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Abstract
In this paper, we consider the weak limit of the normalized measure for Askey–Wilson
polynomials when the parameter q approaches−1 from the right.We use two different
methods to prove that the weak limit is a discrete measure with two mass points that
are symmetric about the origin. The weights on these two mass points are, however,
not always the same. We also calculate the weak limit of the q-ultraspherical measure
when q approaches a complex root of unity.
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1 Introduction

Given two infinite sequences αn ∈ R and βn > 0, we consider the following second-
order linear difference equation:

yn+1(x) = (x − αn)yn(x) − βn yn−1(x), n ≥ 1, (1.1)
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which has two linearly independent solutions {pn(x)} and {p∗
n(x)} with initial condi-

tions

p0(x) = 1, p1(x) = x − α0, p∗
0(x) = 0, p∗

1(x) = 1. (1.2)

It is readily seen that pn(x) and p∗
n(x) are monic polynomials in x with degrees n and

n −1, respectively. Moreover, applying the difference equation (1.1) recursively gives
us

p∗
n+1(x)pn(x) − pn+1(x)p∗

n(x) = β1 . . . βn . (1.3)

By the spectral theorem for orthogonal polynomials [20, Theorem 2.5.2], {pn(x)}∞n=1
are orthogonal polynomials with respect to some probability measure dμ(x) on R.
Moreover, for any N ∈ N, all the zeros of pN (x) are real and simple. We denote them
as z1, . . . , zN . It follows from Christoffel-Darboux formula [20, Theorem 2.2.2], [28,
Theorem 3.2.2] that

N−1∑

k=0

pk(zr )pk(zs)

β1β2 . . . βk
= p′

N (zr )pN−1(zr )

β1β2 . . . βN−1
δr ,s,

which, in view of (1.3), is the same as

N−1∑

k=0

pk(zr )pk(zs)p∗
N (zr )

β1β2 . . . βk p′
N (zr )

= δr ,s .

Here, δr ,s denotes the Kronecker delta function which equals one when r = s and zero
when r �= s. Define two N × N matrices A and B as Ar j = p j−1(zr )p∗

N (zr )/p′
N (zr )

and B js = p j−1(zs)/(β1 . . . β j−1). The above equation is equivalent to AB = I ,
where I is the identity matrix. It then follows from B A = I that

N∑

r=1

p j (zr )pk(zr )p∗
N (zr )

β1β2 . . . β j p′
N (zr )

= δ j,k, for 0 ≤ j, k ≤ N − 1.

This implies that the polynomials pk(x) with k = 0, . . . , N − 1 are orthogonal with
respect to the discrete measure

dμN (x) =
N∑

r=1

p∗
N (zr )

p′
N (zr )

δ(x − zr ),

where δ(x) is the Dirac delta measure at 0, noting that δ(x) and δr ,s share the same
symbol δ but have different meanings. It is readily seen from the above formula that

∫

R

dμN (x)

z − x
= p∗

N (z)

pN (z)
, (1.4)
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for z ∈ C such that pN (z) �= 0. If dμ(x) is compactly supported, we let N → ∞ in
the above equation and obtain Markov’s theorem; see [20, Theorem 2.6.2]. Note that
p∗

N (zr )/p′
N (zr ) is also the Gaussian quadrature coefficient; namely, if f ∈ P2N−1(x)

is any polynomial of degree no more than 2N − 1, then the Gaussian quadrature
formula is exact:

∫

R

f (x)dμ(x) =
N∑

r=1

p∗
N (zr )

p′
N (zr )

f (zr ) =
∫

R

f (x)dμN (x).

Since p∗
N (z) and pN (z) are monic polynomials with degree N −1 and N , respectively,

we have
∫
R

dμN (x) = 1. Moreover, the interlacing property of the zeros of pN (z) and
pN−1(z) implies that pN−1(zr )p′

N (zr ) > 0.By (1.3), p∗
N (zr )pN−1(zr ) = β1 . . . βN−1

is also positive.Hence, dμN (x) is a discrete probabilitymeasure, and the orthogonality
can be written as follows:

∫

R

p j (x)pk(x)dμN (x) = β1β2 . . . β jδ j,k, for j, k = 0, 1, . . . , N − 1. (1.5)

Now, we assume that the coefficients αn and βn in (1.1) depend continuously on a
parameter q such that αn(q) ∈ R and βn(q) > 0 for all n > 0 and q ∈ (c, d). Assume
that the limits of αn(q) and βn(q) as q tend to c from the right exist, and there exists
N > 1 such that βN (c) = 0 and βn(c) > 0 for all n = 0, . . . , N −1.We note that there
are many cases in the literature when βn becomes zero for some n and certain related
choices of the parameters. This leads to the so-called isochronous systems [13]. Many
related papers are [8–12, 14–16, 22]. There is a major difference between the limiting
measure and the measure for the so-called −1-polynomials in the literature [18, 29,
30]. For example, it was assumed in [30] that the other parameters also vary along
with q so that the recurrence coefficients βn(−1) remain positive for all n ≥ 0; see
[30, (2.22)]. However, in our assumption, the recurrence coefficients βn(−1) vanish
for some finite n, and hence, the three-term recurrence relation is degenerate.

One motivation of the present paper comes from an investigation of the continuous
q-Hermite polynomials Hn(x | q), 0 < q < 1, which are orthogonal with respect to
the following weight:

wH (x | q) = (q, e2iθ , e−2iθ ; q)∞
2π

√
1 − x2

, x ∈ [−1, 1] (1.6)

with x = cos θ ; see [20, (13.1.11)–(13.1.12)]. They satisfy a three-term recurrence
relation as follows:

Hn+1(x | q) = 2x Hn(x | q) − (1 − qn)Hn−1(x | q); (1.7)

see [20, (13.1.1)]. Note that Hn(x | q) = (2x)n + lower-order terms. Comparing the
above formula with (1.1), the recurrence coefficients are given by

αn(q) = 0, βn(q) = 1 − qn

4
.
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Both coefficients are continuous for all n > 0 and q ∈ (−1, 1), and β2(−1) = 0.
In the literature, Szablowski [27] observed that the density function wH (x | q) in

(1.6) is unimodal and looks like a normal distribution when q > 0. He also observed
that it becomes bimodal if −1 < q < q0, where q0 � −0.107 is the largest real root
of the equation

∞∑

k=0

(2k + 1)2qk(k+1)/2 = 0.

This interesting work was followed by Deng and Yang [17] who accurately graphed
wH (x | q) when q is close to −1. Based on numerical results, they conjectured that,
as q → −1, wH (x | q) tends to a sum of two discrete masses at ±√

2/2 with weights
1/2 at each point.

In this paper, we will show that Deng and Yang’s conjecture is true. In fact, we
will prove a theorem for a large class of orthogonal polynomials. This class includes
the Askey–Wilson polynomials pn(x; t | q), which are considered as the most general
orthogonal polynomials in the q-Askey scheme.

The rest of the paper is organized as follows. In Sect. 2, we prove our main result
under a general assumption on the recurrence coefficients αn(q) and βn(q). We
establish a similar result for the Askey–Wilson polynomials in Sect. 3. Since these
polynomials satisfy some explicit identities, a different approach will be presented.
Then, as special cases of the Askey–Wilson polynomials, more examples in the q-
Askey scheme are considered in Sect. 4, including a complex case in Sect. 5. We finish
the paper with a discussion in Sect. 6. Throughout this paper, we follow the notation
and terminology in the books [4, 19, 20], as well as the Askey scheme [23].

2 Themain theorem

Theorem 2.1 Let αn(q) with n ≥ 0 and βn(q) with n ≥ 1 be continuous functions of
q ∈ [c, d) such that αn(q) ∈ R and βn(q) > 0 for all q ∈ (c, d). Let pn(x |q) and
p∗

n(x |q) be monic polynomials satisfying the following second-order linear difference
equation:

yn+1(x |q) = [x − αn(q)]yn(x |q) − βn(q)yn−1(x |q) (2.1)

with initial conditions

p0(x |q) = 1, p1(x |q) = x − α0(q), p∗
0(x |q) = 0, p∗

1(x |q) = 1.

Assume that for each q ∈ (c, d), dμ(x |q) is a compactly supported and normalized
positive measure for pn(x |q); i.e., there exists a compact interval S ⊂ R independent
of q such that

∫

S
p j (x |q)dμ(x |q) = δ j,0, j = 0, 1, . . . .
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From continuous to discrete: weak limit...

If there exists N > 1 such that βN (c) = 0 and βn(c) > 0 for all n = 1, . . . , N − 1,
then, as q → c+, the measure dμ(x |q) converges weakly to a discrete probability
measure dμN (x |c); namely, for any continuous function f ∈ C(S), we have

lim
q→c+

∫

S
f (x)dμ(x |q) =

∫

S
f (x)dμN (x |c) =

N∑

r=1

f (zr (c))p∗
N (zr (c)|c)

p′
N (zr (c)|c) , (2.2)

where z1(c), . . . , zN (c) are zeros of pN (x |c).
Proof Let z1(q), . . . , zN (q) ∈ S be the zeros of pN (x |q). By (1.5), we have

∫

S
p j (x |c)pk(x |c)dμN (x |c) = β1(c)β2(c) . . . β j (c)δ j,k for 0 ≤ j, k ≤ N − 1.

Under the assumption βN (c) = 0, we obtain from the recurrence relation (2.1) that
pN+1(zr (c)|c) = (zr (c) − αN )pN (zr (c)|c) = 0. This gives us p j (zr (c)|c) = 0 for
all j ≥ N . Consequently, we have

∫

S
p j (x |c)dμN (x |c) = δ j,0, for all j ≥ 0.

Recall our assumption that dμ(x |q) is the normalized measure for the orthogonal
polynomials p j (x |q) such that

∫
S p j (x |q)dμ(x |q) = δ j,0 for all j ≥ 0. As this

integral is actually q-independent, we may compare it with the above formula and put
it in the following form:

lim
q→c+

∫

S
p j (x |q)dμ(x |q) =

∫

S
p j (x |c)dμN (x |c), for all j ≥ 0.

Next, let us expand xn in terms of pk(x |q) as follows:

xn =
n∑

k=0

λn,k(q)pk(x |q).

Note that the above coefficients λn,k(q) are (finite) multiple sums of products of the
α j (q)β j+1(q) with 0 ≤ j ≤ n. It is obvious that λn,k(q) → λn,k(c) as q → c+,
which gives us

∫

S
xndμ(x |q) = λn,0(q) → λn,0(c) =

∫

S
xndμN (x |c)

as q → c+. On account of the above limit relation, for any polynomial Pn(x), there
exists qε > c such that

∣∣∣∣
∫

S
Pn(x)dμ(x |q) −

∫

S
Pn(x)dμN (x |c)

∣∣∣∣ < ε
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for all q ∈ (c, qε). Note that we have assumed that the measures dμ(x |q) have
uniform compact support S. By Weierstrass approximation theorem, given any ε >

0 and a continuous function f (x) on S, there exists a polynomial Pn(x) such that
| f (x) − Pn(x)| < ε for all x ∈ S. Since

∣∣∣∣
∫

S
f (x)dμ(x |q) −

∫

S
Pn(x)dμ(x |q)

∣∣∣∣ ≤ max
x∈S

| f (x) − Pn(x)|
∫

S
dμ(x |q) = ε

for all q ∈ (c, d), and

∣∣∣∣
∫

S
f (x)dμN (x |c) −

∫

S
Pn(x)dμN (x |c)

∣∣∣∣ ≤ max
x∈S

| f (x) − Pn(x)|
∫

S
dμN (x |c) = ε,

we have

∣∣∣∣
∫

S
f (x)dμ(x |q) −

∫

S
f (x)dμN (x |c)

∣∣∣∣ < 3ε

for all q ∈ (c, qε). This implies that

lim
q→c+

∫

S
f (x)dμ(x |q) =

∫

S
f (x)dμN (x |c)

for any continuous function f (x), which finishes the proof of the theorem. 
�
Remark 2.2 If N = 2 in Theorem 2.1, we have p∗

2(x |c) = x − α1(c) and p2(x |c) =
[x −α1(c)][x −α0(c)]−β1(c). Then, the measure dμ2(x |c) in (2.2) is given explicitly
as follows:

dμ2(x |c) = z1(c) − α1(c)

z1(c) − z2(c)
dδ(x − z1(c)) + z2(c) − α1(c)

z2(c) − z1(c)
dδ(x − z2(c)),

where z1(c) + z2(c) = α1(c) + α0(c) and z1(c)z2(c) = α1(c)α0(c) − β1(c).

In the following sections, we will study the Askey–Wilson polynomials and their
special cases as concrete examples.

3 The Askey–Wilson polynomials

Listed at the top of the q-Askey scheme, the Askey–Wilson polynomials pn(x; t | q)

are considered as the most general q-orthogonal polynomials. With x = cos θ and the
parameter t = (t1, t2, t3, t4), they are defined as follows:

pn(x; t | q) = t−n
1 (t1t2, t1t3, t1t4; q)n 4φ3

(
q−n ,t1t2t3t4qn−1,t1eiθ ,t1e−iθ

t1t2,t1t3,t1t4

∣∣∣∣ q, q

)
; (3.1)
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see [20, (15.2.5)]. One may rewrite it in a form as follows:

pn(x; t | q)

(q, t1t2, t3t4; q)n
=

n∑

k=0

(t1eiθ , t2eiθ ; q)k(t3e−iθ , t4e−iθ ; q)n−k

(q, t1t2; q)k(q, t3t4; q)n−k
ei(n−2k)θ ;

see [20, (15.2.8)]. When max |ti | < 1, i = 1, . . . , 4, they satisfy the following orthog-
onality relation:

∫ 1

−1
pm(x; t | q)pn(x; t | q)w(x, t | q)dx

=
(q; q)n(t1t2t3t4qn−1; q)n

∏
1≤ j<k≤4

(t j tk; q)n

(t1t2t3t4; q)2n
δm,n, (3.2)

where the weight function is given by

w(x, t | q)

=
(q, e2iθ , e−2iθ ; q)∞

∏
1≤ j<k≤4

(t j tk; q)∞

(t1t2t3t4; q)∞
4∏

j=1
(t j eiθ , t j e−iθ ; q)∞

1

2π
√
1 − x2

(3.3)

with x = cos θ ; see [20, (15.2.4)]. Note that, we have normalized the above weight
function such that

∫ 1

−1
w(x, t | q)dx = 1.

For the Askey–Wilson polynomials with different parameters

a = (a1, a2, a3, a4) and b = (b1, b2, b3, b4),

it is well known that they satisfy the following connection relation (cf. [20, Theorem
16.4.2]):

pn(x;b | q)

=
n∑

k=0

pk(x; a | q)(q; q)n(b1b2b3b4qn−1; q)k(b1b4, b2b4, b3b4; q)n

(q; q)n−k(q, a1a2a3a4qk−1; q)k(b1b4, b2b4, b3b4; q)kqk(n−k)bn−k
4

×
∑

j,l≥0

(qk−n, b1b2b3b4qn+k−1, a4b4qk; q) j+l (a1a4qk , a2a4qk , a3a4qk; q)l (b4/a4; q) j q j+l

(b1b4qk , b2b4qk , b3b4qk; q) j+l (q; q) j (q; q)l (a4b4qk , a1a2a3a4q2k; q)l (a4/b4)l
.

(3.4)
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Due to the relations among the Askey–Wilson polynomials and the other polynomials
in the Askey scheme, it is possible to choose some special parameters b and replace
the right-hand side of the above formula with other ones. In other words, certain
polynomials in the Askey scheme can be expanded in terms of the Askey–Wilson
polynomials pn(x; a | q) with general parameter a, where the coefficients are given
explicitly. Indeed, we have the following result for the Chebyshev polynomials.

Lemma 3.1 Let

Un(x) = sin[(n + 1)θ ]
sin θ

, x = cos θ,

be the Chebyshev polynomials of the second kind. Then, we have

Un(x) =
n∑

k=0

pk(x; a | q)(q; q)n(qn+2; q)k(−q3/2, q3/2,−q2; q)n

(qn+2; q)n(q; q)n−k(q, a1a2a3a4qk−1; q)k(−q3/2, q3/2,−q2; q)kqk(n−k)(−q)n−k

×
∑

j,l≥0

(qk−n, qn+k+2,−a4qk+1; q) j+l (a1a4qk , a2a4qk , a3a4qk; q)l (−q/a4; q) j q j+l

(−q3/2+k , q3/2+k ,−q2+k; q) j+l (q; q) j (q; q)l (−a4qk+1, a1a2a3a4q2k; q)l (−a4/q)l
.

(3.5)

Proof The q-ultraspherical polynomials Cn(x;β | q) are special cases of the Askey–
Wilson polynomials (cf. [20, (15.2.15)]):

pn(x;√
β,−√

β,
√

βq,−√
βq | q) = (q,−β; q)n(qβ2; q2)n

(β2; q)n
Cn(x;β | q).

Note that Un(x) = Cn(x; q | q) (cf. [20, (13.2.14)]). Then, we have from the above
formula:

Un(x) = pn(x;√
q,−√

q, q,−q | q)

(qn+2; q)n
. (3.6)

Therefore, by choosing b1 = √
q , b2 = −√

q , b3 = q and b4 = −q, we obtain (3.5)
from (3.4) and (3.6). 
�

Next, we integrate both sides of (3.5) with respect to the normalized Askey–Wilson
weight (3.3). Due to the orthogonality relation (3.2), all terms vanish on the right-hand
side except for the term when k = 0. This gives us
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∫ 1/λq

−1/λq

Un(λq x)w(λq x, a | q)λqdx

=
∫ 1

−1
Un(x)w(x, a | q)dx = (q3; q2)n(−q2; q)n

(−q)n(qn+2; q)n

×
∑

j,l≥0

(q−n, qn+2; q) j+l(a1a4, a2a4, a3a4; q)l(−q/a4,−ql+1a4; q) j q j+l

(q3; q2) j+l(−q2; q) j+l(q; q) j (q; q)l(a1a2a3a4; q)l(−a4/q)l
,

(3.7)

where λq is a continuous function of q in a small interval [−1,−1+σ ] with λ−1 = 1
and 0 < λq < 1 for q ∈ (−1,−1+σ). A typical example is λq = √

(1 − q)/2. Next,
we will compute the limit of the above formula as q → −1. To facilitate our future
computations, let us list a few useful relations as follows:

(qn; q)k ∼ 2k
(n

2

)

� k+1
2 �

(1 + q)�
k+1
2 �, if n is even, (3.8)

(qn; q)k ∼ 2k
(

n + 1

2

)

� k
2 �

(1 + q)�
k
2 �, if n is odd, (3.9)

(−q2; q)k ∼ 2k
(
3

2

)

� k
2 �

(1 + q)�
k
2 �, (3.10)

as q → −1. Then, we establish the following lemmas.

Lemma 3.2 For any integer n ≥ 0, we have

lim
q→−1

(q3; q2)n(−q2; q)n

(−q)n(qn+2; q)n
= n + 1. (3.11)

Proof Obviously, (q3; q2)n → 2n and (−q)n → 1 as q → −1. When n = 2m is
even, we have from (3.8) and (3.10)

(−q2; q)n

(qn+2; q)n
∼ 2n(3/2)m(1 + q)m

2n(m + 1)m(1 + q)m
= (1)m(3/2)m

(1)m(m + 1)m
= (2)n

2n(1)n
= n + 1

2n

as q → −1. Similarly, when n = 2m + 1 is odd, we have from (3.10)

(−q2; q)n

(qn+2; q)n
∼ 2n(3/2)m(1 + q)m

2n(m + 2)m(1 + q)m
= (1)m+1(3/2)m

(1)m+1(m + 2)m
= (2)n

2n(1)n
= n + 1

2n

as q → −1. A simple calculation gives (3.11). 
�
Lemma 3.3 Denote

A = (1 − a2
4)(1 − 1/a2

4)

4
, B = (1 − a2

1a2
4)(1 − a2

2a2
4)(1 − a2

3a2
4)

4a2
4(1 − a2

1a2
2a2

3a2
4)

.
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We have

lim
q→−1

(a1a4, a2a4, a3a4; q)l(−q/a4,−ql+1a4; q) j q j+l

(q3; q2) j+l(a1a2a3a4; q)l(−a4/q)l

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ai Bk, j = 2i, l = 2k,

− (1−a1a4)(1−a2a4)(1−a3a4)
2a4(1−a1a2a3a4)

Ai Bk, j = 2i, l = 2k + 1,

− (1−a4)(1−1/a4)
2 Ai Bk, j = 2i + 1, l = 2k,

(1−a1a4)(1−a2a4)(1−a3a4)(1+a4)(1−1/a4)
4a4(1−a1a2a3a4)

Ai Bk, j = 2i + 1, l = 2k + 1.

(3.12)

Proof The proof is based on the repeated uses of

lim
q→−1

(c; q) j =
{

(1 − c2)i , j = 2i,

(1 − c2)i (1 − c), j = 2i + 1,

for c2 �= 1. 
�
Lemma 3.4 If n = 2m is even, we have

lim
q→−1

(q−n, qn+2; q) j+l

(−q2; q) j+l(q; q) j (q; q)l
=

{
(−m)i+k (m+1)i+k
(3/2)i+k(1)i (1)k

j = 2i, l = 2k,

0 otherwise.
(3.13)

If n = 2m + 1 is odd, we have

lim
q→−1

(q−n, qn+2; q) j+l

(−q2; q) j+l(q; q) j (q; q)l
=

{
0 j = 2i + 1, l = 2k + 1,
(−m)i+k (m+2)i+k
(3/2)i+k(1)i (1)k

otherwise,

(3.14)

where i = � j/2� and k = �l/2�.

Proof For convenience, let us denote

C j,l = (q−n, qn+2; q) j+l

(−q2; q) j+l(q; q) j (q; q)l
.

We first consider the case when n = 2m is even. From (3.8)–(3.10), we have

C j,l = O
(
(1 + q)�( j+l+1)/2�+�( j+l+1)/2�−�( j+l)/2�−� j/2�−�l/2�) , as q → −1,

which implies that C j,l → 0 if either j or l is odd. When both j = 2i and l = 2k are
even, we obtain

C j,l ∼ 22i+2k(−m)i+k(1 + q)i+k22i+2k(m + 1)i+k(1 + q)i+k

22i+2k(3/2)i+k(1 + q)i+k22i (1)i (1 + q)i22k(1)k(1 + q)k
= (−m)i+k(m + 1)i+k

(3/2)i+k(1)i (1)k
,
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as q → −1. Then, we obtain (3.13).
Next, we consider the case when n = 2m + 1 is odd. Again, from (3.8)–(3.10), we

have

C j,l = O
(
(1 + q)�( j+l)/2�+�( j+l)/2�−�( j+l)/2�−� j/2�−�l/2�) , as q → −1,

which implies that C j,l → 0 if both j and l are odd. There are three cases to be
considered. (i) When j = 2i and l = 2k, we obtain

C j,l ∼ 22i+2k(−m)i+k(1 + q)i+k22i+2k(m + 2)i+k(1 + q)i+k

22i+2k(3/2)i+k(1 + q)i+k22i (1)i (1 + q)i22k(1)k(1 + q)k
= (−m)i+k(m + 2)i+k

(3/2)i+k(1)i (1)k
.

(ii) When j = 2i and l = 2k + 1, we have

C j,l ∼ 22i+2k+1(−m)i+k(1 + q)i+k22i+2k+1(m + 2)i+k(1 + q)i+k

22i+2k+1(3/2)i+k(1 + q)i+k22i (1)i (1 + q)i22k+1(1)k(1 + q)k

= (−m)i+k(m + 2)i+k

(3/2)i+k(1)i (1)k
.

(iii) When j = 2i + 1 and l = 2k, we obtain

C j,l ∼ 22i+2k+1(−m)i+k(1 + q)i+k22i+2k+1(m + 2)i+k(1 + q)i+k

22i+2k+1(3/2)i+k(1 + q)i+k22i+1(1)i (1 + q)i22k(1)k(1 + q)k

= (−m)i+k(m + 2)i+k

(3/2)i+k(1)i (1)k
.

Finally, the above four formulas give us (3.14). 
�
With the above lemmas, we are ready to evaluate the limit of (3.7) as q → −1.

When n = 2m is even, a combination of (3.7), (3.11), (3.12), and (3.13) yields

lim
q→−1

∫ 1/λq

−1/λq

U2m(λq x)w(λq x, a1, a2, a3, a4 | q)λqdx

= (2m + 1)
∑

i,k≥0

(−m)i+k(m + 1)i+k

(3/2)i+k(1)i (1)k
Ai Bk

= (2m + 1)
m∑

s=0

(−m)s(m + 1)s

(3/2)s(1)s
(A + B)s . (3.15)

Note that, the series on the right-hand side is indeed the polynomial U2m itself. To see
it, from (18.7.4) and (18.7.13) in [24], we have

U2m(x) = (2m + 1)
P

( 12 ,− 1
2 )

m (2x2 − 1)

P
( 12 ,− 1

2 )
m (1)

,
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where P(α,β)
n (x) is the Jacobi polynomials. From the series representation of P(α,β)

n (x)

in [24, Eq.(18.5.7)], we have from the above formula

U2m(x) = (2m + 1)
m∑

s=0

(−m)s(m + 1)s

(3/2)s(1)s
(1 − x2)s . (3.16)

By setting

x0 = √
1 − A − B =

√√√√2 − 2a2
1a2

2a2
3a2

4 + ∑4
j=1 a2

j − ∑
1≤i< j<k≤4 a2

i a2
j a

2
k

4(1 − a2
1a2

2a2
3a2

4)
,

(3.17)

we have from (3.15) and (3.16)

lim
q→−1

∫ 1/λq

−1/λq

U2m(λq x)w(λq x, a1, a2, a3, a4 | q)λqdx = U2m(x0). (3.18)

Here, x0 > 0 because 1 − a2
1a2

2a2
3a2

4 > 0 and

4∑

j=1

a2
j −

∑

1≤i< j<k≤4

a2
i a2

j a
2
k = (a2

1 + a2
2)(1 − a2

3a2
4) + (a2

3 + a2
4)(1 − a2

1a2
2) > 0

for all a1, a2, a3, a4 ∈ (−1, 1). Similarly, when n = 2m + 1 is odd, it follows from
(3.7), (3.11), (3.12) and (3.14) that

lim
q→−1

∫ 1/λq

−1/λq

U2m+1(λq x)w(λq x, a1, a2, a3, a4 | q)λqdx

= (2m + 2)y0
∑

i,k≥0

(−m)i+k(m + 2)i+k

(3/2)i+k(1)i (1)k
Ai Bk

= (2m + 2)y0

m∑

s=0

(−m)s(m + 2)s

(3/2)s(1)s
(A + B)s . (3.19)

where

y0 := 1 − (1 − a1a4)(1 − a2a4)(1 − a3a4)

2a4(1 − a1a2a3a4)
− (1 − a4)(1 − 1/a4)

2

=
∑4

j=1 a j − ∑
1≤i< j<k≤4 ai a j ak

2(1 − a1a2a3a4)
. (3.20)
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Again, the right-hand side of (3.19) is also the polynomial U2m+1. Similar to the
derivation of (3.16), we have from (18.5.7), (18.7.4), and (18.7.14) in [24] that

U2m+1(x) = (2m + 2)x
m∑

s=0

(−m)s(m + 2)s

(3/2)s(1)s
(1 − x2)s . (3.21)

Then, the above formula and (3.19) yield

lim
q→−1

1/λq∫

−1/λq

U2m+1(λq x)w(λq x, a1, a2, a3, a4 | q)λqdx = y0
x0

U2m+1(x0). (3.22)

Since Un is an even function when n is even, and is an odd function when n is odd.
One can unify (3.18) and (3.22) as the following single equation:

lim
q→−1

1/λq∫

−1/λq

Un(λq x)w(λq x, a1, a2, a3, a4 | q)λqdx

= x0 + y0
2x0

Un(x0) + x0−y0
2x0

Un(−x0). (3.23)

Finally, the above result gives us a theorem for the Askey–Wilson weight as follows.

Theorem 3.5 Given a = (a1, a2, a3, a4) with a1, a2, a3, a4 ∈ (−1, 1), and let
w(x, a | q) be the weight function of the Askey–Wilson polynomials defined in (3.3).
Let x0 and y0 be the constants defined in (3.17) and (3.20), respectively. Then, we
have

lim
q→−1

∫ 1/λq

−1/λq

f (λq x)w(λq x, a | q)λqdx = x0 + y0
2x0

f (x0) + x0 − y0
2x0

f (−x0),

(3.24)

for any f ∈ C[−1, 1].
Proof For simplicity, let us denote

Jq(h) :=
∫ 1/λq

−1/λq

h(λq x)w(λq x, a1, a2, a3, a4 | q)λqdx,

Q(h) := x0 + y0
2x0

h(x0) + x0 − y0
2x0

h(−x0),

for any h ∈ C[−1, 1]. By Weierstrass approximation theorem, for any ε > 0, there
exist an integer N > 0 and a polynomial PN (x) of degree N , such that | f (x) −
PN (x)| < ε for all x ∈ [−1, 1]. This gives us |Q( f ) − Q(PN )| < ε for any f ∈
C[−1, 1].Note that PN canbe expressed as a linear combinationofU0, . . . , UN . It then
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follows from (3.23) that there exists q0 ∈ (−1, 1) such that |Jq(PN ) − Q(PN )| < ε
for all q ∈ (−1, q0). Since w(x, a1, a2, a3, a4 | q) > 0 for all x ∈ (−1, 1) and
q ∈ (−1, 1), we have |Jq( f ) − Jq(PN )| < ε for all q ∈ (−1, 1). By triangular
inequalities, we obtain

|Jq ( f ) − Q( f )| ≤ |Jq ( f ) − Jq (PN )| + |Jq (PN ) − Q(PN )| + |Q(PN ) − Q( f )| < 3ε

for all q ∈ (−1, q0). This completes the proof. 
�

Corollary 3.6 Given a = (a1, a2, a3, a4) with a1, a2, a3, a4 ∈ (−1, 1), and let
w(x, a | q) be the weight function of the Askey–Wilson polynomials defined in (3.3).
We have

w(λq x, a | q)dx⇀
x0 + y0
2x0

δ(x − x0) + x0 − y0
2x0

δ(x + x0),

as q → −1+, where x0 and y0 are the constants defined in (3.17) and (3.20), respec-
tively. From here onwards, the notation “⇀" represents the convergence of the measure
in a weak sense.

Proof For any f ∈ C[−1, 1], we can extend it to a continuous and bounded function
on the whole real line by defining f (x) = f (−1) for x < −1 and f (x) = f (1) for
x > 1. Since λq → 1 and f (x) − f (λq x) → 0 as q → −1, we have

∫ 1

−1
f (x)w(λq x, a | q)dx −

∫ 1

−1
f (λq x)w(λq x, a | q)λqdx → 0

as q → −1. Moreover, the integrals of | f (λq x)w(λq x, a | q)| on the shrinking inter-
vals [−1/λq ,−1] and [1, 1/λq ] also vanish as q → −1. Hence, we obtain from (3.24)
that

lim
q→−1

∫ 1

−1
f (x)w(λq x, a | q)dx = x0 + y0

2x0
f (x0) + x0 − y0

2x0
f (−x0).

This completes the proof. 
�

Remark 3.7 Given a1, a2, a3, a4 ∈ (−1, 1), the monic Askey–Wilson polynomials
satisfy the second-order linear difference equation:

pn+1(x |q) = [x − Bn(q)/2]pn(x |q) − An−1(q)Cn(q)pn−1(x |q),
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where

An = 1 − a1a2a3a4qn−1

(1 − a1a2a3a4q2n−1)(1 − a1a2a3a4q2n)
,

Cn = (1 − qn)
∏

1≤ j<k≤4(1 − a j akqn−1)

(1 − a1a2a3a4q2n−2)(1 − a1a2a3a4q2n−1)
,

Bn = a1 + 1

a 1
− An

a1

4∏

j=2

(1 − a1a j q
n) − a1Cn∏4

j=2(1 − a1a j qn−1)
;

see [20, (15.2.10)–(15.2.13)]. It is readily seen thatC2(−1) = 0,which implies c = −1
and N = 2 in Theorem 2.1. A further calculation gives α0(−1) = y0, α1(−1) = −y0,
and β1(−1) = x20 − y20 , where x0 and y0 are defined in (3.17) and (3.20), respectively.
Then, a direct application of Theorem 2.1 and Remark 2.2 also gives (3.24). We also
remark that±x0 are the zeros of second-order Askey–Wilson polynomials p2(x |−1);
see [26, (2.6)]. Note that the definitions of the Askey–Wilson polynomials are slightly
different in the present paper and [26]. Namely, we have pn(x |q) = Cn Pn(2x) for
certain constant Cn and the Askey–Wilson polynomial Pn(x) defined in [26, (1.9)].

4 Some special cases

Since the Askey–Wilson polynomials are the most general orthogonal polynomials in
the q-Askey scheme, they can be reduced to other polynomials by choosing certain
parameters t in their definition in (3.1).

4.1 The Al-Salam–hihara polynomials

The Al-Salam–Chihara polynomials were first introduced in [3]. They appeared in
a characterization theorem describing all orthogonal polynomials satisfying a certain
convolution property. Al-Salam andChihara identified the recurrence relation satisfied
by their polynomials and derived a generating function. The weight function was
found in [6], and later they were identified as special Askey–Wilson polynomials
in [7]. Indeed, by setting t3 = t4 = 0 in (3.1), the Al-Salam–Chihara polynomials
Qn(x; t1, t2 | q) is defined as follows:

Qn(x; t1, t2 | q) = t−n
1 (t1t2; q)n 3φ2

(
q−n ,t1eiθ ,t1e−iθ

t1t2,0

∣∣∣∣ q, q

)
. (4.1)

When |t1|, |t2| < 1, they satisfy the following orthogonality relation:

∫ 1

−1
Qm(x; t1, t2 | q)Qn(x; t1, t2 | q)w(x, t1, t2 | q)dx = (q; q)n(t1t2; q)nδm,n,

(4.2)
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where the weight function is given by

w(x, t1, t2 | q) = (q, e2iθ , e−2iθ , t1t2; q)∞
2π

√
1 − x2(t1eiθ , t1e−iθ , t2eiθ , t2e−iθ ; q)∞

(4.3)

with x = cos θ ; see [20, (15.1.1)–(15.1.2)].
By choosing t3 = t4 = 0 in Theorem 3.5, we have the following result for the

Al-Salam–Chihara weight.

Theorem 4.1 Given a1, a2 ∈ (−1, 1), let w(x, a1, a2 | q) be the weight function of the
Al-Salam–Chihara polynomials defined in (4.3). Then, we have

lim
q→−1

∫ 1/λq

−1/λq

f (λq x)w(λq x, a1, a2 | q)λqdx = x0 + y0
2x0

f (x0) + x0 − y0
2x0

f (−x0),

for any f ∈ C[−1, 1], where

x0 =
√
2 + a2

1 + a2
2

2
and y0 = a1 + a2

2
.

Moreover,

w(λq x, a1, a2 | q)dx⇀
x0 + y0
2x0

δ(x − x0) + x0 − y0
2x0

δ(x + x0),

as q → −1.

4.2 The continuous q-Hermite polynomials

If we further set t1 = t2 = 0 in (4.3), it gives us the weight function for the contin-
uous q-Hermite polynomials in (1.6). Then, the continuous q-Hermite polynomials
Hn(x | q) satisfy the following orthogonality relation:

∫ 1

−1
Hm(x | q)Hn(x | q)wH (x | q) dx = (q; q)n δm,n .

By using our Theorem 3.5 and choosing the parameters a1 = a2 = a3 = a4 = 0,
one immediately sees that Deng and Yang’s conjecture [17] is true. More precisely,
we have the following theorem.

Theorem 4.2 Let wH (x | q) be the weight function of the continuous q-Hermite poly-
nomials defined in (1.6). Then, for any f ∈ C[−1, 1], we have

lim
q→−1

∫ 1/λq

−1/λq

f (λq x)wH (λq x | q)λqdx = 1

2
f

(√
2

2

)
+ 1

2
f

(
−

√
2

2

)
.
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Moreover,

wH (λq x | q)dx⇀
1

2

(
δ(x −

√
2

2
) + δ(x +

√
2

2
)

)
,

as q → −1.

4.3 The continuous q-ultraspherical polynomials

Next, we consider the continuous q-ultraspherical polynomials. Their weight function
is given by

w(x, β | q) = (q, e2iθ , e−2iθ , β2; q)∞
2π

√
1 − x2(β, qβ, βe2iθ , βe−2iθ ; q)∞

, (4.4)

with x = cos θ ; see [20, (13.2.4)–(13.2.5)]. When |β| < 1, the continuous q-
ultraspherical polynomials Cn(x;β | q) satisfy the following orthogonality relation:

∫ 1

−1
Cm(x;β | q)Cn(x;β | q)w(x, β | q)dx = (β2; q)n (1 − β)

(q; q)n (1 − βqn)
δm,n . (4.5)

Comparing with the weight function for the Askey–Wilson polynomials in (3.3), one
obtains the weight function (4.4) by choosing

t1 = √
β, t2 = −√

β, t3 = √
qβ and t4 = −√

qβ

in (3.3). One may expect analogous results also hold when we take the above special
parameters in Theorem 3.5. Indeed, figures similar to those of the q-Hermite weight
wH (x | q) in (1.6) can be plotted; see Fig. 1. One may compare the graphs below with
those in [17, Fig. 1] and [27, Fig. 1].

Note that the aboveobservationonly holds formally.An independent proof is needed
because some of the parameters t1, t2, t3, t4 may be imaginary when β or q becomes
negative. Then, we have the following result.

Theorem 4.3 Given β ∈ (−1, 1), let w(x, β | q) be the weight function of the contin-
uous q-ultraspherical polynomials defined in (4.4). Then, we have

lim
q→−1

∫ 1/λq

−1/λq

f (λq x)w(λq x, β | q)λqdx = 1

2
f

(√
2

2

)
+ 1

2
f

(
−

√
2

2

)
,

for any f ∈ C[−1, 1]. Moreover,

w(λq x, β | q)dx⇀
1

2

(
δ(x −

√
2

2
) + δ(x +

√
2

2
)

)
,
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as q → −1.

Proof Similar to (3.4), let us first recall the following connection relation for the q-
ultraspherical polynomials:

Cn(x; γ | q) =
�n/2�∑

k=0

βk(γ /β; q)k(γ ; q)n−k(1 − βqn−2k)

(q; q)k(qβ; q)n−k(1 − β)
Cn−2k(x;β | q);

see [20, (13.3.1)]. Note that Un(x) = Cn(x; q | q) (cf. [20, (13.2.14)]). Then, we have
from the above formula by letting γ = q:

Un(x) =
�n/2�∑

k=0

βk(q/β; q)k(q; q)n−k(1 − βqn−2k)

(q; q)k(qβ; q)n−k(1 − β)
Cn−2k(x;β | q). (4.6)

By the orthogonality (4.4) and C0(x;β | q) = 1, we have

∫ 1/λq

−1/λq

Un(λq x)w(λq x, β | q)λqdx =
{
0, n = 2m + 1,

βm(q/β; q)m/(qβ; q)m , n = 2m.
(4.7)

When n = 2m, we have

lim
q→−1

∫ 1/λq

−1/λq

Un(λq x)w(λq x, β | q)λqdx = (−1)�m/2� = Un(
√
2/2).

When n = 2m + 1, we have

lim
q→−1

∫ 1/λq

−1/λq

Un(λq x)w(λq x, β | q)λqdx = 0.

Coupling the above two equations gives

lim
q→−1

∫ 1/λq

−1/λq

Un(λq x)w(λq x, β | q)λqdx = 1

2
Un

(√
2

2

)
+ 1

2
Un

(
−

√
2

2

)
.

The remaining proof of Theorem 4.3 follows from a similar argument as in the proof
of Theorem 3.5, where the Weierstrass approximation theorem is used. 
�
Remark 4.4 The above theorem suggests usTheorem3.5 remain validwhen the param-
eters a1, a2, a3, a4 occur in pairs of complex conjugates. Without loss of generality,
we assume that either a1 = ā2 or both a1 and a2 are real, and either a3 = ā4 or both
a3 and a4 are real. We further assume that |a1| < 1, |a2| < 1, |a3| < 1, |a4| < 1. It
suffices to prove that x0 defined in (3.17) is positive and y0 defined in (3.20) is real.
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To achieve this, we rewrite 1 − A − B = C/D, where D := 4(1 − a2
1a2

2a2
3a2

4) > 0,
and

C := 2 − 2a2
1a2

2a2
3a2

4 +
4∑

j=1

a2
j −

∑

1≤i< j<k≤4

a2
i a2

j a
2
k

= (1 + a2
1)(1 + a2

2)(1 − a2
3a2

4) + (1 + a2
3)(1 + a2

4)(1 − a2
1a2

2) > 0.

This proves that x0 = √
C/D > 0. It is obvious from (3.20) that y0 ∈ R.

5 The complex case

In this section, we consider the case when q → ωk , where ωk = e2π i/k with k =
3, 4, . . .. Again, we assume the recurrence coefficients βn(ωk) vanish for some finite n,
which differs from the sieved polynomials considered in [2]. Let us take the continuous
q-ultraspherical polynomials Cn(x;β | q) as an example. Note that (4.6) and (4.7) still
hold when q is complex. Then, we obtain

lim
q→ωk

∫ 1

−1
U2m(x)w(x, β | q)dx = βm(ωk/β;ωk)m/(ωkβ;ωk)m

and

lim
q→ωk

∫ 1

−1
U2m+1(x)w(x, β | q)dx = 0.

The above formulas imply

lim
q→ω3

∫ 1

−1
Un(x)w(x, β | q)dx = (β + 1)((

√
3 + 3i)β + 2

√
3)

6(
√
3 + i)(β2 + β + 1)

Un

(√
3

2

)

+ 2
√
3β2 + √

3 + 3i

3(
√
3 + i)(β2 + β + 1)

Un(0)

+ (β + 1)((
√
3 + 3i)β + 2

√
3)

6(
√
3 + i)(β2 + β + 1)

Un

(
−

√
3

2

)
.

It is interesting to note that the mass points are located at 0 and ±
√
3
2 , which are

independent of the parameter β. The mass points are indeed

cos

(
(2 j − 1)π

2k

)
, j = 1, . . . , k.
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We may continue to obtain

lim
q→ω4

∫ 1

−1
Un(x)w(x, β | q)dx = C1(β)

[
Un

(√
2 − √

2

2

)
+ Un

(
−

√
2 − √

2

2

)]

+C2(β)

[
Un

(√
2 + √

2

2

)
+ Un

(
−

√
2 + √

2

2

)]

for certain coefficients C1,2(β).
The monic continuous q-ultraspherical polynomials are given as follows:

pn(x;β|q) = (q; q)n

2n(β; q)n
Cn(x;β|q) = einθ

2n

n∑

k=0

(q−n, β; q)k

(q, q1−n/β; q)k
(qe−2iθ /β)k,

where x = cos θ . Let n > 1. As q approaches ωn = e2π i/n from the interior of the
unit disk, we have qn → 1 and

(q−n, β; q)k

(q, q1−n/β; q)k
→ 0

for all 1 < k < n. Thus, only the first and the last terms in the summation remain. It
then follows that

pn(x;β|ωn) = einθ

2n
(1 + e−2inθ ) = 21−n cos(nθ) = 21−nTn(x),

where Tn(x) are the Chebyshev polynomials of the first kind. In particular, the zeros
of pn(x;β|ωn) are

xr = cos

(
r − 1/2

n
π

)
, r = 1, . . . , n.

Note that we have fixed β and then let q → ωn , while in [2], it was assumed that
β = (q/ωn)λn and before taking the limit q → ωn . The difference equation for
pn(x) = pn(x;β|q) is

xpn(x) = pn+1(x) + (1 − qn)(1 − β2qn−1)

4(1 − βqn−1)(1 − βqn)
pn−1(x).

Let p∗
n(x) = p∗

n(x;β|q)be another linearly independent solutionof the above equation
with initial values p∗

0(x) = 0 and p∗
1(x) = 1. According to the argument in Sect. 1,

the q-ultraspherical measure approaches the discrete measure

n∑

r=1

p∗
n(xr ;β|ωn)

p′
n(xr ;β|ωn)

δxr ,
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as q → ωn = e2π i/n . Recall that pn(x;β|ωn) = 21−nTn(x). We have p′
n(x;β|ωn) =

21−nn sin(nθ)/ sin(θ), and particularly,

p′
n(xr ;β|ωn) = 21−nn sin((r − 1/2)π)√

1 − x2r
= (−1)r−1n

2n−1
√
1 − x2r

.

When β = 0, the q-ultraspherical measure reduces to the q-Hermite measure. We
will show later in Lemma 5.1 that p∗

n(x; 0|ωn) = n(eiθ /2)n−1Sn−1(−ωne−2iθ |ωn),
where Sn−1 is the Stieltjes-Wigert polynomial of degree n − 1. Consequently, the
limit of q-Hermite measure as q → ωn is a discrete measure with mass points xr =
cos[π(r − 1/2)/n] for r = 1, . . . , n, and the weight at xr is

p∗
n(xr ; 0|ωn)

p′
n(xr ; 0|ωn)

= (−1)r−1 sin[π(r − 1/2)/n]eiπ(r−1/2)(n−1)/n Sn−1(−ω
3/2−r
n |ωn)

= 1 − e−iπ(2r−1)/n

2
Sn−1(−ω

3/2−r
n |ωn).

Lemma 5.1 Let p∗
n(x) = p∗

n(x; 0|q) be the solution of the difference equation

xp∗
n(x) = p∗

n+1(x) + 1 − qn

4
p∗

n−1(x), n ≥ 1,

with initial conditions p∗
0(x) = 0 and p∗

1(x) = 1. For any n ≥ 1, we have

p∗
n(x; 0|q) = (q; q)n

2n−1

∞∑

k=1

qk−1Cn−1(x; qk |q). (5.1)

Especially, when q = ωn = e2iπ/n, we obtain

p∗
n(cos θ; 0|ωn) = neiθ(n−1)

2n−1 Sn−1(−ωne−2iθ ;ωn), (5.2)

where Sn−1 is the Stieltjes-Wigert polynomial of degree n − 1.

Proof Define the generating function

F(x, t) =
∞∑

n=1

p∗
n(x)tn

(q; q)n
= t

1 − q
+

∞∑

n=2

p∗
n(x)tn

(q; q)n
.

We have from the difference equation that

∞∑

n=1

xp∗
n(x)tn

(q; q)n
= 1

t

∞∑

n=1

p∗
n+1(x)tn+1(1 − qn+1)

(q; q)n+1
+ t

4

∞∑

n=1

p∗
n−1(x)tn−1

(q; q)n−1
,
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which gives the functional equation for the generating function

x F(x, t) = 1

t
[F(x, t) − F(x, tq)] − 1 + t

4
F(x, t).

The above equation can be rewritten as follows:

(1 − xt + t2/4)F(x, t) = F(x, tq) + t .

Set x = cos θ and

F(x, t) = G(x, t)

(teiθ /2, te−iθ /2; q)∞
.

It follows that

G(x, t) = G(x, tq) + t(tqeiθ /2, tqe−iθ /2; q)∞.

Iterating the above equation and making use of G(x, 0) = 0, we have

G(x, t) =
∞∑

k=1

tqk−1(tqkeiθ /2, tqke−iθ /2; q)∞,

which yields

F(x, t) =
∞∑

k=1

tqk−1

(teiθ /2, te−iθ /2; q)k
.

Because of the q-binomial theorem, we can expand

F(x, t) = t
∞∑

k=1

qk−1
∞∑

j=0

(qk; q) j

(q; q) j
(teiθ /2) j

∞∑

l=0

(qk; q)l

(q; q)l
(te−iθ /2)l .

Consequently,

p∗
n(x) = (q; q)n

2n−1

∞∑

k=1

qk−1
n−1∑

j=0

(qk; q) j (qk; q)n−1− j

(q; q) j (q; q)n−1− j
eiθ(n−1−2 j)

= (q; q)n

2n−1

∞∑

k=1

qk−1Cn−1(x; qk |q), n ≥ 1.

123



From continuous to discrete: weak limit...

This proves (5.1).Now, let us consider the casewhenq → ωn = e2iπ/n . Byq-binomial
theorem, we have

(q; q)n

∞∑

k=1

qk−1(qk; q)r (q
k; q)s

= (q; q)n

∞∑

k=1

qk−1
r∑

l=0

(q−r ; q)l

(q; q)l
ql(k+r)

s∑

m=0

(q−s; q)m

(q; q)m
qm(k+s)

=
r∑

l=0

s∑

m=0

(q−r ; q)l(q−s; q)m

(q; q)l(q; q)m
ql(1+r)+m(1+s) (q; q)n

1 − q1+l+m
.

Assume r + s = n − 1. Each term, except for l = r and m = s, in the above double
sum vanishes as q → ωn . Consequently, the limit of the above double sum is

lim
q→ωn

(q−r ; q)r (q−s; q)s

(q; q)r (q; q)s
qr(1+r)+s(1+s)(q; q)n−1

= lim
q→ωn

(−1)r+sq−r(r+1)/2−s(s+1)/2+r(1+r)+s(1+s)(q; q)n−1

= (−1)n−1nw
(r2+r+s2+s)/2
n ,

where in the last step, we have made use of the equality (wn;wn)n−1 = n. Note that
wk

n with k = 1, . . . , n are the distinct roots of zn − 1 = 0. We have

f (z) =
n−1∏

k=1

(z − wk
n) = zn − 1

z − 1
=

n−1∑

k=0

zk .

Especially, (wn;wn)n−1 = f (1) = n. Summarizing the above arguments, we obtain

lim
q→ωn

p∗
n(x) = (−1)n−1n

2n−1

n−1∑

j=0

w
( j2+ j+(n−1− j)2+(n−1− j))/2
n

(wn;wn) j (wn;wn)n−1− j
eiθ(n−1−2 j)

= (−1)n−1n

2n−1 ω
n(n−1)/2
n eiθ(n−1)Sn−1(−ω−n+1

n e−2iθ ;ωn),

= neiθ(n−1)

2n−1 Sn−1(−ωne−2iθ ;ωn),

which proves (5.2). 
�

6 Conclusion and discussion

In this paper, we have used two different approaches to derive the weak limit of the
Askey–Wilson measure as q tends to −1 from the right. We proved that the limiting
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Fig. 1 Plots of the q-ultraspherical measure w(λq x, β | q) in (4.4) with λq = √
1 − q and β = 0.5. In the

first row, q is negative and increases from −0.9 to −0.1 with a step size 0.2. While in the second row, q is
positive and increases from 0.1 to 0.9 with a step size 0.2

measure is discrete, and it has exactly twomass points that are symmetric about the ori-
gin. As special cases, our results can be applied to the Al-Salam-Chihara polynomials,
the continuous q-Hermite polynomials, and the continuous q-ultraspherical polyno-
mials. Especially, we proved a conjecture made by Deng and Yang [17] who observed
from the numerical graph that the weak limit of q-Hermite measure as q → −1 is the
sum of two discrete masses with equal weight at±√

2/2. For the complex case when q
approaches a root of unity ωn = e2π in with n = 3, 4, . . ., we also calculated the weak
limit of the q-ultraspherical measure which is a discrete measure with n mass points
cos[(r −1/2)π/n] for r = 1, 2, . . . , n. For the special case of q-Hermite polynomials,
we also expressed the weights explicitly in terms of the Stieltjes-Wigert polynomials.

Another interesting phenomenon observed from the numerical simulation is that
the shape of the orthogonality measure for the q-orthogonal polynomials changes
from unimodal to bimodal as q decreases from 1 to −1. Taken the q-ultraspherical
measure in (4.4) as an example, we observe from Fig. 1 that there exists a critical value
q∗ ∈ (0.1, 0.2) such that themeasure is unimodal when q ∈ (q∗, 1) and bimodel when
q ∈ (−1, q∗). Here, we have chosen β = 0.5. It is worth investigating how the critical
value q∗ depends on the parameter β.

There are caseswhere themoments dononot determine themeasure uniquely.These
moment problems are called indeterminate; see [1, 25]. The best-known example is the
q−1-Hermite polynomials of Askey [5] and Ismail and Masson [21]. We know many
measures for the q−1-Hermite polynomials including the N -extremal measures which
make the polynomials complete in their weighted L2 spaces. The coefficient of pn−1 in
the monic form of the recurrence relation contains the factor q−n which becomes neg-
ative as soon as q turns negative. This makes the limit as q → −1 different from those
studied in the present paper. In particular, the N -extremalmeasureswill not converge to
a probability measure as q → −1. However, we expect the limit may still contain two
mass points where the signed weights add to one. We will explore this in future work.

Acknowledgements We are grateful to the anonymous referees for their careful reading and constructive
suggestions.
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