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We study the Poisson-Nernst-Planck (PNP) system with an arbitrary number of ion species with arbitrary
valences in the absence of fixed charges. Assuming point charges and that the Debye length is small relative to
the domain size, we derive an asymptotic formula for the steady-state solution by matching outer and boundary
layer solutions. The case of two ionic species has been extensively studied, the uniqueness of the solution has
been proved, and an explicit expression for the solution has been obtained. However, the case of three or more
ions has received significantly less attention. Previous work has indicated that the solution may be nonunique
and that even obtaining numerical solutions is a difficult task since one must solve complicated systems of
nonlinear equations. By adopting a methodology that preserves the symmetries of the PNP system, we show
that determining the outer solution effectively reduces to solving a single scalar transcendental equation. Due to
the simple form of the transcendental equation, it can be solved numerically in a straightforward manner. Our
methodology thus provides a standard procedure for solving the PNP system and we illustrate this by solving some
practical examples. Despite the fact that for three ions, previous studies have indicated that multiple solutions
may exist, we show that all except for one of these solutions are unphysical and thereby prove the existence and
uniqueness for the three-ion case.
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I. INTRODUCTION

In biological cells, ionic species flow through cell mem-
branes that are extremely thin (of the order of a few nanome-
ters) and the flux of ions is affected by both ionic concentration
gradients and the electric field. Although there are a number
of models that have been used to describe such systems (e.g.,
Maxwell-Boltzmann equations and Langevin systems), the
Poisson-Nernst-Planck (PNP) system has the advantage that it
can capture many of the important features of cross-membrane
flow while being simple enough to be amenable to analysis.
Therefore, PNP-type systems are widely used in the modeling
of the flow of ions across biological cells [1–9]. Such systems
have also proved to be highly adept in modeling electrokinetic
problems in industrial electrochemistry [10]. We also note that
much of the early work on PNP systems was motivated by
the fluxes of electrons and holes in semiconductor physics
(see, for example, [11–14]). In fact, the PNP model can be
derived from a Langevin model in the limit of large damping
and neglecting the finite size of ions and correlations between
ionic trajectories [15]. There has been extensive work on
incorporating the effects of the finite size of ions [16–38].
However, in general, these models tend to be significantly
more complicated than systems composed of point charges
and therefore considerably more difficult to analyze. There
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have also been numerous extensions to the PNP system
including [19,20,22–25,31,32] adding fluid flow [14,39] and
incorporating the effects of induced charge [15,40]. Transient
effects have also been considered by a number of authors
[41–43]. In particular, Ghosal and Chen studied a model
for capillary electrophoresis and showed that propagating
nonlinear waves can result [44,45]. Many studies have focused
on the one-dimensional problem, but Bazant [46] showed that
the electroneutral Nernst-Planck equations are conformally
invariant and that for particular boundary conditions, the so-
lution of a two-dimensional problem in a general geometrical
setting can be mapped onto an equivalent one-dimensional
problem. In contrast, for boundary conditions that are not
conformally invariant, the problem is more complicated and
surface conduction of ions can occur [42,47,48].

In the case of two ionic species, there has been extensive
analysis of the PNP system to understand its dynamics. The
relation between the current and voltage has been studied using
asymptotic analysis [49,50]. The qualitative properties of the
steady states have been examined using a variety of techniques
[51,52]. For the special case (referred to as the 1:−1 case)
when there are only two species of ions with unit positive and
unit negative charges, Barcilon et al. [51] obtained an explicit
asymptotic formula using matched asymptotic expansions.
Uniqueness of solutions for the special 1:−1 case was obtained
in [52]. Asymptotic methods have been used to study the
1:−1 case in a three-dimensional funnel [53]. The system has
also been studied using innovative geometric techniques by
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Liu [54], who proved the existence and (local) uniqueness of
solutions for the case when the two types of ions have arbitrary
valences, referred to as the α:β case hereafter.

Multiple-valued phenomena in biological channels clearly
have important consequences for cell dynamics and under-
standing the mechanisms that underlie these phenomena is cru-
cial if one wishes to manipulate the behavior of cells [55,56].
Therefore, one of the most fundamental scientific questions in
the flow of ions through cell membranes is under what circum-
stances multiple-valued phenomena (nonuniqueness) can oc-
cur. Uniqueness has been proven for two ions, but for the case
of an additional fixed charge, a number of authors have shown
that nonunique behavior can occur [50,57–60]. This raises the
interesting question of whether nonunique behavior can occur
in systems without fixed charge, but with more than two ions.

Most of the early work focused on the case of only two
ions due to the fact that much of the initial interest in
PNP systems was motivated by semiconductor devices that
only contain electrons and holes. In contrast, in biological
channels, multiple ion species are involved in a number of
situations. For example, voltage activated sodium channels
that are responsible for generating action potentials are known
to involve three ions (sodium, chloride, and calcium). Another
example involves the loss of hemostasis during a dialysis
procedure. In fact, calcium ions are responsible for a number
of fundamental mechanisms that are ubiquitous in biological
cells. These include acting as a messenger ion and performing
signaling operations. In modeling such processes, it is hence
imperative to include calcium ions along with the univalent
ions (sodium, potassium, and chloride). Therefore, in practice
we often need to find solutions of a more general PNP system
with more than two species of ions of arbitrary valences. In
particular, it is desirable to have a relatively simple expression
or solution methodology for computing ion fluxes given by the
generic steady-state PNP system for three (or more) ions.

The problem for three or more ions was first considered
by Leuchtag [61], who showed that the electric field sat-
isfies a nonlinear high-order ordinary differential equation.
However, the nonlinearity and complexity of the ordinary
differential equation and the fact that the boundary conditions
involve high-order derivatives make obtaining the solution and
considering nonuniqueness a formidable task. An important
breakthrough was made by Liu [62], who considered the
problem for three or more ions using a geometrical framework.
He used this framework to address questions of existence and
uniqueness and also showed that the problem could be reduced
to a complicated system of nonlinear equations. He noted
that the multiple-ion case is significantly more challenging
than the two-ion case from the viewpoint of rigorous analysis
and that even solving such a system numerically represents a
challenging task. He was also able to consider a special case in
which he was able to find multiple solutions of the nonlinear
algebraic equations indicating that multiple solutions may exist
for the case of three ions. Liu also noted that his approach
allows for the consideration of piecewise constant fixed charge.
An analytical solution for the special case of valences 1:−1:2
(representing sodium, chloride, and calcium) has also been
obtained by direct integration [63].

In this paper, we assume point charges and derive an
asymptotic solution of the general problem in the absence

of fixed charges using matched asymptotic expansions. By
carefully maintaining the symmetries of the PNP system, we
show that the outer solution can be determined by solving a
single scalar transcendental equation rather than the systems of
equations found by previous authors. The scalar transcendental
equation we find is similar to those obtained in the study of
delay-differential equations and it can be easily dealt with
using standard numerical techniques. The boundary layer
solutions are given in terms of a generalization of elliptic
integrals that can also be evaluated in a straightforward way.
Therefore, in contrast to previous methods, our formulation
allows us to determine solutions in a simple and direct way.
We demonstrate the effectiveness of our method by solving
several practically relevant special cases. If we restrict our
attention to physically relevant solutions with non-negative
ionic concentrations, we use our framework for three ions to
prove the existence and uniqueness of solutions. We note that,
in the case n = 3, Liu [62] found an example of nonunique
solutions to his system of nonlinear equations. However, this
example contained a solution of the nonlinear equations that
corresponds to a solution of the PNP system that has negative
ionic concentrations and is thus unphysical.

The rest of this paper is organized as follows. In Sec. II, we
formulate the problem. In Sec. III, we derive the outer solution
and boundary layer solutions. As our main result, we present
a uniformly valid asymptotic expression for the solution. Two
special cases are considered in Sec. IV, namely, the α:β
and 2:1:−1 cases, and we validate our results by comparing
our asymptotic solution with numerical solutions and those
obtained in the literature. The existence and uniqueness of
solutions for two and three ions is given in Sec. V. A summary
and discussion are given in Sec. VI.

II. FORMULATION

In this paper, we consider a generic PNP problem for point
charges that consists of n ion species with valences zi and
concentrations ci . The electric potential φ is governed by the
Poisson equation

−∇ · (ε∗∇φ) =
n∑

i=1

ezici, (1)

where ε∗ is the permittivity and e is the elementary charge.
The concentration of ions is determined by the Nernst-Planck
equations

∂ci

∂t
+ ∇ · fi = 0, (2)

where fi is the concentration flux of the ith ion given by

fi = −Di

(
∇ci + ezi

kBT
ci∇φ

)
(3)

≡ −DiJi. (4)

Here Di is the diffusion coefficient of the ith ion, kB is
the Boltzmann constant, and T is the absolute temperature.
We have also introduced the quantity Ji , which represents
the concentration flux divided by the diffusion coefficient for
each ion.
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We will consider the steady states for the one-dimensional
problem of flow of ions across a membrane of width L and
constant permittivity with the potential and concentrations of
each species prescribed on either side of the membrane. We
nondimensionalize lengths by L, the potential φ by kBT /e, and
the concentrations ci by the characteristic ionic concentration,
which we denote C to obtain the dimensionless equations

−ε2 d2φ

dx2
=

n∑
i=1

zici (5)

and

dJi

dx
= 0, − Ji = dci

dx
+ zici

dφ

dx
. (6)

Here the normalized fluxes Ji are unknown constants and the
dimensionless parameter ε is given by

ε =
√

ε∗kBT

e2L2C . (7)

Physically, ε represents the ratio of the Debye length (which
is the length scale over which ions screen electric fields) to the
membrane width L [52]. In what follows, we shall assume that
this ratio is small, namely,

ε � 1. (8)

We are interested in obtaining an asymptotic solution to the
PNP system with boundary conditions

ci = ciL, φ = φL for x = 0; (9)

ci = ciR, φ = φR for x = 1. (10)

We note that for physically meaningful solutions, we will
require that the concentrations of all ions are non-negative,
namely, ci � 0. The assumption of constant concentrations
at the boundaries is common in biology, but is also used in
membrane science [39]. In the latter case, the assumption may
break down due to a current-induced membrane discharge
effect [64]. Furthermore, in the case of electrodes at which
Faradaic reactions occur, the boundary conditions must relate
ion fluxes to the rates of reaction [65–68].

III. MAIN RESULT: A UNIFORM
ASYMPTOTIC SOLUTION

We can divide the interval [0,1] into two boundary layers
(x ∼ 0 and x ∼ 1, respectively) and a single outer region away
from the boundaries.1 Posing an asymptotic expansion for
small ε and retaining only the leading-order terms, the outer
solution satisfies the limited PNP equations

0 =
n∑

i=1

zic
o
i , (11)

− Ji = dco
i

dx
+ zic

o
i

dφo

dx
, (12)

1This is due to the fact that internal layers cannot exist, as discussed
in Sec. VI B.

where the superscript o represents the leading-order outer
solution. By introducing the scale X = x/ε, we obtain the
leading-order equations near the left boundary layer x ∼ 0:

− d2φl

dX2
=

n∑
i=1

zic
l
i , (13)

0 = dcl
i

dX
+ zic

l
i

dφl

dX
, (14)

where the superscript l represents the leading-order left
boundary solution. Similarly, using the scale Y = (1 − x)/ε,
the leading-order system near the right boundary layer x ∼ 1
is given by

− d2φr

dY 2
=

n∑
i=1

zic
r
i , (15)

0 = dcr
i

dY
+ zic

r
i

dφr

dY
, (16)

where the superscript r represents the leading-order right
boundary solution. The boundary conditions (9) and (10) are
written as

φl(0) = φL, cl
i(0) = ciL; (17)

φr (0) = φR, cr
i (0) = ciR. (18)

In the following two subsections, we will obtain explicit
solutions to the PNP systems in the outer region and boundary
layers, respectively. The unknown fluxes, the values of outer
solution and boundary layer solutions in the overlapped region,
and the constants of integration are determined by matching
the outer and boundary layer solutions. Finally, we present a
uniformly valid asymptotic formula as our main result in the
last subsection.

A. Outer solution

From (11) and (12) we have

dφo

dx
= −

∑n
i=1 ziJi∑n
i=1 z2

i c
o
i

.

For physical solutions, we require the concentrations co
i � 0,

which implies that φo is a monotonic function of x if∑n
i=1 ziJi �= 0. The degenerate case

∑n
i=1 ziJi = 0 is signif-

icantly simpler than the generic case and will be considered
in Sec. III D. For the generic case, the physical outer solution
φo is monotonic and thus invertible. Equation (12) becomes
linear if we regard φo as a variable

−Ji ẋ = ċo
i + zic

o
i , (19)

where the dot denotes differentiation with respect to φo.
Equation (19) can be written as

−Jie
ziφ

o

ẋ = d

dφo

(
eziφ

o

co
i

)
and since x is monotonic we observe that eziφ

o

co
i is monotonic.

Thus, the concentrations co
i are always non-negative since

co
i (0) and co

i (1) are non-negative. Therefore, we have shown
that co

i > 0 for i = 1, . . . ,n if and only if x is a monotonic
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function of φo or, alternatively, φo is a monotonic function
of x. That is, only solutions with monotonic x(φo) are
physically relevant. We note that the oscillatory outer solutions
obtained in Example 5.1 in [62] are not physical because the
concentrations are negative in the outer region (even though
they have been verified to be positive at the boundaries).

We now proceed to obtain the solution. Following [61], we
apply the Vandermonde matrix method and multiply (19) by
(−zi)k and take the sum over all i to obtain

−
n∑

i=1

(−zi)
kJi ẋ =

n∑
i=1

(−zi)
kċo

i −
n∑

i=1

(−zi)
k+1co

i . (20)

For the sake of convenience, we define

Fk :=
n∑

i=1

(−zi)
kco

i , (21)

Ik :=
n∑

i=1

(−zi)
kJi . (22)

Therefore, (20) can be written as

Fk+1 = Ikẋ + Ḟk. (23)

Note that (11) and (21) lead to F1 = 0. By induction, we thus
obtain

Fk+1 = Ikẋ + Ik−1ẍ + · · · + I1x
(k), (24)

where x(k) denotes the kth derivative of x with respect to φo.
Writing (24) in matrix form, we obtain, for any k � 1,⎛

⎜⎝
F2
...

Fk+1

⎞
⎟⎠ =

⎛
⎜⎝

I1
...

. . .
Ik · · · I1

⎞
⎟⎠
⎛
⎜⎝

ẋ
...

x(k)

⎞
⎟⎠ . (25)

From the definition (21) we also have⎛
⎜⎝

F2
...

Fk+1

⎞
⎟⎠ =

⎛
⎜⎝

(−z1)2 · · · (−zn)2

...
...

(−z1)k+1 · · · (−zn)k+1

⎞
⎟⎠
⎛
⎜⎝

co
1
...
co
n

⎞
⎟⎠ . (26)

From expressions (25) and (26) we obtain (by setting k = n)⎛
⎜⎝

co
1
...
co
n

⎞
⎟⎠ =

⎛
⎜⎝

(−z1)2 · · · (−zn)2

...
...

(−z1)n+1 · · · (−zn)n+1

⎞
⎟⎠

−1

×

⎛
⎜⎝

I1
...

. . .
In · · · I1

⎞
⎟⎠
⎛
⎜⎝

ẋ
...

x(n)

⎞
⎟⎠ . (27)

This together with (11) yields

(z1 · · · zn)

⎛
⎜⎝

(−z1)2 · · · (−zn)2

...
...

(−z1)n+1 · · · (−zn)n+1

⎞
⎟⎠

−1

×

⎛
⎜⎝

I1
...

. . .
In · · · I1

⎞
⎟⎠
⎛
⎜⎝

ẋ
...

x(n)

⎞
⎟⎠ = 0.

This equation can be rewritten in the form

(J1, . . . ,Jn)A

⎛
⎜⎝

ẋ
...

x(n)

⎞
⎟⎠ = 0, (28)

where

A =

⎛
⎜⎜⎜⎝

1
∑

i �=1 z−1
i

∑
i,j �=1 z−1

i z−1
j · · · ∏

i �=1 z−1
i

...
...

...
...

1
∑

i �=n z−1
i

∑
i,j �=n z−1

i z−1
j · · · ∏

i �=n z−1
i

⎞
⎟⎟⎟⎠ .

(29)

Note that the kth row of the matrix A corresponds to the
coefficients of the variable z in the polynomial �i �=k(z + z−1

i ).
It is readily seen that (28) is a linear ordinary differential
equation for ẋ. We note that Liu [62] used different techniques
to obtain an equivalent linear system. Generically, we may
assume the corresponding equation has n − 1 distinct roots,
which we denote by λ1, . . . ,λn−1. We then have an explicit
formula for ẋ:

ẋ =
n−1∑
i=1

die
λiφ

o

, (30)

where the coefficients di , as well as the roots λi , will be
determined by asymptotic matching.

In the remainder of this subsection, we will derive the
explicit relation between the roots of the characteristic poly-
nomial λi and the unknown fluxes Ji . Note that the coefficients
of the characteristic polynomial of (28) are given by the vector
(J1 · · · Jn)A. In contrast, since the roots of the polynomial are
λ1, . . . ,λn−1, the coefficients of the characteristic polynomial
must be proportional to the vector(

(−1)n−1
n−1∏
i=1

λi, . . . , −
n∑

i=1

λi,1

)
.

It thus follows that

(J1, . . . ,Jn) = κ0

(
(−1)n−1

n−1∏
i=1

λi, . . . , −
n∑

i=1

λi,1

)
A−1

(31)

for some nonzero constant κ0. From (29) we obtain the inverse
of A:

A−1 =

⎛
⎜⎜⎜⎜⎝

(−z1)−(n−1)(
z−1

2 −z−1
1

)
···
(
z−1
n −z−1

1

) · · · (−zn)−(n−1)(
z−1

1 −z−1
n

)
···
(
z−1
n−1−z−1

n

)
...

...
1(

z−1
2 −z−1

1

)
···
(
z−1
n −z−1

1

) · · · 1(
z−1

1 −z−1
n

)
···
(
z−1
n−1−z−1

n

)

⎞
⎟⎟⎟⎟⎠ .

It is readily seen from (31) that

Ji = κ0(−1)n−1
n−1∏
j=1

(zi + λj )
∏
j �=i

(1 − zi/zj )−1. (32)
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The rest of this subsection is dedicated to determining the
nonzero constant κ0 in terms of the characteristic roots
λ1, . . . ,λn−1. First, from (22) and (32) we obtain

I0 = κ0(−1)n−1
n−1∏
i=1

λi. (33)

In contrast, from (11), (21), and (23) we obtain

I0ẋ + Ḟ0 = F1 = 0.

Integrating this equation from φo(0) to φo(1) gives an alterna-
tive expression for I0:

I0 = F0(0) − F0(1). (34)

Hence, it follows from (33) and (34) that

κ0 = (−1)n−1[F0(0) − F0(1)]
n−1∏
i=1

λ−1
i . (35)

Using (32), we hence obtain

Ji = [F0(0) − F0(1)]
n−1∏
j=1

(1 + zi/λj )
∏
j �=i

(1 − zi/zj )−1, (36)

which represents an explicit expression for the fluxes Ji in
terms of the roots of the characteristic polynomial λi . In
Sec. III C, we will determine the roots λi using asymptotic
matching.

B. Boundary layer solutions

It is easily seen from (14) and (17) that

cl
i(X) = ciLe−zi [φl (X)−φL]. (37)

Substituting formula (37) into (13) yields

−d2φl

dX2
=

n∑
i=1

ziciLe−zi [φl (X)−φL]. (38)

Integrating Eq. (38) from X to ∞ gives(
dφl

dX
(X)

)2

−
(

dφl

dX
(∞)

)2

=
n∑

i=1

2ciL[e−zi [φl (X)−φL] − e−zi [φl (∞)−φL]]. (39)

Similarly, from (15), (16), and (18) we have

cr
i (Y ) = ciRe−zi [φr (Y )−φR ] (40)

and (
dφr

dY
(Y )

)2

−
(

dφr

dY
(∞)

)2

=
n∑

i=1

2ciR[e−zi [φr (Y )−φR ] − e−zi [φr (∞)−φR ]]. (41)

As we shall see in the next subsection, the boundary values
dφl

dX
(∞), φl(∞), dφr

dY
(∞), and φr (∞) can be determined by

asymptotic matching.

C. Asymptotic matching

In this subsection, we will first determine the matching val-
ues of the outer and boundary layer solutions in the overlapped
regions. Then we will find a simple scalar transcendental
equation for the characteristic roots λ1, . . . ,λn−1. Finally, we
will determine the integration constants di in (30) in terms of
the roots λi .

Straightforward matching between the outer and boundary
layer solutions yields

φo(0) = φl(∞), co
i (0) = cl

i(∞); (42)

φo(1) = φr (∞), co
i (1) = cr

i (∞). (43)

Note that from (11), (37), and (42) we have

co
i (0) = cl

i(∞) = ciLw
−zi

L , (44)

where

wL := eφl (∞)−φL = eφo(0)−φL > 0. (45)

In order to determine wL, we must solve the algebraic equation

n∑
i=1

ziciLw
−zi

L = 0 (46)

that comes from substituting (44) into (11). We note that the
left-hand side of this equation is a continuous decreasing
function on the positive real line since the concentrations
ciL � 0. Moreover, this function has different signs as wL

tends to 0 and ∞. Thus, Eq. (46) possesses a unique positive
root. If the difference between the largest and smallest valences
is less than or equal to 4, then a closed-form expression for the
root can be obtained. Otherwise, the root can easily be obtained
numerically using the Jenkins-Traub algorithm [69]. Having
obtained the solution, one can use (44) and (45) to determine
co
i (0) and φo(0). Similarly, from (11), (40), and (43) we have

co
i (1) = cr

i (∞) = ciRw
−zi

R , (47)

where

wR := eφr (∞)−φR = eφo(1)−φR (48)

is the unique positive root of the algebraic equation
n∑

i=1

ziciRw
−zi

R = 0. (49)

Similarly to the above case, (49) has a unique positive root
that one can use to determine co

i (1) and φo(1). We note that
cl
i(∞) = co

i (0) and cr
i (∞) = co

i (1) are independent of φL and
φR . Recall that X = x/ε and Y = (1 − x)/ε, so we have

dφl

dX
(∞) = ε

dφo

dx
(0) = O(ε)

and
dφr

dY
(∞) = −ε

dφo

dx
(1) = O(ε)

as ε → 0. Thus, by matching at leading order, we have

dφl

dX
(∞) = dφr

dY
(∞) = 0. (50)

So far, we have determined the matching values of the
outer and boundary layer solutions in the overlapped regions,
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namely, φo(0) = φl(∞), co
i (0) = cl

i(∞), φo(1) = φr (∞), and
co
i (1) = cr

i (∞). We have also shown in (36) that Ji can be
expressed in terms of λi . It remains to determine the integration
constants di and the characteristic roots λi in the expression
for the outer solution (30). As we shall see, the coefficients di

can be obtained in terms of Ji and λi . Thus, the crucial part of
this subsection is to find a system of algebraic equations for
λi . First, substituting (30) into (25) with k = n − 1 yields⎛
⎜⎝

F2
...

Fn

⎞
⎟⎠ =

⎛
⎜⎝

I1
...

. . .
In−1 · · · I1

⎞
⎟⎠
⎛
⎜⎝

∑n−1
i=1 die

λiφ
o

...∑n−1
i=1 diλ

n−2
i eλiφ

o

⎞
⎟⎠ . (51)

This equation can be written as

F(x) = IV �(x)D, (52)

where

F(x) := [F2(x), . . . ,Fn(x)]T , (53)

�(x) := diag{eλ1φ
o(x), . . . ,eλn−1φ

o(x)}, (54)

D := (d1, . . . ,dn−1)T , (55)

and

I :=

⎛
⎜⎝

I1
...

. . .
In−1 · · · I1

⎞
⎟⎠ ,

(56)

V :=

⎛
⎜⎝

1 · · · 1
...

...
λn−2

1 · · · λn−2
n−1

⎞
⎟⎠ .

Applying (52) at x = 0, namely, φo(x) = φo(0), and at x = 1,
namely, φo(x) = φo(1), we obtain

F(0) = IV �(0)D, F(1) = IV �(1)D. (57)

Eliminating the vector D in Eqs. (57) yields

�(1)−1(IV )−1F(1) = �(0)−1(IV )−1F(0), (58)

which represents a set of n − 1 equations. Note from (26) that
F(0) and F(1) can be determined from the boundary values of
co
i . Moreover, the components of �(0) and �(1) are also ex-

plicit functions of λi and the boundary values of φo. It remains
to determine the inverse (IV )−1. From (22) and (32) we obtain

I1 = −κ0

n∏
i=1

zi,

I2 = I1

[
n∑

i=1

(−zi) −
n−1∑
i=1

λi

]
,

I3 = I1

⎡
⎣ ∑

1�i�j�n

(−zi)(−zj ) −
(

n−1∑
i=1

λi

)(
n∑

i=1

(−zi)

)

+
∑

1�i<j�n−1

λiλj

⎤
⎦ ,

... . (59)

Using (56) and (59), it is tedious but straightforward to verify
that

(IV )−1

= I−1
1

⎛
⎜⎜⎝

Pn−2(λ1)
(λ1−λ2)···(λ1−λn−1) · · · P0(λ1)

(λ1−λ2)···(λ1−λn−1)
...

...
Pn−2(λn−1)

(λn−1−λ1)···(λn−1−λn−2) · · · P0(λn−1)
(λn−1−λ1)···(λn−1−λn−2)

⎞
⎟⎟⎠

= I−1
1

⎛
⎝Pn−1−j (λi)

∏
k �=i

(λi − λk)−1

⎞
⎠

(n−1)×(n−1)

, (60)

where Pk(λ) is a polynomial of λ given by

Pk(λ) = λk +
n∑

i=1

ziλ
k−1 + · · · +

∑
1�i1<i2<···<ik�n

zi1 · · · zik .

(61)

Substituting into (58), we see that all n − 1 equations in (58)
reduce to the same transcendental equation

n∑
k=2

Pn−k(λ)Fk(1) = eλV o

n∑
k=2

Pn−k(λ)Fk(0), (62)

where for convenience we define V o := φo(1) − φo(0). In fact,
finding the roots of this single nonlinear equation is equivalent
to finding the solution to the system of nonlinear equations
obtained by Liu [62]. However, by maintaining the relabeling
symmetries of the the system, our approach reduces Liu’s
system of equations to a single equation. It should be noted
that this transcendental equation has infinitely many roots. For
instance, there exists a pair of conjugate roots near [ln F2(1) −
ln F2(0) ± 2πiN ]/V o for all sufficiently large integers N .
The roots can be obtained numerically using techniques based
on Cauchy integrals in the complex plane [70]. In deriving
(30) we assumed that the λi for i = 1, . . . ,n − 1 are distinct.
Therefore, we must choose n − 1 of the infinite set of the
roots of (62). In practice, we have to choose a set of n − 1
roots such that the outer solution is real and the concentrations
are positive everywhere. The solution must be real, so if we
choose a complex root, we must also choose its complex
conjugate. For n � 3, it therefore appears that there are an
infinite number of solutions. However, in Sec. III A we showed
that solutions are physically relevant if and only if ẋ �= 0.
We note that values of λ with large imaginary component
will correspond to functions ẋ that are highly oscillatory.
Such solutions will have values of φo for which ẋ = 0 and
are hence unphysical. We will discuss the choice of roots for
n = 2 and 3 in Sec. V. We also note that oscillatory functions
x(φo) correspond to functions φo(x) that are multivalued. In
many physical problems, multivaluedness can be resolved by
the introduction of internal layers. However, in Sec. VI B we
will show that internal layers cannot exist for this problem.

Before ending this subsection, we derive a closed form for
ẋ that can be used to check if ẋ = 0 and hence the solution if
unphysical. We will use this result in Sec. V to prove existence
and uniqueness for n = 2 and 3. Setting k = n − 1 in (26) and
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using (11) to eliminate co
n, we obtain

F =

⎛
⎜⎝

(−z1)2 · · · (−zn)2

...
...

(−z1)n · · · (−zn)n

⎞
⎟⎠
⎛
⎜⎝

co
1
...
co
n

⎞
⎟⎠

=

⎛
⎜⎝

(−z1)2 · · · (−zn)2

...
...

(−z1)n · · · (−zn)n

⎞
⎟⎠

×

⎛
⎜⎜⎝

1
. . .

1
−z1/zn · · · −zn−1/zn

⎞
⎟⎟⎠
⎛
⎜⎝

co
1
...

co
n−1

⎞
⎟⎠ .

Premultiplying by (IV )−1 and using (60), we obtain

(IV )−1F

= I−1
1

⎛
⎜⎜⎝

(λ1+z2)···(λ1+zn−1)
(λ1−λ2)···(λ1−λn−1) · · · (λ1+z1)···(λ1+zn−2)

(λ1−λ2)···(λ1−λn−1)
...

(λn−1+z2)···(λn−1+zn−1)
(λn−1−λ1)···(λn−1−λn−2) · · · (λn−1+z1)···(λn−1+zn−2)

(λn−1−λ1)···(λn−1−λn−2)

⎞
⎟⎟⎠

×

⎛
⎜⎝

z1(z1 − zn)co
1

...
zn−1(zn−1 − zn)co

n−1

⎞
⎟⎠ . (63)

It then follows from (30), (52), and (63) that

ẋ = I−1
1

n−1∑
i=1

eλi [φo−φo(0)]Q0(λi)
n−1∏

k �=i,k=1

(λi − λk)−1, (64)

where

Q0(λ) := [
z1(z1 − zn)co

1(0)
] ∏

k �=1,n

(λ + zk) + · · ·

+ [
zn−1(zn−1 − zn)co

n−1(0)
] ∏

k �=n−1,n

(λ + zk). (65)

We also remark that using (58) and (63), Eq. (62) can be
rewritten as

Q1(λ) = eλV o

Q0(λ), (66)

where V o = φo(1) − φo(0) and

Q1(λ) := [
z1(z1 − zn)co

1(1)
] ∏

k �=1,n

(λ + zk) + · · ·

+ [
zn−1(zn−1 − zn)co

n−1(1)
] ∏

k �=n−1,n

(λ + zk). (67)

D. Uniformly valid asymptotic solution

In this subsection, we state our main result, which gives
a uniformly valid asymptotic solution of the general PNP

system. First, we define generalized elliptic integrals by

E(α0, . . . ,αn; a0, . . . ,an; u) :=
∫ u

1

(
n∑

i=0

ait
αi

)−1/2

dt. (68)

Theorem. The PNP system (5) and (6) with boundary
conditions (9) and (10) has a uniformly valid asymptotic
solution as follows:

φ(x) = φo(x) + φl
(x

ε

)
+ φr

(
1 − x

ε

)
−φo(0) − φo(1) + O(ε), (69)

ci(x) = co
i (x) + cl

i

(x

ε

)
+ cr

i

(
1 − x

ε

)
− co

i (0) − co
i (1) + O(ε), (70)

where φo(x) is the inverse function of

x =
n−1∑
i=1

di

λi

(eλiφ
o − eλiφ

o(0)); (71)

φl(X) is the inverse function of

E(α0, . . . ,αn; a0, . . . ,an; eφl−φL ) = X sgn{φl(∞) − φl(0)},
(72)

with α0 = 2, αi = 2 − zi , a0 = −2F0(0) =
−2

∑n
i=1 ciLe−zi [φl (∞)−φL], and ai = 2ciL; φr (Y ) is the

inverse function of

E(α0, . . . ,αn; b0, . . . ,bn; eφr−φR ) = Y sgn{φr (∞) − φr (0)},
(73)

with α0 = 2, αi = 2 − zi , b0 = −2F0(1) =
−2

∑n
i=1 ciRe−zi [φr (∞)−φR ], and bi = 2ciR; and cl

i(X)
and cr

i (Y ) are given in (37) and (40), respectively, and co
i (x)

are determined from (27) and (30).
Proof. The asymptotic formulas (69) and (70) are obtained

by asymptotic matching. Equation (71) follows from an
integration of (30). Substituting (50) into (39) and (41) gives

dφl

dX
(X) =

{
n∑

i=1

2ciL[e−zi (φl (X)−φL) − e−zi (φl (∞)−φL)]

}1/2

× sgn{φl(∞) − φl(0)}

and

dφr

dY
(Y ) =

{
n∑

i=1

2ciR[e−zi [φr (Y )−φR ] − e−zi [φr (∞)−φR ]]

}1/2

× sgn{φr (∞) − φr (0)},
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respectively. Hence, (72) and (73) follow from our definition
of the generalized elliptic integrals in (68). �

IV. EXAMPLES

In this section, we show how straightforward our method
is to use by applying it to two examples, the first with
two ions that reproduces the results of Barcilon et al.
[51] and Liu [54] and the second with three ions. Subse-
quently, these solutions are compared with those obtained
by a direct numerical approach and those in the literature.
The corresponding current-voltage (I -V ) relations are also
provided.

A. Example I: Two ions with arbitrary valences α:β

Let z1 = α and z2 = β. First, we solve Eqs. (46) and (49):

αc1Lw−α
L + βc2Lw

−β

L = αc1Rw−α
R + βc2Rw

−β

R = 0, (74)

where wL := eφl (∞)−φL = eφo(0)−φL and wR := eφr (∞)−φR =
eφo(1)−φR . The roots are given by

wL =
(

αc1L

−βc2L

)1/(α−β)

, wR =
(

αc1R

−βc2R

)1/(α−β)

. (75)

The boundary values (in the matching region) of the concen-
trations are then obtained from (44) and (47):

co
i (0) = cl

i(∞) = ciLw
−zi

L = ciLe−zi [φl (∞)−φL]

= ciLe−zi [φo(0)−φL]

and

co
i (1) = cr

i (∞) = ciRw
−zi

R = ciRe−zi [φr (∞)−φR ]

= ciRe−zi [φo(1)−φR ].

Next, we must solve λ1 from Eq. (62):

F2(1) = eλ1V
o

F2(0), (76)

where V o = φo(1) − φo(0). Although the equation has infinite
number of complex roots for λ1, we are seeking a real outer
solution φo(x) and so we must choose the only real root

λ1 = 1

V o
ln

F2(1)

F2(0)
. (77)

Consequently, the fluxes can be obtained from (36):

J1 = [F0(0) − F0(1)](1 + α/λ1)

1 − α/β
,

J2 = [F0(0) − F0(1)](1 + β/λ1)

1 − β/α
. (78)

Next, we determine the coefficient d1 from (57):

d1 = e−λ1φ
o(0)I−1

1 F2(0) = λ1e
−λ1φ

o(0)F2(0)

αβ[F0(0) − F0(1)]
. (79)

Consequently, the outer solution is given by (71):

x = d1

λ1
[eλ1φ

o − eλ1φ
o(0)] (80)

or, equivalently,

φo = φo(0) + 1

λ1
ln

(
1 + x

αβ[F0(0) − F0(1)]

F2(0)

)
. (81)

If α = 1 and β = −1, we have

φo(x) = φo(0) + φo(1) − φo(0)

ln
√

c1Rc2R − ln
√

c1Lc2L

× ln

(
1 − x + x

√
c1Rc2R√
c1Lc2L

)
, (82)

which agrees with Eq. (46) in [51]. We now determine the
boundary layer solutions. Clearly, α0 = 2, α1 = 2 − α, α2 =
2 − β, and

a0 = −2F0(0), a1 = 2c1L, a2 = 2c2L,

b0 = −2F0(1), b1 = 2c1R, b2 = 2c2R,

where F0(0) = c1Lw−α
L + c2Lw

−β

L and F0(1) = c1Rw−α
R +

c2Rw
−β

R . The boundary layer solutions (72) and (73) have
explicit formulas for some special values of α and β. For
example, when α = 1 and β = −1, we obtain

φl(X) = φL + ln

(
a2
(
1 + 1−a

1+a
e−a

√
2c2LX

)2

(
1 − 1−a

1+a
e−a

√
2c2LX

)2

)
, (83)

where a := (c1L/c2L)1/4, which agrees with Eq. (54) in [51],
and

φr (Y ) = φR + 2 ln

(
b2
(
1 + 1−b

1+b
e−b

√
2c2RY

)2

(
1 − 1−b

1+b
e−b

√
2c2RY

)2

)
, (84)

where b := (c1R/c2R)1/4, which agrees with Eq. (57) in [51].
In Fig. 1, we compare our asymptotic solution with a finite-
difference solution of the original PNP system [Eq. (87) in
[51]]. It can be seen that the two solutions compare reasonably
well for ε = 0.1.

B. Example II: Three ions with valences 2:1:−1

Let z1 = 2, z2 = 1, and z3 = −1. First, we obtain two
algebraic equations (46) and (49):

2c1Lw−2
L + c2Lw−1

L − c3LwL

= 2c1Rw−2
R + c2Rw−1

R − c3RwR = 0, (85)

0.2 0.4 0.6 0.8 1.0x
0.2
0.4
0.6
0.8
1.0

φ

(a) Potential

c1

c2

0.2 0.4 0.6 0.8 1.0x
1.5

2.0

2.5

3.0
c

(b) Concentrations

FIG. 1. Comparison of asymptotic solutions (solid lines) with
numerical solutions (dotted lines) of the 3:−2 case with the boundary
conditions φL = 0, c1L = 1, c2L = 1, φR = 1, c1R = 3, and c2R = 2.
Here we choose ε = 0.1.
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where wL := eφl (∞)−φL = eφo(0)−φL and wR := eφr (∞)−φR =
eφo(1)−φR . These two equations are cubic and hence one
can obtain a closed-form expression for the unique positive
solutions. The boundary values (in the matching region) of the
concentrations are then obtained from (44) and (47):

co
i (0) = cl

i(∞) = ciLw
−zi

L = ciLe−zi [φl (∞)−φL]

= ciLe−zi [φo(0)−φL]

and

co
i (1) = cr

i (∞) = ciRw
−zi

R = ciRe−zi [φr (∞)−φR ]

= ciRe−zi [φo(1)−φR ].

Since the two positive roots wL and wR are independent of φL

and φR , we notice that co
i (0) = cl

i(∞) and co
i (1) = cr

i (∞) are
also independent of φL and φR . Next, from (36), we express
the fluxes J1, J2, and J3 in terms of characteristic roots λ1 and
λ2:

J1 = −[F0(0) − F0(1)](1 + 2/λ1)(1 + 2/λ2)/3,

J2 = [F0(0) − F0(1)](1 + 1/λ1)(1 + 1/λ2), (86)

J3 = [F0(0) − F0(1)](1 − 1/λ1)(1 − 1/λ2)/3.

The roots λ1 and λ2 are solutions to Eq. (62):

(λ + 2)F2(1) + F3(1) = eλV o

[(λ + 2)F2(0) + F3(0)]. (87)

Even though Eq. (87) has infinite many complex roots, we will
show in Sec. V that one must choose the roots located in the
strip |V oImλ| < π such that the outer solution in (30) remains
real and monotonic. As we shall see later, there exist exactly
two characteristic roots in this strip. Next, we determine the
coefficients d1 and d2 from (57):(

d1

d2

)
=
(

e−λ1φ
o(0) 0

0 e−λ2φ
o(0)

)

×
(

I1 I1

I2 + λ1I1 I2 + λ2I1

)−1 (
F2(0)
F3(0)

)
. (88)

Consequently, the outer solution is given by (71):

x = d1

λ1
[eλ1φ

o − eλ1φ
o(0)] + d2

λ2
[eλ2φ

o − eλ2φ
o(0)]. (89)

We now determine the boundary layer solutions. Clearly,

α0 = 0, α1 = 0, α2 = 1, α3 = 3,

a0 = −2F0(0), a1 = 2c1L, a2 = 2c2L, a3 = 2c3L,

where F0(0) = c1Lw−2
L + c2Lw−1

L + c3LwL with wL :=
eφl (∞)−φL . The generalized elliptic integrals in (68) can be
written as ∫ u

1

[−2
(
c1Lw−2

L + c2Lw−1
L + c3LwL

)
t2

+ 2c1L + 2c2Lt + 2c3Lt3]−1/2
dt.

In view of the polynomial equation for wL in (85), we can
factorize the integrand and obtain∫ u

1
(2c3L)−1/2(t − wL)

(
t + c1L

c3Lw2
L

)−1/2

dt.
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0.3
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c1
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c3

0.2 0.4 0.6 0.8 1.0x
1
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3

4

5
c

(b) Concentrations

FIG. 2. Comparison of asymptotic solutions (solid lines) with
numerical solutions (dotted lines) of the 2:1:−1 case with the
boundary conditions φL = 0, c1L = 1, c2L = 2, c3L = 3, φR = 1,
c1R = 0.1, c2R = 5, and c3R = 2. Here we choose ε = 0.1.

For convenience, we define c := w−2
L c1L/c3L and a :=

(c + wL)1/2. The above integral can be expressed as

1

a
√

2c3L

ln

(√
u + c − a√
u + c + a

√
1 + c − a√
1 + c + a

)
.

Thus, it follows from (68) and (72) that

φl(X) = φL + ln

⎛
⎝a2

(
1 +

√
1+c+a√
1+c−a

ea
√

2c3LX
)2

(
1 −

√
1+c+a√
1+c−a

ea
√

2c3LX
)2 − c

⎞
⎠ . (90)

Similarly, the boundary layer solution near x ∼ 1 is obtained
from (68) and (49):

φr (Y ) = φR + ln

⎛
⎝b2

(
1 +

√
1+d+b√
1+d−b

eb
√

2c3RY
)2

(
1 −

√
1+d+b√
1+d−b

eb
√

2c3RY
)2 − d

⎞
⎠ , (91)

where wR := eφr (∞)−φR , d := w−2
R c1R/c3R , and

b := (d + wR)1/2. In Fig. 2, we plot the numerical solution via
a direct iterative method for the PNP system [Eq. (87) in [51]]
along with our uniformly valid asymptotic solution. It should
be noted that for the special case F1 = 0 (electroneutral), there
are no boundary layers (see Fig. 3). Finally, we have presented
a comparison between the asymptotic and numerical solutions
for a more complicated case 3:2:1:−1:−2 in Fig. 4. The
derivation of the asymptotic solution is omitted.
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0.5
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1.5
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2.5
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c

(b) Concentrations

FIG. 3. Comparison of asymptotic solutions (solid lines) with
numerical solutions (dotted lines) of the 2:1:−1 case with the
(electroneutral) boundary conditions φL = 0, c1L = 0.1, c2L = 2,
c3L = 2.2, φR = 1, c1R = 1, c2R = 1, and c3R = 3. Here we choose
ε = 0.1.
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FIG. 4. Comparison of asymptotic solutions (solid lines) with
numerical solutions (dotted lines) of the 3:2:1:−1:−2 case with
the boundary conditions φL = 0, c1L = c2L = c3L = c4L = c5L = 1,
φR = 1, c1R = 0.1, c2R = 0.1, c3R = 2, c4R = 2, and c5R = 0.1. Here
we choose ε = 0.1.

C. The I-V relation

In this subsection, we derive the I -V relation between
current I = −I1 = ∑n

i=1 ziJi and potential V = φR − φL =
V o − ln(wR/wL). First, we consider the α:β case (n = 2 with
z1 = α and z2 = β). It is readily seen from (22), (75), (77),
and (78) that

I = −αβ[F0(0) − F0(1)]

ln F2(1) − ln F2(0)

[
V + 1

α − β
ln

c1Rc2L

c1Lc2R

]
. (92)

When α = 1 and β = −1, the relation (92) is

I = 2(
√

c1Lc2L − √
c1Rc2R)

ln
√

c1Rc2R/c1Lc2L

[
V + ln

√
c1R/c2R√
c1L/c2L

]
(93)

and so I is a linear function of V , which agrees with Eq. (44)
in [51].

Now, we investigate the α:β:γ case (n = 3 with z1 = α,
z2 = β, and z3 = γ ). Making use of (11) and (21), it is easily
seen that (α + β + γ )F2 + F3 = −αβγF0. Hence, Eq. (62)
can be written as

λF2(1) − αβγF0(1) = eλV o

[λF2(0) − αβγF0(0)].

Since co
i > 0 for any i = 1,2,3, we obtain from (21) that F0 >

0 and F2 > 0. For large V o > 0, this equation always has a
zero

λ1 ∼ 1

V o
ln

F0(1)

F0(0)
.

The second zero depends on the sign of αβγ :

λ2 ∼
{

αβγF0(1)/F2(1), αβγ < 0

αβγF0(0)/F2(0), αβγ > 0.

Note from (22) and (32) that

−I1 ∼ [F0(0) − F0(1)]
3∑

i=1

zi(1 + zi/λ2)(1 + zi/λ1)∏
j �=i(1 − zi/zj )

.

Since 1/λ1 = O(V o) and λ2 = O(1) for large V o, we obtain
from the above formula and the identities

∑3
i=1 z2

i

∏
j �=i

(1 − zi/zj )−1 = 0 and
∑3

i=1 z3
i

∏
j �=i(1 − zi/zj )−1 = z1z2z3

1 2 3 4
V

5
10
15
20
25

I

1 2 3
V

6.2
6.4
6.6
6.8
7.0

dI dV

FIG. 5. The I -V relation of the 2:1:−1 case with the boundary
conditions φL = 0, c1L = 1, c2L = 2, c3L = 3, φR = V , c1R = 0.1,
c2R = 5, and c3R = 2. The dashed line is calculated via (94).

that

− I1 ∼
{

V o [F0(0)−F0(1)]F2(1)/F0(1)
ln[F0(1)/F0(0)] , αβγ < 0

V o [F0(0)−F0(1)]F2(0)/F0(0)
ln[F0(1)/F0(0)] , αβγ > 0.

(94)

Note that I1 = −I and V o = V + ln(wR/wL). Equation (94)
gives an asymptotically linear relation between the current
I and the potential V (see Fig. 5). We remark that if the
concentrations c3L and c3R are zero, then F2/F0 = −αβ and
the relation (94) reduces to the I -V relation (92) for the α:β
case.

V. EXISTENCE AND UNIQUENESS OF SOLUTIONS

In this section, we consider the existence and uniqueness
of solutions. Liu proved the existence and (local) uniqueness
for n = 2 [54], but for n = 3 found nonunique solutions
[62]. We prove that, for n = 3, if we restrict our attention
to physically relevant solutions with ci > 0 for i = 1, . . . ,n,
then the solution must be unique. We observe that Eq. (62)
has infinitely many complex roots. However, we have to
choose a set of n − 1 roots such that ci > 0 for i = 1, . . . ,n,
which is equivalent to finding a solution of (30) with
ẋ �= 0.

For the n = 2 case, we have seen in the previous section
that (76) has exactly one real root that corresponds to the
unique physical solution. Moreover, (80) implies that ẋ �= 0
and thus ci > 0 for i = 1, . . . ,n. This implies the existence of
the solution.

In order to prove the existence and uniqueness for the n = 3
case, we will show that we must choose the two roots in the
strip |V oImλ| < π . The proof of existence and uniqueness of
such roots is separated into three steps.

First, it is readily seen from (30) that if the two complex
conjugate roots λ± are chosen outside the strip |V oImλ| <π ,
then ẋ is a trigonometric function with frequency
2π/Imλ+:

ẋ = B cos(φoImλ+ + θ )eφoReλ+

for some B > 0 and θ ∈ [0,2π ). As φo varies from φo(0)
to φo(1), ẋ must change sign at some point because
|V oImλ+| > π and V o = φo(1) − φo(0).

Second, we use the fact that the non-negativeness of
concentrations implies that F2(0) > 0 and F2(1) > 0 and
show that Eq. (62) with n = 3 has exactly two roots in
the strip |V oImλ| < π provided V o �= 0. Upon a linear
scaling of λ, it suffices to prove that the transcendental
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function

f (z) := zez − a(z − 2d) (95)

with positive a and real d has exactly two roots (counting
multiplicity) in the strip |Imz| < π . Note that the deriva-
tive f ′(z) = (z + 1)ez − a has exactly one real root z = y0

and f (z) > 0 as z approaches ±∞. We conclude that f

has two real roots (counting multiplicity) if and only if
f (y0) = y0e

y0 − a(y0 − 2d) � 0, where (y0 + 1)ey0 = a. The
condition can be written as 2d � y2

0/(y0 + 1). Since y0 > −1
from its definition, we see that f has exactly two real roots
if d � 0. We now turn our attention to the complex roots
z = zr + izi of f (z) with 0 < zi < π . From f (z) = 0 we have
1 − 2d/z = ez/a. Comparing the imaginary parts of both sides
of the equation gives 2dzi/(z2

r + z2
i ) = ezr sin zi/a > 0, which

requires that d > 0. Evaluating the real and imaginary parts of
f (z) = zez − a(z − 2d) yields

ezr (zr sin zi + zi cos zi) = azi, (96)

ezr (zr cos zi − zi sin zi) = a(zr − 2d). (97)

We eliminate a from Eqs. (96) and (97) and obtain

z2
r + z2

i = 2d(zr + zi cot zi). (98)

Solving this equation gives

zr = d ±
√

d2 − z2
i + 2dzi cot zi . (99)

Substituting it into (96) yields g±(d,zi) = 0, where

g±(d,zi)

:= exp
(
d ±

√
d2 − z2

i + 2dzi cot zi

)
×
[(

d ±
√

d2 − z2
i + 2dzi cot zi

) sin zi

zi

+ cos zi

]
− a.

Let z∗
i ∈ (0,π ) be the unique solution of the equation d2 −

z2
i + 2dzi cot zi = 0. It is readily seen that g+(d,zi) is a real

decreasing function and g−(d,zi) is a real increasing function
for zi ∈ [0,z∗

i ]. [We remark that if zi ∈ (z∗
i ,π ), then g±(d,zi)

is not real and cannot be zero.] Moreover, g±(d,z∗
i ) = ed −

a and g±(0) = (1 + d ± √
d2 + 2d) exp(d ± √

d2 + 2d) − a.
Therefore, (95) has exactly one complex root z = zr + izi with
zi ∈ (0,π ) if and only if

(1 + d −
√

d2 + 2d) exp(d −
√

d2 + 2d)

< a < (1 + d +
√

d2 + 2d) exp(d +
√

d2 + 2d).

Recalling that a = (y0 + 1)ey0 , the above inequality is the
same as d − √

d2 + 2d < y0 < d + √
d2 + 2d or, equiva-

lently, 2d > y2
0/(y0 + 1). Therefore, we conclude that the tran-

scendental function f (z) = zez − a(z − 2d) with a = (y0 +
1)ey0 has exactly two real zeros if and only if 2d � y2

0/(y0 + 1)
and exactly two zeros that form a complex conjugate pair
zr ± izi with 0 < zi < π if and only if 2d > y2

0/(y0 + 1).
Third, for existence, if λ1 and λ2 are located in the strip

|V oImλ| < π , we have to show that the outer solution in (30)
is indeed monotonic. Since Eq. (62) is equivalent to (66) and
since ẋ in (30) has the explicit formula (64), we need to show
that if λ1 and λ2 in the strip |V oImλ| < π satisfies Eq. (66),

then the derivative of the outer solution ẋ as given in (64) is
nowhere near zero as φo varies from φo(0) to φo(1). Observe
from (65) and (67) that the polynomials Q0(λ) and Q1(λ) are
linear and with a positive leading coefficient. Without loss of
generality, we may assume φo(0) = 0, φo(1) = 1, Q0(λ) =
λ, and Q1(λ) = a(λ − 2d) with a > 0. Since λ1 and λ2 are
two roots of λeλ = a(λ − 2d), we have a = (λ2e

λ2 − λ1e
λ1 )/

(λ2 − λ1). We will prove by contradiction that if

λ1e
λ1ϕ = λ2e

λ2ϕ (100)

for some ϕ ∈ (0,1), then a cannot be positive. There are two
cases to be considered separately.

Case I: λ1 < λ2 are real. It follows from (100) that
λ1ϕ < −1 < λ2ϕ < 0. If λ2 � −1, then λ2e

λ2 < λ1e
λ1 , which

contradicts a > 0. If λ2 > −1, then λ2 < λ2ϕ < 0 and

λ2e
λ2 < λ2ϕeλ2ϕ = λ1ϕeλ1ϕ < λ1e

λ1 ,

which again contradicts a > 0.
Case II: λ1 = x − iy and λ2 = x + iy with real x and y ∈

(0,π ). It follows from (100) that x = −y cot(yϕ) < −y cot y.
This contradicts the fact that a = ex(x sin y/y + cos y) > 0.

A combination of the above three steps yields the existence
and uniqueness of a physical solution for n = 3. For n > 3,
we leave it as an open problem.2

VI. DISCUSSION AND CONCLUSION

In this paper, we have provided a systematic framework
for deriving a uniform asymptotic solution to the steady-state
PNP system for point charges with boundary conditions in the
absence of fixed charges. On the one hand, the leading-order
system of equations in the outer region becomes linear if
we view the electric potential as a variable. Consequently,
the outer solution can be expressed explicitly as an inverse
function of a combination of exponential functions. On the
other hand, the leading-order systems of equations near the
two boundary layers can be solved in terms of generalized
elliptic integrals. In contrast to previous work, which requires
the solution of a system of nonlinear equations, our method-
ology provides a simple numerical procedure to compute
membrane fluxes. We note that in biological ion channels,
fixed charges are almost always present and it is therefore
of significant interest to extend our analysis to include these
effects.

We used the framework to prove the uniqueness of the
solution for the three-ion case. The physical implication of this
result is that hysteresis cannot occur in the PNP framework in
the absence of fixed charges. Therefore, additional physical
mechanisms are needed to model biological systems that
exhibit bistability. As mentioned above, fixed charges are
ubiquitous in biological ion channels and the role that these
charges play in giving rise to multivalued solutions remains an
important open question.

In the absence of fixed charges, if the cross-membrane
potential is large, we have derived explicit expressions for
the membrane current and all of the ionic fluxes. In the
electroneutral case, the boundary layers are absent and our

2We will discuss open problems further in Sec. VI.
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results show that the potential φ and ionic concentrations ci

are all monotonic functions of position. This implies that φ

and ci are bounded by their boundary values. We note that in
a previous study it was suggested that nonmonotonic behavior
can occur. However, we have shown that this is not the case for
physically relevant solutions in which all ion concentrations
are non-negative.

In the following, we conclude this paper with discussions
on the problem of degeneracy and singularity, the nonexistence
of internal layer solution, and some open problems.

A. Degeneracy and singularity

The matrix I in (56) becomes singular when I1 =
−∑n

i=1 ziJi defined in (22) vanishes. From (11) and (12) we
have

0 = dφo

dx

n∑
i=1

z2
i ci .

Hence I1 = 0 implies that φo is a constant in the outer region.
Consequently, we have φo(0) = φo(1) or, equivalently, the
positive solutions of the two algebraic equations (46) and (49)
are the same. In contrast, for physically relevant solutions
with co

i � 0, if φo(0) = φo(1), we conclude from (11) and
(12) that I1 = 0. This demonstrates that I1 = 0 is equivalent
to φo(0) = φo(1). In this degenerate case, the outer solution
is a constant, (12) becomes dco

i /dx = −Ji which can be
readily solved, and we are only left to find two boundary
layer solutions as in (72) and (73).

It should be noted that if some of the fluxes are zero (but
the weighted flux I1 �= 0), then degeneracy does not occur and
we can proceed as in the general case. Although it seems
possible to reduce the dimension of the PNP system by
removing the corresponding ions with zero flux, this reduction
will actually lead to full nonlinearity and loss of symmetry so
that the reduced system becomes much more complicated to
handle than the original one.

If, in particular, all of the fluxes are zero, then we have n

algebraic constraints on the boundary conditions by integrating
Eq. (6):

ciR = ciLe−zi (φR−φL).

The PNP system can be reduced to a scalar equation

−ε2φ′′ =
n∑

i=1

ziciLe−zi (φ−φL) (101)

augmented with the boundary conditions φ(0) = φL and
φ(1) = φR . This problem is a special case of our degenerate
case (I1 = 0) when the outer solution is a constant and
two boundary layer solutions can be expressed in terms of
generalized elliptic integrals.

B. Nonexistence of internal layers

One interesting question related to the uniqueness of
solutions is whether there exists internal layers for PNP system
as those in other systems. Internal layers often occur to resolve
multivaluedness in such problems as in the case of the classical
shock layer in gas dynamics or as spikes (see [71] for example).

Here we provide a simple proof for the nonexistence of internal
layers.

Suppose that an internal layer exists at some point x0. Then
it satisfies the following equations:

− d2φI

dZ2
=

n∑
i=1

zic
I
i , (102)

0 = dcI
i

dZ
+ zic

I
i

dφI

dZ
, (103)

where Z := (x − x0)/ε. By matching, we have electroneutral-
ity as we tend to the edges of the internal layer:

n∑
i=1

zic
I
i (±∞) = 0.

Integrating Eq. (103) from −∞ to ∞ gives

cI
i (∞) = cI

i (−∞)e−zi [φI (∞)−φI (−∞)].

It can shown from these two equations that

n∑
i=1

zi(1 − e−zi [φI (∞)−φI (−∞)])cI
i (−∞) = 0.

This contradicts the non-negativeness of the concentrations
cI
i because all of the coefficients zi(1 − e−zi [φI (∞)−φI (−∞)])

have the same sign. Therefore, physically relevant steady-state
internal layer solutions do not exist. In similar systems,
previous authors have shown that internal layers can propagate
in transient situations giving rise to traveling waves [44,45],
but our result shows that stationary waves cannot occur.

C. Open problems

For the special case n = 2 (α:β), Liu [54] proved the (local)
uniqueness of the solution. For the n = 3 case, we are able to
show that Eq. (87) has exactly two roots in the strip |V oImλ| <

π , which implies the existence and uniqueness of the physical
solution. We have performed extensive numerical tests for four
or more ions (n > 3) and have always found unique solutions.
Thus, we conjecture that the general PNP system still has a
unique physical solution whose characteristic roots to Eq. (62)
are appropriately chosen. We leave the rigorous proof of this
statement as an open problem.

In the expression of boundary layer solutions we have made
use of the inverse function of generalized elliptic integrals
introduced in (68). This definition generalizes the classical
elliptic integrals [72] and further investigation is required to
understand the generalized elliptic integrals. Again, we leave
the more detailed analysis of (68) as an open problem.
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