(𝑙−𝛿) + 𝑞𝑛(1−𝑙−𝛿))

(𝑞; 𝑞)2𝑛𝑞−𝑚
2+𝑛𝑚𝑡−𝛼𝑚(−𝑢)−𝑚

, (23)

where 𝑙 = 𝑡∕2, 𝑚 = ⌊𝑛𝑙⌋, and 𝛿 > 0 is any small positive number such that 𝛿 < min(𝑙, 1 − 𝑙).

2.2 Symmetry of zeros of 𝒒-polynomials
It is a well-known fact that zeros of some classical 𝑞-orthogonal polynomials satisfy nice symmetric

properties. Let 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 be the zeros of the Stieltjes-Wigert polynomial 𝑆𝑛(𝑥). By (5), we

have

𝑆𝑛(𝑞−2𝑛−1∕𝑥) = 𝑞−𝑛
2−𝑛∕2(−𝑥)−𝑛𝑆𝑛(𝑥). (24)

It is readily seen that

𝑥𝑗𝑥𝑛+1−𝑗 = 𝑞−2𝑛−1, 𝑗 = 1,…… , 𝑛; (25)

see also (2.8) of Ref. 11 and (2.20) of Ref. 12. For the 𝑞−1-Hermite polynomials in (20), let the zeros

be denoted as 𝜉1 < 𝜉2 < ⋯ < 𝜉𝑛. They also satisfy a symmetric relation as follows:

𝜉𝑗 + 𝜉𝑛+1−𝑗 = 0. (26)
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Actually, a similar asymptotic symmetry property of polynomial zeros is satisfied for a general class of

𝑞-polynomials 𝑃𝑛(𝑥) in (14), where the coefficient 𝑓𝑛(𝑘) is uniformly bounded for 𝑛 ≥ 0 and 0 ≤ 𝑘 ≤ 𝑛.

Then, for some 𝑙 ∈ (0, 1) and 𝑥 = 𝑞−2𝑛𝑙𝑦, we obtain from Theorem 2.1

𝑃𝑛(𝑥) ∼ 𝑞−𝑚
2
𝑦𝑚Θ

(
−𝑞2(𝑚−𝑛𝑙)𝑦

)
, (27)

where 𝑚 = ⌊𝑛𝑙⌋. For each fixed 𝑗 = 1, 2,…, there exists a pair 𝑦±
𝑗
= 𝑞±(2𝑗−1)−2(𝑚−𝑛𝑙) such that

Θ(−𝑞2(𝑚−𝑛𝑙)𝑦±
𝑗
) = 0. Consequently, for sufficiently large 𝑛, 𝑃𝑛(𝑥) has a pair of zeros 𝑥±

𝑗
∼ 𝑞±(2𝑗−1)−2𝑚;

in particular, we have

𝑥+
𝑗
𝑥−𝑗 ∼ 𝑞−4𝑚. (28)

We now apply the above results to the 𝑞-Laguerre polynomials in (21) where 𝑓𝑛(𝑘) in (14) is now given

by

𝑓𝑛(𝑘) =
(𝑞𝛼+1; 𝑞)𝑛(𝑞; 𝑞)𝑛

(𝑞𝛼+1; 𝑞)𝑘

[
𝑛

𝑘

]
𝑞

.

For any 𝑙 ∈ (0, 1) and 0 < 𝛿 < min(𝑙, 1 − 𝑙), we have

sup
𝑛(𝑙−𝛿)≤𝑘≤𝑛(𝑙+𝛿)

|𝑓𝑛(𝑘) − 1| = 𝑂
(
𝑞𝑛(𝑙−𝛿) + 𝑞𝑛(1−𝑙−𝛿)

)
.

Thus, for any fixed 𝑙 ∈ (0, 1) and 𝑗 = 1, 2, 3,…,

𝐿(𝛼)
𝑛 (𝑥; 𝑞) = 1

(𝑞; 𝑞)2𝑛

𝑛∑
𝑘=0

𝑞𝑘
2
𝑓𝑛(𝑘)(−𝑥𝑞𝛼)𝑘.

has a pair of zeros 𝑥±
𝑗
∼ 𝑞±(2𝑗−1)−2⌊𝑛𝑙⌋−𝛼 . This implies that for any integer 𝑘 ∈ (1, 𝑛) such that 𝑘∕𝑛 is

bounded away from 0 and 1, 𝐿
(𝛼)
𝑛 (𝑥; 𝑞) has a zero 𝑥𝑘 ∼ 𝑞1−2𝑘−𝛼; in particular, we get

𝑥𝑘𝑥𝑛+1−𝑘 ∼ 𝑞−2𝑛−2𝛼, 𝑛 → ∞. (29)

Let us conduct numerical computation and choose 𝑞 = 0.6, 𝛼 = 0.4, and 𝑛 = 20. The values of

𝑞2𝑛+2𝛼𝑥𝑘𝑥𝑛+1−𝑘 for 𝑘 = 1,… , 10, are given below:

0.45, 0.725, 0.852, 0.917, 0.952, 0.972, 0.983, 0.989, 0.993, 0.994.

We also take 𝑞 = 0.5, 𝛼 = 0.7, 𝑛 = 25 and obtain the values of 𝑞2𝑛+2𝛼𝑥𝑘𝑥𝑛+1−𝑘 for 𝑘 = 1,… , 12, as

follows:

0.658, 0.861, 0.937, 0.97, 0.985, 0.993, 0.996, 0.998, 0.999, 1., 1., 1.

From the above computations, one can see that the asymptotic symmetry property is more significant

with smaller 𝑞, larger 𝑛, or 𝑘 closer to 𝑛∕2.
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3 ASYMPTOTICS OF PARTITION FUNCTIONS

3.1 Proof of Theorem 1.1
In this section, we give a proof of Theorem 1.1 based on the general asymptotic results in Theorem 2.1.

Proof of Theorem 1.1. From the definition of 𝑍𝐿×𝑁 in (3), we have

𝑍𝐿×𝑁 = det(𝑆) (−1)
𝐿𝑁∏𝐿−1

𝑗=0 𝑗!

𝐿−1∏
𝑗=0

(−1)𝑁+𝑗𝑞−(𝑁+𝑗)2−(𝑁+𝑗)∕2, (30)

where 𝑆 is an 𝐿 × 𝐿 matrix with 𝑖𝑗th entry:

𝑆𝑖𝑗 =
𝑁+𝑗∑
𝑘𝑖=𝑖

[
𝑁 + 𝑗

𝑘𝑖

]
𝑞

𝑞𝑘
2
𝑖
+𝑘𝑖∕2−(𝑘𝑖−𝑖)(𝑁+𝐿∕2)(−𝑘𝑖)𝑖, 0 ≤ 𝑖, 𝑗 ≤ 𝐿 − 1.

Similar as in the proof of Theorem 2.1, one can show that the main contribution of the sum of the

right-hand side comes from the items with index 𝑘𝑖 close to 𝑁∕2. We may ignore the (exponentially

small) items with indices 𝑘𝑖 < 𝐿 or 𝑘𝑖 > 𝑁 , and obtain

𝑆𝑖𝑗 ∼
𝑁∑

𝑘𝑖=𝐿
𝐺𝑖𝑗𝑞

𝑘2
𝑖
+𝑘𝑖∕2−(𝑘𝑖−𝑖)(𝑁+𝐿∕2)(−𝑘𝑖)𝑖,

where 𝐺𝑖𝑗 =
[𝑁+𝑗

𝑘𝑖

]
𝑞

is the 𝑖𝑗th entry of a matrix 𝐺. It then follows that

det(𝑆) ∼
∑

𝐿≤𝑘0,…,𝑘𝐿−1≤𝑁
det(𝐺)𝑞

∑𝐿−1
𝑖=0 𝑘2

𝑖
−𝑘𝑖(𝑁+𝐿∕2−1∕2)+𝑖(𝑁+𝐿∕2)

𝐿−1∏
𝑖=0

(−𝑘𝑖)𝑖. (31)

A simple calculation gives us

det(𝐺) = det(𝑉 )
𝐿−1∏
𝑖=0

(𝑞; 𝑞)𝑁+𝑖
(𝑞; 𝑞)𝑘𝑖 (𝑞; 𝑞)𝑁+𝐿−1−𝑘𝑖

,

where 𝑉 is a matrix with 𝑖𝑗th entry

𝑉𝑖𝑗 =
𝐿−1∏
𝑙=𝑗+1

(1 − 𝑞𝑁−𝑘𝑖+𝑙), 0 ≤ 𝑖, 𝑗 ≤ 𝐿 − 1.

Here, when 𝑗 = 𝐿 − 1, the empty product is understood to be 1. By row operations, the matrix 𝑉 can

be transformed to a Vandermonde one with 𝑖𝑗th entry 𝑞−𝑗𝑘𝑖 , multiplied by certain constant factors.

Indeed, one obtains

det(𝑉 ) = 𝑞𝑁𝐿(𝐿−1)∕2+𝐿(𝐿−1)(2𝐿−1)∕6
∏

0≤𝑖<𝑗≤𝐿−1
(
𝑞−𝑘𝑗 − 𝑞−𝑘𝑖

)
.

This kind of reduction is used systematically in Krattenthaler13. Now, for 𝑘𝑖 near 𝑁∕2, we have

det(𝐺) ∼ 𝑞𝑁𝐿(𝐿−1)∕2+𝐿(𝐿−1)(2𝐿−1)∕6

(𝑞; 𝑞)𝐿∞

∏
0≤𝑖<𝑗≤𝐿−1

(
𝑞−𝑘𝑗 − 𝑞−𝑘𝑖

)
.
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Substituting the above formula into (31) gives us

det(𝑆) ∼ 𝑞
𝐿(𝐿−1)

2

(
2𝑁+7𝐿−2

6

)
(𝑞; 𝑞)𝐿∞

det(𝑇 ),

where 𝑇 is a matrix with 𝑖𝑗th entry

𝑇𝑖𝑗 =
𝑁∑

𝑘𝑖=𝐿
𝑞𝑘

2
𝑖
−𝑘𝑖(𝑁+𝐿∕2−1∕2)−𝑗𝑘𝑖(−𝑘𝑖)𝑖, 0 ≤ 𝑖, 𝑗 ≤ 𝐿 − 1.

Let 𝑚 = ⌊𝑁∕2⌋. Shifting the index 𝑘𝑖 = 𝑘 + 𝑚 yields

𝑇𝑖𝑗 ∼ 𝑞−𝑚(𝑁−𝑚+𝐿∕2−1∕2+𝑗)
∞∑

𝑘=−∞
𝑞𝑘

2−𝑘(𝑁−2𝑚+𝐿∕2−1∕2+𝑗)(−𝑘 − 𝑚)𝑖.

Denote 𝛽 ∶= 𝑁 − 2𝑚 + (𝐿 − 1)∕2. We have det(𝑇 ) ∼ 𝑞−𝑚𝐿(𝑁−𝑚+𝐿−1) det(𝑈 ), where the 𝑖𝑗th entry of

𝑈 is given by

𝑈𝑖𝑗 =
∞∑

𝑘=−∞
𝑞𝑘

2−𝑘(𝛽+𝑗)(−𝑘 − 𝑚)𝑖, 0 ≤ 𝑖, 𝑗 ≤ 𝐿 − 1.

By row operations, we obtain det(𝑈 ) = (−1)𝐿(𝐿−1)∕2 det(𝑅), where 𝑅 is a matrix with 𝑖𝑗th entry

𝑅𝑖𝑗 =
∞∑

𝑘=−∞
𝑞𝑘

2−𝑘(𝛽+𝑗)(−𝑘)𝑖(−1)𝑖 = Θ𝑖(𝑞−𝛽−𝑗), 0 ≤ 𝑖, 𝑗 ≤ 𝐿 − 1.

Summarizing the above derivations, we have

𝑍𝐿×𝑁 = det(𝑆) (−1)
𝐿(𝐿−1)

2 𝑞
−𝐿𝑁2−𝐿𝑁

2 −𝐿(𝐿−1)
2

(
2𝑁+4𝐿+1

6

)
∏𝐿−1

𝑗=0 𝑗!

∼ det(𝑅)𝑞
−𝐿𝑁2−𝐿𝑁

2 +𝐿(𝐿−1)2
4 −𝑚𝐿(𝑁−𝑚+𝐿−1)

(𝑞; 𝑞)𝐿∞
∏𝐿−1

𝑗=0 𝑗!
,

where a rigorous error estimation for more general situations has been given as in Theorem 2.1. A

further simplification gives us the result in (9). □

3.2 Proof of (12)
A direct application of (9) with 𝐿 = 2 gives

𝑞5𝑁
2∕2+2𝑁𝑍2×𝑁 ∼ Θ(𝑞𝛼−1∕2)Θ′(𝑞𝛼−3∕2) − 𝑞Θ′(𝑞𝛼−1∕2)Θ(𝑞𝛼−3∕2)

𝑞1−𝛼2∕2(𝑞; 𝑞)2∞
. (32)
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Denote 𝑞 = 𝑒𝜋𝑖𝜏 and 𝑎 = 𝜋𝜏(𝛼∕2 − 3∕4). Making use of the theta functions defined in Chapter 21 of

Whittaker and Watson10 , we may rewrite

Θ(𝑞𝛼−3∕2) =
∞∑

𝑘=−∞
𝑞𝑘

2
𝑒2𝑘𝑖𝑎 = 𝜗3(𝑎; 𝑞),

Θ(𝑞𝛼−1∕2) = 𝜗3(𝑎 + 𝜋𝜏∕2; 𝑞) = 𝑞(1−𝛼)∕2𝜗2(𝑎; 𝑞),

Θ′(𝑞𝛼−3∕2) = 𝑞3∕2−𝛼

2𝑖
𝜗′3(𝑎; 𝑞),

Θ′(𝑞𝛼−1∕2) = 𝑞1−3𝛼∕2

2𝑖
[
𝜗′2(𝑎; 𝑞) − 𝑖𝜗2(𝑎; 𝑞)

]
.

It then follows from Chapter 21 of Ref. 10 and Chapter 20 of Ref. 15 that

Θ(𝑞𝛼−1∕2)Θ′(𝑞𝛼−3∕2) − 𝑞Θ′(𝑞𝛼−1∕2)Θ(𝑞𝛼−3∕2) (33)

= 𝑞2−3𝛼∕2

2𝑖
[𝜗2(𝑎; 𝑞)𝜗′3(𝑎; 𝑞) − 𝜗3(𝑎; 𝑞)𝜗′2(𝑎; 𝑞) + 𝑖𝜗3(𝑎; 𝑞)𝜗2(𝑎; 𝑞)]

= 𝑞2−3𝛼∕2

2𝑖
[𝜗4(0; 𝑞)2𝜗4(𝑎; 𝑞)𝜗1(𝑎; 𝑞) + 𝑖𝜗3(𝑎; 𝑞)𝜗2(𝑎; 𝑞)]

=
𝑞2−3𝛼∕2𝜗2(0;

√
𝑞)

4𝑖
[𝜗4(0; 𝑞)2𝜗1(𝑎;

√
𝑞) + 𝑖𝜗2(𝑎;

√
𝑞)].

Recalling the Jacobi triple product identity (see Ref. 16 or (II.33) of Ref. 13)

∞∑
𝑘=−∞

𝑞𝑘
2∕2𝑧𝑘 = (𝑞; 𝑞)∞(−𝑧

√
𝑞; 𝑞)∞(−

√
𝑞∕𝑧; 𝑞)∞, (34)

we have

𝜗1(𝑎;
√
𝑞) = −𝑖𝑞𝛼∕2−5∕8(𝑞; 𝑞)∞(𝑞𝛼−1∕2; 𝑞)∞(𝑞3∕2−𝛼; 𝑞)∞,

𝜗2(𝑎;
√
𝑞) = 𝑞𝛼∕2−5∕8(𝑞; 𝑞)∞(−𝑞𝛼−1∕2; 𝑞)∞(−𝑞3∕2−𝛼; 𝑞)∞,

𝜗4(0; 𝑞) = (𝑞; 𝑞)∞(𝑞; 𝑞2)∞,

𝜗2(0;
√
𝑞) = 𝑞1∕8(𝑞; 𝑞)∞(−𝑞; 𝑞)∞(−1; 𝑞)∞.

Substituting the above formulas into (33) yields

Θ(𝑞𝛼−1∕2)Θ′(𝑞𝛼−3∕2) − 𝑞Θ′(𝑞𝛼−1∕2)Θ(𝑞𝛼−3∕2) = 𝑞3∕2−𝛼

4
(𝑞; 𝑞)2∞(−𝑞; 𝑞)∞(−1; 𝑞)∞

× [−(𝑞; 𝑞)2∞(𝑞; 𝑞2)2∞(𝑞𝛼−1∕2; 𝑞)∞(𝑞3∕2−𝛼; 𝑞)∞ + (−𝑞𝛼−1∕2; 𝑞)∞(−𝑞3∕2−𝛼; 𝑞)∞],

which, together with (32) gives (12).
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3.3 Another proof for the case 𝑳 = 𝟏
For the case 𝐿 = 1, (11) is a simple application of (9) and (34). However, there is another proof due

to the simple structure of 𝑍1×𝑁 . This new proof is based on the integral representation of the partition

𝑍1×𝑁 . For brevity, let us denote the summation in (34) by

𝐹 (𝑧) ∶=
∞∑

𝑘=−∞
𝑞𝑘

2∕2𝑧𝑘 = (𝑞; 𝑞)∞(−𝑧
√
𝑞; 𝑞)∞(−

√
𝑞∕𝑧; 𝑞)∞.

Cauchy's residue theorem gives us

𝑞𝑘
2∕2 = 1

2𝜋𝑖 ∮𝐶 𝐹 (𝑧)
𝑑𝑧

𝑧𝑘+1
,

where 𝐶 is a positively oriented contour around the origin. It then follows from the definition of 𝑍𝐿×𝑁
in (3) that

𝑞𝑁
2+𝑁∕2𝑍1×𝑁 =

𝑁∑
𝑘=0

[
𝑁

𝑘

]
𝑞

𝑞𝑘
2−𝑘𝑁 = 1

2𝜋𝑖 ∮𝐶
𝑁∑
𝑘=0

[
𝑁

𝑘

]
𝑞

𝑞𝑘
2∕2−𝑘𝑁𝐹 (𝑧) 𝑑𝑧

𝑧𝑘+1
.

Using the 𝑞-binomial theorem

(𝑥; 𝑞)𝑛 =
𝑛∑

𝑘=0

[
𝑛

𝑘

]
𝑞

𝑞(
𝑘

2)(−𝑥)𝑘, (35)

(cf. Ref. 16 and (II.4) in Ref. 13 ), we have

𝑞𝑁
2+𝑁∕2𝑍1×𝑁 = 1

2𝜋𝑖 ∮𝐶 𝐹 (𝑧)(−𝑞
−𝑁+1∕2∕𝑧; 𝑞)𝑁

𝑑𝑧

𝑧
. (36)

Let us introduce a change of variable 𝑧 = 𝑞−𝑚𝑢 with 𝑚 = ⌊𝑁∕2⌋. Since

𝐹 (𝑞−𝑚𝑢) =
∞∑

𝑘=−∞
𝑞𝑘

2∕2−𝑘𝑚𝑢𝑘 = 𝐹 (𝑢)𝑞−𝑚2∕2𝑢𝑚, (37)

and

(−𝑞−𝑁+1∕2+𝑚∕𝑢; 𝑞)𝑁 = (−𝑞−𝑁+1∕2+𝑚∕𝑢; 𝑞)𝑚(−𝑞−𝑁+1∕2+2𝑚∕𝑢; 𝑞)𝑁−𝑚

= 𝑞−𝑁𝑚+3𝑚2∕2𝑢−𝑚(−𝑞𝑁+1∕2−2𝑚𝑢; 𝑞)𝑚(−𝑞−𝑁+1∕2+2𝑚∕𝑢; 𝑞)𝑁−𝑚,

we obtain

𝑞𝑁
2+𝑁∕2𝑍1×𝑁 = 𝑞−𝑁𝑚+𝑚2

2𝜋𝑖 ∮𝐶 𝐹 (𝑢)(−𝑞
𝑁+1∕2−2𝑚𝑢; 𝑞)𝑚(−𝑞−𝑁+1∕2+2𝑚∕𝑢; 𝑞)𝑁−𝑚

𝑑𝑢

𝑢

∼ 𝑞−𝑁𝑚+𝑚2

2𝜋𝑖 ∮𝐶 𝐹 (𝑢)(−𝑞
𝑁+1∕2−2𝑚𝑢; 𝑞)∞(−𝑞−𝑁+1∕2+2𝑚∕𝑢; 𝑞)∞

𝑑𝑢

𝑢
.

Note that

𝐹 (𝑞𝑁−2𝑚𝑢) = (𝑞; 𝑞)∞(−𝑞𝑁+1∕2−2𝑚𝑢; 𝑞)∞(−𝑞−𝑁+1∕2+2𝑚∕𝑢; 𝑞)∞,
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it then follows that

(𝑞; 𝑞)∞𝑞𝑁
2+𝑁∕2+𝑁𝑚−𝑚2

𝑍1×𝑁 ∼ 1
2𝜋𝑖 ∮𝐶 𝐹 (𝑢)𝐹 (𝑞

𝑁−2𝑚𝑢)𝑑𝑢
𝑢
.

The right-hand side equals to the constant term of the product 𝐹 (𝑢)𝐹 (𝑞𝑁−2𝑚𝑢):

∞∑
𝑘=−∞

𝑞(−𝑘)
2∕2𝑞𝑘

2∕2𝑞(𝑁−2𝑚)𝑘 = Θ(𝑞𝑁−2𝑚) = Θ(𝑞2𝑚−𝑁 ).

Thus, the above two formulas give us

𝑞5𝑁
2∕4+𝑁∕2𝑍1×𝑁 ∼ 𝑞𝛼

2∕4Θ(𝑞𝛼)
(𝑞; 𝑞)∞

, (38)

where 𝛼 = 2𝑚 −𝑁 . Moreover, if 𝑁 = 2𝑚 is even, we have

Θ(𝑞2𝑚−𝑁 ) = (𝑞2; 𝑞2)∞(−𝑞; 𝑞2)2∞,

and if 𝑁 = 2𝑚 + 1 is odd

Θ(𝑞2𝑚−𝑁 ) = (𝑞2; 𝑞2)∞(−1; 𝑞2)∞(−𝑞2; 𝑞2)∞.

Then, (11) immediately follows from a combination of the above three formulas.

4 ASYMPTOTICS OF 𝒒-POLYNOMIALS IN THE
NONOSCILLATORY INTERVAL

Theorem 2.1 gives asymptotics of 𝑃𝑛,𝑗(𝑥) in the oscillatory interval:

ln 𝑥
𝑛 ln 𝑞

∈ (−2, 0). (39)

To make our asymptotic technique complete, we further provide asymptotics in the interval where

𝑃𝑛,𝑗(𝑥) is nonoscillatory. To this end, we shall introduce the generalized theta function:

Φ(𝑧) ∶=
∞∑
𝑘=0

𝑎𝑘𝑞
𝑘2𝑧𝑘 (40)

and the associated functions:

Φ𝑗(𝑧) ∶= 𝑧𝑗Φ(𝑗)(𝑧) =
∞∑
𝑘=0

𝑎𝑘𝑞
𝑘2𝑧𝑘(−𝑘)𝑗(−1)𝑗 . (41)

Here, {𝑎𝑘}𝑘≥0 is a sequence with uniform bound. When 𝑎𝑘 ≡ 1, we have Φ(𝑧) + Φ(1∕𝑧) = Θ(𝑧) + 1,

where Θ(𝑧) is given in (6). It is worth pointing out that, when 𝑎𝑘 = (−1)𝑘∕(𝑞; 𝑞)𝑘, the function Φ(𝑧) is

the same as the Ramanujan function (i.e., the 𝑞-Airy function); see Ref. 11.



DAI ET AL 103

Theorem 4.1. Assume that 𝑓𝑛(𝑘) is uniformly bounded for 𝑛 ≥ 0 and 0 ≤ 𝑘 ≤ 𝑛, and there exist uni-
formly bounded sequence {𝑎𝑘}𝑘≥0 and 𝛿 ∈ (0, 1) such that

sup
0≤𝑘≤𝑛𝛿

|𝑓𝑛(𝑘) − 𝑎𝑘| ≤ 𝜀(𝑛, 𝛿) = 𝑜(1) (42)

as 𝑛 → ∞. Let 𝑑 = ⌊𝑛𝛿⌋ and 𝑀 be a fixed large number. Then, for the functions 𝑃𝑛,𝑗(𝑥) given in (15),
we have

𝑃𝑛,𝑗(𝑞𝑛𝑡𝑦) = Φ𝑗(−𝑞𝑛𝑡𝑦) + 𝑂(𝜀(𝑛, 𝛿)) + 𝑂
(
𝑞𝑑

2
𝑀𝑑

)
, (43)

uniformly for |𝑦| ≤ 𝑀 and 𝑡 ≥ 0.

Proof. We split the error term into two sums:

𝑃𝑛,𝑗(𝑞𝑛𝑡𝑦) − Φ𝑗(−𝑞𝑛𝑡𝑦) = 𝐼1 + 𝐼2,

where

𝐼1 =
𝑛∑

𝑘=𝑑
𝑞𝑘

2
𝑓𝑛(𝑘)(−𝑞𝑛𝑡𝑦)𝑘(−𝑘)𝑗(−1)𝑗 −

∞∑
𝑘=𝑑

𝑎𝑘𝑞
𝑘2 (−𝑞𝑛𝑡𝑦)𝑘(−𝑘)𝑗(−1)𝑗 = 𝑂

(
𝑞𝑑

2
𝑀𝑑

)
,

and

𝐼2 =
𝑑−1∑
𝑘=0

𝑞𝑘
2 [𝑓𝑛(𝑘) − 𝑎𝑘](−𝑞𝑛𝑡𝑦)𝑘(−𝑘)𝑗(−1)𝑗 = 𝑂(𝜀(𝑛, 𝛿)).

Here, we have used the estimation:

∞∑
𝑘=𝑑

𝑞𝑘
2
𝑀𝑘(−𝑘)𝑗(−1)𝑗 =

∞∑
𝑘=0

𝑞𝑘
2+2𝑘𝑑+𝑑2𝑀𝑘+𝑑(−𝑘 − 𝑑)𝑗(−1)𝑗

≤ 𝑞𝑑
2
𝑀𝑑

∞∑
𝑘=0

𝑞𝑘
2
𝑞2𝑘𝑑(𝑘 + 𝑑 + 𝑗)𝑗 = 𝑂

(
𝑞𝑑

2
𝑀𝑑

)
(44)

due to uniform boundedness of 𝑞2𝑘𝑑(𝑘 + 𝑑 + 𝑗)𝑗 for 𝑘 ≥ 0 and 𝑑 ≥ 0. This completes the proof. □

To conduct asymptotic analysis of 𝑃𝑛,𝑗(𝑞𝑛𝑡𝑦) with 𝑡 ≤ −2, we set 𝑡 = −(2 + 𝑠) with 𝑠 ≥ 0 and change

the index 𝑘 to 𝑛 − 𝑘. It follows that

𝑃𝑛,𝑗(𝑞𝑛𝑡𝑦) = (−𝑞𝑛+𝑛𝑠∕𝑦)−𝑛
𝑛∑

𝑘=0
𝑞𝑘

2
𝑓𝑛(𝑛 − 𝑘)(−𝑞𝑛𝑠∕𝑦)𝑘(−𝑛 + 𝑘)𝑗(−1)𝑗 .

We shall make use of the following special function:

Ψ𝑗,𝑛(𝑧) =
𝑛∑

𝑘=0
𝑎𝑘𝑞

𝑘2𝑧𝑘(−𝑛 + 𝑘)𝑗(−1)𝑗 . (45)

Note that Ψ0,𝑛(𝑧) = Φ0(𝑧) = Φ(𝑧) with Φ(𝑧) defined in (40). Moreover, when 𝑎𝑘 ≡ 1, we have the

relation Ψ𝑗,𝑛(𝑧) = (−1)𝑗𝑋𝑗,𝑗−𝑛−1(𝑧) with 𝑋𝑗,𝑚(𝑧) given in (16).
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Theorem 4.2. Assume that 𝑓𝑛(𝑘) is uniformly bounded for 𝑛 ≥ 0 and 0 ≤ 𝑘 ≤ 𝑛, and there exist uni-
formly bounded sequence {𝑎𝑘}𝑘≥0 and 𝛿 ∈ (0, 1) such that

sup
0≤𝑘≤𝑛𝛿

|𝑓𝑛(𝑛 − 𝑘) − 𝑎𝑘| ≤ 𝜀(𝑛, 𝛿) = 𝑜(𝑛−𝑗) (46)

as 𝑛 → ∞. Let 𝑑 = ⌊𝑛𝛿⌋ and 𝑀 be a fixed large number. Then, for the functions 𝑃𝑛,𝑗(𝑥) given in (15),
we have

𝑃𝑛,𝑗(𝑞𝑛𝑡𝑦) = (−𝑞𝑛+𝑛𝑡𝑦)𝑛
[
Ψ𝑗,𝑛(−𝑞−2𝑛−𝑛𝑡∕𝑦) + 𝑂(𝑛𝑗𝜀(𝑛, 𝛿)) + 𝑂

(
𝑞𝑑

2
𝑀𝑑𝑛𝑗

)]
, (47)

uniformly for |𝑦| ≥ 1∕𝑀 and 𝑡 ≤ −2.

Proof. Again, we split the error term into two sums:

(−𝑞𝑛+𝑛𝑠∕𝑦)𝑛𝑃𝑛,𝑗(𝑞𝑛𝑡𝑦) − Φ𝑗(−𝑞𝑛𝑠∕𝑦) = 𝐼1 + 𝐼2,

where

𝐼1 =
𝑛∑

𝑘=𝑑
𝑞𝑘

2
𝑓𝑛(𝑛 − 𝑘)(−𝑞𝑛𝑠∕𝑦)𝑘(−𝑛 + 𝑘)𝑗(−1)𝑗 −

∞∑
𝑘=𝑑

𝑎𝑘𝑞
𝑘2 (−𝑞𝑛𝑠∕𝑦)𝑘(−𝑛 + 𝑘)𝑗(−1)𝑗 ,

and

𝐼2 =
𝑑−1∑
𝑘=0

𝑞𝑘
2 [𝑓𝑛(𝑛 − 𝑘) − 𝑎𝑘](−𝑞𝑛𝑠∕𝑦)𝑘(−𝑛 + 𝑘)𝑗(−1)𝑗 = 𝑂(𝑛𝑗𝜀(𝑛, 𝛿)).

Since |(−𝑛 + 𝑘)𝑗| ≤ (𝑛 + 𝑑)𝑗(1 + 𝑘 − 𝑑)𝑗 for all 𝑘 ≥ 𝑑, we have

∞∑
𝑘=𝑑

𝑞𝑘
2
𝑀𝑘|(−𝑛 + 𝑘)𝑗| ≤ ∞∑

𝑘=0
𝑞𝑘

2+2𝑘𝑑+𝑑2𝑀𝑘+𝑑(1 + 𝑘)𝑗(𝑛 + 𝑑)𝑗 = 𝑂
(
𝑞𝑑

2
𝑀𝑑𝑛𝑗

)
.

Thus, 𝐼1 = 𝑂(𝑞𝑑2𝑀𝑑𝑛𝑗). This completes the proof. □
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