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Abstract. In this paper, we derive an explicit formula for the bivariate La-
grange basis polynomials of a general set of checkerboard nodes. This for-
mula generalizes existing results of bivariate Lagrange basis polynomials at
the Padua nodes, Chebyshev nodes, Morrow-Patterson nodes, and Geronimus
nodes. We also construct a subspace spanned by linearly independent bivariate
vanishing polynomials that vanish at the checkerboard nodes and prove the

uniqueness of the set of bivariate Lagrange basis polynomials in the quotient
space defined as the space of bivariate polynomials with a certain degree over
the subspace of bivariate vanishing polynomials.

1. Introduction

Given x0 > x1 > · · · > xn and y0 > y1 > · · · > yn+σ where n and σ are
nonnegative integers, we define a rectangular set of nodes:

(1.1) S = {(xr, yu) : 0 ≤ r ≤ n, 0 ≤ u ≤ n+ σ},
which consists of (n + 1)(n + σ + 1) distinct points in R2. The set S can be
divided into two checkerboard sets S0 and S1 such that (xr, yu) ∈ S0 if and only
if r + u is even while (xr, yu) ∈ S1 if and only if r + u is odd. Our objective is to
develop existence and uniqueness theory of bivariate Lagrange basis polynomials
for the checkerboard set Sτ with τ = 0 or τ = 1. The special case σ = 0 was
considered in [6]. The special case σ = 1 was studied in [5, 7]. If σ = 1, xr =
cos(rπ/n) and yu = cos[uπ/(n + 1)], then Sτ is the set of Padua points and the
corresponding set of bivariate Lagrange basis polynomials is unique in Pn(x, y);
see [2, 3]. In [9], Xu derived bivariate Lagrange basis polynomials when σ = 0 and
xk = yk = cos[(2k − 1)π/(2n)] are zeros of Chebyshev polynomial of first kind Tn;
see also [1, 4]. The checkerboard nodes Sτ also generalize the Morrow-Patterson
nodes [8] and Geronimus nodes [5]. In [7], a recursive formula of bivariate Lagrange
basis polynomials for all integers σ ≥ 1 was defined, where the case σ = 1 was
proven and the other cases σ ≥ 2 were proposed as conjectures. In this paper,
we will prove these conjectures by deriving an equivalent and explicit formula of
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bivariate Lagrange basis polynomials for any nonnegative integer σ. This formula
generalizes the aforementioned results of bivariate Lagrange basis polynomials at
the Padua nodes, Chebyshev nodes, Morrow-Patterson nodes and Geronimus nodes.
Moreover, we will prove that the set of bivariate Lagrange basis polynomials is
unique in a certain quotient space of bivariate polynomials.

Let Pd(x, y) be the linear space of bivariate polynomials of degree no more than
d, which can be generated by the monomials xjyk with j + k ≤ d. It is easily seen
that the dimension of Pd(x, y) is (d+ 1)(d+ 2)/2. If f1(x, y), · · · , fM (x, y) are lin-
early independent polynomials in Pd(x, y), namely, c1f1(x, y)+· · ·+cMfM (x, y) = 0
for all (x, y) ∈ R2 implies c1 = · · · = cM = 0, then we can define the quotient space
Pd(x, y)/{f1(x, y), · · · , fM (x, y)} in the sense that two polynomials in this quotient
space are identical if and only if their difference can be expressed as a linear combi-
nation of f1(x, y), · · · , fM (x, y). Clearly, the dimension of Pd(x, y)/{f1(x, y), · · · ,
fM (x, y)} is (d+ 1)(d+ 2)/2−M .

Given a set of nodes (x1, y1), · · · , (xN , yN ) ∈ R2, we say {L1(x, y), · · · , LN (x, y)}
with each Lj(x, y) ∈ Pd(x, y) is a set of bivariate Lagrange basis polynomials if
Lj(xk, yk) = 0 for 1 ≤ j �= k ≤ N and Lk(xk, yk) = 1 for 1 ≤ k ≤ N . For conve-
nience, we also define the bivariate vanishing polynomial as a bivariate polynomial
f(x, y) ∈ Pd(x, y) that vanishes at all of the given nodes; namely, f(xk, yk) = 0 for
all 1 ≤ k ≤ N .

The rest of this paper is organized as follows. In Section 2, we state some pre-
liminary results on one-to-one map between a sequence of univariate nodes and a
sequence of difference equations. We also give a necessary and sufficient condition
for the uniqueness of bivariate Lagrange basis polynomials. In Section 3, we con-
struct the bivariate Lagrange basis polynomials for Sτ with general σ. In Section
4, we prove the uniqueness of the bivariate Lagrange basis polynomials for Sτ in a
certain quotient space of bivariate polynomials.

2. Preliminary results

We first rephrase the results in [6, Lemma 2] and [7, Theorem A.1 & Lemma
A.2] as Lemma 2.1.

Lemma 2.1. Given any x0 > x1 > · · · > xn, there exists a sequence of orthogonal
polynomials {pk(x)}nk=0 determined by two sequences {ak}n−1

k=0 and {bk}n−1
k=0 such

that p0(x) = 1, p1(x) = a0x+ b0, and

(2.1) pk+1(x) + pk−1(x) = (akx+ bk)pk(x),

for 1 ≤ k ≤ n− 1, and the following properties hold.

(1) (Positivity) ak > 0 for all 0 ≤ k ≤ n− 1.
(2) (Reflection) ak = an−k and bk = bn−k for all 1 ≤ k ≤ n− 1.
(3) (Alternation) pn−k(xj) = (−1)jpk(xj) for all 0 ≤ j, k ≤ n.

It is natural to ask whether the map from the set of distinct nodes X = {xk}nk=0

to the set of coefficients (A,B) = {(ak, bk)}n−1
k=0 satisfying the positivity and reflec-

tion conditions is invertible and unique. It is easy to show that the alternation
condition implies the invertibility of the map. When n is odd, the dimension of
(A,B) is n + 1, which suggests that the map might be unique. However, when n
is even, the dimension of (A,B) becomes n + 2, which indicates that there is one
more degree of freedom in (A,B). We shall prove that this additional degree of
freedom can be removed by a normalization condition a0 = 1.
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Theorem 2.2. Given any sequences {ak}n−1
k=0 and {bk}n−1

k=0 satisfying the positivity
and reflection conditions, namely, ak > 0 for all 0 ≤ k ≤ n − 1 and ak − an−k =
bk − bn−k = 0 for all 1 ≤ k ≤ n − 1, there exists a unique set of nodes x0 > x1 >
· · · > xn satisfying the alternation condition pn−k(xj) = (−1)jpk(xj) for all 0 ≤
j, k ≤ n, where {pk(x)}nk=0 is the sequence of orthogonal polynomials determined
by the difference equation pk+1(x) + pk−1(x) = (akx + bk)pk(x) for 1 ≤ k ≤ n − 1
with initial conditions p0(x) = 1 and p1(x) = a0x+ b0.

Proof. When n = 2m − 1 is odd, we denote by u1 > · · · > um the zeros of pm(x)
and v1 > v2 > · · · > vm−1 the zeros of pm−1(x). By alternation property of
zeros of orthogonal polynomials, we have u1 > v1 > u2 > v2 > · · · > vm−1 >
um. Since both pm(x) and pm−1(x) have positive leading coefficients, the dif-
ference function pm(x) − pm−1(x) has at least one zero at each of the intervals
(u1,∞), (u2, v1), · · · , (um, vm−1) because the difference takes opposite signs when
the variable x approaches the two ends of each interval. Similarly, the sum func-
tion pm(x) + pm−1(x) has at least one zero at each of the intervals (v1, u1), · · · ,
(vm−1, um−1), (−∞, um). Thus, we can order the zeros of pm(x) − pm−1(x) and
pm(x) + pm−1(x) as x0 > x1 > · · · > xn such that pm(xj)− (−1)jpm−1(xj) = 0 for
all 0 ≤ j ≤ n. Actually, we have x0 > u1 > x1 > v1 > x2 > v2 > · · · > vm−1 >
xn−1 > um > xn. It then follows from the difference equation and the reflection
condition that pn−k(xj) = (−1)jpk(xj) for all 0 ≤ j, k ≤ n.

When n = 2m is even, the zeros of pm(x) divide the real line into m+1 intervals,
each of which contains at least one zero of pm+1(x) − pm−1(x), thanks to the
alternation property of orthogonal polynomials. Hence, we can order the zeros of
pm(x) and pm+1(x)− pm−1(x) as x0 > x1 > · · · > xn such that pm(xj) = 0 for all
odd j = 1, 3, · · · , n−1 and pm+1(xj) = pm−1(xj) for all even j = 0, 2, · · · , n. It then
follows from the difference equation and the reflection condition that pn−k(xj) =
(−1)jpk(xj) for all 0 ≤ j, k ≤ n. This completes the proof. �
Theorem 2.3. Given any x0 > x1 > · · · > xn, if there are two sets of orthogonal
polynomials {pk(x)}nk=0 and {p̃k(x)}nk=0, which are determined by two sets of coef-

ficients (A,B) = {(ak, bk)}n−1
k=0 and (Ã, B̃) = {(ãk, b̃k)}n−1

k=0 , such that the difference
equation and three properties (positivity, reflection and alternation) in Lemma 2.1
are satisfied, then we have the following results depending on whether n is odd or
even.

(1) If n is odd, then ãk = ak and b̃k = bk for 0 ≤ k ≤ n− 1.
(2) If n is even, then there exists a positive constant γ such that ãk/ak =

b̃k/bk = γ for even k = 0, 2, · · · , n and ak/ãk = bk/b̃k = γ for odd k =
1, 3, · · · , n− 1.

Proof. When n = 2m − 1 is odd, it follows from the alternation condition that
the zeros of pm(x)+ pm−1(x) and p̃m(x)+ p̃m−1(x) are the same while the zeros of
pm(x)−pm−1(x) and p̃m(x)−p̃m−1(x) are the same. The positivity condition implies
that there exist two positive constants γ1 and γ2 such that p̃m(x) + p̃m−1(x) =
γ1[pm(x)+ pm−1(x)] and p̃m(x)− p̃m−1(x) = γ2[pm(x)− pm−1(x)]. Comparing the
leading coefficients yields γ1 = γ2. A simple combination of these two equations
then gives p̃m(x) = γ1pm(x) and p̃m−1(x) = γ1pm−1(x). In view of the difference

equations p̃m(x) + p̃m−2(x) = (ãm−1x + b̃m−1)p̃m−1(x) and pm(x) + pm−2(x) =

(am−1x + bm−1)pm−1(x), we obtain ãm−1 = am−1, b̃m−1 = bm−1 and p̃m−2(x) =

γ1pm−2(x). Repeating this argument implies ãk = ak and b̃k = bk for 0 ≤ k ≤ m−1.
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Moreover, p̃0(x) = γ1p0(x), which yields γ1 = 1. The reflection condition then gives

ãk = ak and b̃k = bk for 0 ≤ k ≤ n− 1.
When n = 2m is even, it follows from the alternation condition that the zeros of

pm(x) and p̃m(x) are the same while the zeros of pm+1(x)−pm−1(x) and p̃m+1(x)−
p̃m−1(x) are the same. The positivity condition implies that there exist two pos-
itive constants γ1 and γ2 such that p̃m(x) = γ1pm(x) and p̃m+1(x) − p̃m−1(x) =
γ2[pm+1(x)−pm−1(x)]. On account of the difference equations p̃m+1(x)+p̃m−1(x) =

(ãmx+ b̃m)p̃m(x) and pm+1(x) + pm−1(x) = (amx+ bm)pm(x), we obtain γ2am =

γ1ãm, γ2bm = γ1b̃m, and p̃m+1(x) + p̃m−1(x) = γ2[pm+1(x) + pm−1(x)]. Con-
sequently, p̃m+1(x) = γ2pm+1(x) and p̃m−1(x) = γ2pm−1(x). It then follows

from the difference equations p̃m(x) + p̃m−2(x) = (ãm−1x + b̃m−1)p̃m−1(x) and
pm(x) + pm−2(x) = (am−1x + bm−1)p̃m−1(x) that γ1am−1 = γ2ãm−1, γ1bm−1 =

γ2b̃m−1 and p̃m−2(x) = γ1pm−2(x). Repeating this argument gives

γ1am−j = γ2ãm−j , γ1bm−j = γ2b̃m−j , p̃m−j(x) = γ2pm−j(x)

for odd j ≤ m, and

γ2am−j = γ1ãm−j , γ2bm−j = γ1b̃m−j , p̃m−j(x) = γ1pm−j(x)

for even j ≤ m. Since p̃0(x) = p0(x) = 1, either γ1 = 1 (when m is even) or γ2 = 1
(when m is odd). We denote γ = γ2 if m is even and γ = γ1 if m is odd. It then
follows that

ã2j = γa2j , b̃2j = γb2j , p̃2j(x) = p2j(x),

for j = 0, · · · ,m, and

γã2j+1 = a2j+1, γb̃2j+1 = b2j+1, p̃2j+1(x) = γp2j(x),

for j = 0, · · · ,m− 1. This completes the proof. �

For the univariate case, the set of Lagrange basis polynomials for any set of
distinct points exists and is uniquely determined because the corresponding Van-
dermonde matrix is invertible. Theorem 2.4 gives criteria for uniqueness of bivariate
Lagrange basis polynomials.

Theorem 2.4. Given any distinct points (x1, y1), · · · , (xN , yN ) ∈ R2 and any
positive integer d such that (d + 1)(d + 2)/2 ≥ N , there exist at least M = (d +
1)(d + 2)/2 − N linear independent bivariate vanishing polynomials, denoted by
f1(x, y), · · · , fM (x, y), in Pd(x, y). Let

V =

⎛
⎜⎝
1 x1 · · · xd

1 y1 x1y1 · · · xd−1
1 y1 · · · yd1

...
...

...
...

...
...

...

1 xN · · · xd
N yN xNyN · · · xd−1

N yN · · · ydN

⎞
⎟⎠(2.2)

be the bivariate Vandermonde matrix of dimension N by (d + 1)(d + 2)/2. The
following statements are equivalent.

(i) There exists a unique set of bivariate Lagrange interpolation polynomials in
the quotient space Pd(x, y)/{f1(x, y), · · · , fM (x, y)}.

(ii) There exists a set of bivariate Lagrange interpolation polynomials in Pd(x, y).
(iii) Any bivariate vanishing polynomial in Pd(x, y) can be expressed as a linear

combination of f1(x, y), · · · , fM (x, y).
(iv) The rank of V is N .
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Proof. The coefficients of any bivariate vanishing polynomial in Pd(x, y) corre-
spond a vector z ∈ R(d+1)(d+2)/2 satisfying V z = 0. The existence of f1(x, y), · · · ,
fM (x, y) follows from the fact that the rank of V is no more than N . Moreover,
we have (iii) ⇔ (iv). Any set of bivariate Lagrange interpolation polynomials in
Pd(x, y) can be represented by the matrix L of dimension (d + 1)(d + 2)/2 by N
such that V L is the identity matrix in RN×N . Hence, (ii) ⇔ (iv). It is obvious
that (i) ⇒ (ii). Finally, coupling (ii) and (iii) gives (i). The proof is complete. �

3. Existence of bivariate Lagrange basis polynomials

Given x0 > x1 > · · · > xn and y0 > y1 > · · · > yn+σ where n and σ are
nonnegative integers, we define two sets of checkerboard nodes

S0 = {(xr, yu) : 0 ≤ r ≤ n, 0 ≤ u ≤ n+ σ, r + u even},(3.1)

S1 = {(xr, yu) : 0 ≤ r ≤ n, 0 ≤ u ≤ n+ σ, r + u odd},(3.2)

which consist of N0 and N1 nodes, respectively. It is easily seen that N0+N1 = (n+
1)(n+σ+1). Moreover, we have N0−N1 = 1 and Nτ = [(n+1)(n+σ+1)+1]/2−τ
if both n and σ are even, while N0 = N1 = (n+1)(n+σ+1)/2 if either n or σ is odd.
We need to find a set of bivariate Lagrange basis polynomials for Sτ with τ = 0
or τ = 1. According to Lemma 2.1, there exist orthogonal polynomials {pj(x)}nj=0

and {qk(y)}n+σ
k=0 such that p0(x) = 1, p1(x) = a0x+ b0, q0(y) = 1, q1(x) = c0y+ d0,

and

pj+1(x) + pj−1(x) = (ajx+ bj)pj(x), 1 ≤ j ≤ n− 1,(3.3)

qk+1(y) + qk−1(y) = (cky + dk)qk(y), 1 ≤ k ≤ n+ σ − 1,(3.4)

where aj > 0 for 0 ≤ j ≤ n− 1, and ck > 0 for 0 ≤ k ≤ n+ σ − 1, and

aj = an−j , bj = bn−j , 1 ≤ j ≤ n− 1,(3.5)

ck = cn+σ−k, dk = dn+σ−k, 1 ≤ k ≤ n+ σ − 1,(3.6)

pn−j(xr) = (−1)rpj(xr), 0 ≤ j, r ≤ n,(3.7)

qn+σ−k(yu) = (−1)uqk(yu), 0 ≤ k, u ≤ n+ σ.(3.8)

For any (xr, yu) ∈ Sτ and (xs, yv) ∈ Sτ , where τ is either 0 or 1, it is easily seen
that r + u+ s+ v is even. Hence, we have from the above two equations

pj(xr)pi(xs)qk(yu)ql(yv) = pn−j(xr)pn−i(xs)qn+σ−k(yu)qn+σ−l(yv),(3.9)

for all 0 ≤ j, i ≤ n and 0 ≤ k, l ≤ n + σ. Moreover, we have the following
Christoffel-Darboux formulas:

(xr − xs)

i∑
j=0

ajpj(xr)pj(xs) = pi+1(xr)pi(xs)− pi(xr)pi+1(xs),(3.10)

(yu − yv)
l∑

k=0

ckqk(yu)qk(yv) = ql+1(yu)ql(yv)− ql(yu)ql+1(yv),(3.11)

for 0 ≤ i ≤ n−1 and 0 ≤ l ≤ n+σ−1. Given any integers 0 ≤ δ ≤ σ−1, 0 ≤ s ≤ n
and 0 ≤ v ≤ n+ σ, we define the bivariate polynomial

(3.12) Kδ(x, y;xs, yv) =
n−1∑
j=0

ajpj(x)pj(xs)

n−j+δ∑
k=0

ckqk(y)qk(yv) ∈ Pn+δ(x, y).
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It is readily seen from (3.9) and (3.11) that

(yu − yv)Kδ(xr, yu;xs, yv)

=

n−1∑
j=0

ajpj(xr)pj(xs)[qn−j+δ+1(yu)qn−j+δ(yv)− qn−j+δ(yu)qn−j+δ+1(yv)]

=
n−1∑
j=0

ajpn−j(xr)pn−j(xs)[qj+σ−δ−1(yu)qj+σ−δ(yv)− qj+σ−δ(yu)qj+σ−δ−1(yv)]

=
n∑

j=1

an−jpj(xr)pj(xs)[qn−j+σ−δ−1(yu)qn−j+σ−δ(yv)

− qn−j+σ−δ(yu)qn−j+σ−δ−1(yv)],

and

(yu − yv)Kσ−δ−1(xr, yu;xs, yv)

=
n−1∑
j=0

ajpj(xr)pj(xs)[qn−j+σ−δ(yu)qn−j+σ−δ−1(yv)

− qn−j+σ−δ−1(yu)qn−j+σ−δ(yv)].

Adding the above two equations and making use of (3.5), (3.9) and (3.11) yield

(yu − yv)[Kδ(xr, yu;xs, yv) +Kσ−δ−1(xr, yu;xs, yv)]

=a0pn(xr)pn(xs)[qσ−δ−1(yu)qσ−δ(yv)− qσ−δ(yu)qσ−δ−1(yv)]

+ a0p0(xr)p0(xs)[qn+σ−δ(yu)qn+σ−δ−1(yv)− qn+σ−δ−1(yu)qn+σ−δ(yv)]

=a0pn(xr)pn(xs)[qσ−δ−1(yu)qσ−δ(yv)− qσ−δ(yu)qσ−δ−1(yv)]

+ a0pn(xr)pn(xs)[qδ(yu)qδ+1(yv)− qδ+1(yu)qδ(yv)]

=− (yu − yv)a0pn(xr)pn(xs)[

σ−δ−1∑
k=0

ckqk(yu)qk(yv) +

δ∑
k=0

ckqk(yu)qk(yv)],

which can be written as

(3.13) (yu − yv)[Kδ(xr, yu;xs, yv)+Kσ−δ−1(xr, yu;xs, yv)+ J(xr, yu;xs, yv)] = 0,

where

(3.14) J(x, y;xs, yv) = a0pn(x)pn(xs)[

σ−δ−1∑
k=0

ckqk(y)qk(yv) +

δ∑
k=0

ckqk(y)qk(yv)].

Interchanging the double sum in (3.12) gives another expression

Kδ(x, y;xs, yv) =
n+δ∑
k=0

ckqk(y)qk(yv)

min{n−1,n+δ−k}∑
j=0

ajpj(x)pj(xs).
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It is readily seen from (3.6), (3.9) and (3.10) that

(xr − xs)Kδ(xr, yu;xs, yv)

=

n+δ∑
k=1+δ

ckqk(yu)qk(yv)[pn−k+δ+1(xr)pn−k+δ(xs)− pn−k+δ(xr)pn−k+δ+1(xs)]

+
δ∑

k=0

ckqk(yu)qk(yv)[pn(xr)pn−1(xs)− pn−1(xr)pn(xs)]

=:Aδ +Bδ,

where

Aδ

=

n+δ∑
k=1+δ

cn+σ−kqn+σ−k(yu)qn+σ−k(yv)[pk−δ−1(xr)pk−δ(xs)− pk−δ(xr)pk−δ−1(xs)]

=
n+σ−δ−1∑
k=σ−δ

ckqk(yu)qk(yv)[pn−k+σ−δ−1(xr)pn−k+σ−δ(xs)

− pn−k+σ−δ(xr)pn−k+σ−δ−1(xs)]

=− Aσ−δ−1,

and

Bδ =

δ∑
k=0

ckqn−k+σ(yu)qn−k+σ(yv)[p0(xr)p1(xs)− p1(xr)p0(xs)]

=− (xr − xs)
δ∑

k=0

ckqn−k+σ(yu)qn−k+σ(yv)a0p0(xr)p0(xs)

=− (xr − xs)

δ∑
k=0

ckqk(yu)qk(yv)a0pn(xr)pn(xs).

Hence,

(xr − xs)[Kδ(xr, yu;xs, yv) +Kσ−δ−1(xr, yu;xs, yv)] = Bδ +Bσ−δ−1.

Recall the definition of J in (3.14), we obtain

(3.15) (xr −xs)[Kδ(xr, yu;xs, yv)+Kσ−δ−1(xr, yu;xs, yv)+J(xr, yu;xs, yv)] = 0.

Finally, we choose δ = 	σ/2
 and define the bivariate polynomial

Gσ
n(x, y;xs, yv) = Kδ(x, y;xs, yv) +Kσ−δ−1(x, y;xs, yv) + J(x, y;xs, yv)

=

n−1∑
j=0

ajpj(x)pj(xs)[

n−j+δ∑
k=0

ckqk(y)qk(yv)+

n−j+σ−δ−1∑
k=0

ckqk(y)qk(yv)]

+ a0pn(x)pn(xs)[
σ−δ−1∑
k=0

ckqk(y)qk(yv) +
δ∑

k=0

ckqk(y)qk(yv)].(3.16)

It is obvious that Gσ
n ∈ Pn+δ(x, y) and Gσ

n(xs, yv;xs, yv) > 0. Coupling (3.13) and
(3.15) gives Gσ

n(xr, yu;xs, yv) = 0 if either xr �= xs or yu �= yv. We summarize our
results in Theorem 3.1.
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Theorem 3.1. Given any x0 > x1 > · · · > xn and y0 > y1 > · · · > yn+σ where
n and σ are nonnegative integers. Let Sτ with either τ = 0 or τ = 1 be defined
in (3.1) or (3.2). Set δ = 	σ/2
. There exists a set of bivariate Lagrange basis
polynomials in Pn+δ(x, y) for Sτ which can be defined as

(3.17) L(x, y;xs, yv) = Gσ
n(x, y;xs, yv)/G

σ
n(xs, yv;xs, yv),

for each (xs, yv) ∈ Sτ , where Gσ
n is defined in (3.16).

Now, we are ready to prove [7, Conjecture 3]: G̃σ
n(x, y;xs, yv)/G̃

σ
n(xs, yv;xs, yv)

is a set of bivariate Lagrange basis polynomials in Pn+�σ/2�(x, y), where G̃σ
n is

recursively defined as

G̃σ
n =

{
K̃n−1 + Γ0

n, σ = 1,

G̃σ−1
n + Γ

�σ/2�
n /2, σ ≥ 2,

(3.18)

with

K̃n−1(x, y;xs, yv) =
1

a0H0c0H̃0

n−1∑
i=0

i∑
j=0

ajpj(x)pj(xr)ci−jqi−j(y)qi−j(yv)

=
1

a0H0c0H̃0

n−1∑
j=0

n−j−1∑
k=0

ajpj(x)pj(xr)ckqk(y)qk(yv),(3.19)

and

Γl
n(x, y;xs, yv) =

1

a0H0c0H̃0

[
a0pn(x)pn(xr)clql(y)ql(yv)

+
n−1∑
j=0

ajpj(x)pj(xr)cn+l−jqn+l−j(y)qn+l−j(yv)

]
.(3.20)

Here, H0 and H̃0 are any given positive numbers, which are canceled in the ratio
G̃σ

n(x, y;xs, yv)/G̃
σ
n(xs, yv;xs, yv). In other words, the set of bivariate Lagrange

basis polynomials is independent of the choices of the positive numbers H0 and H̃0.
In [7, Theorem 5], it was chosen that H0 = μ(R) and H̃0 = μ̃(R), where μ and
μ̃ are the measures of orthogonality for the polynomials pj and qk, respectively.

However, if we multiply H0 and μ by any positive number, and multiply H̃0 and μ̃
by another positive number, the statement in [7, Theorem 5] is still valid because
an equation does not change if we multiply both sides by the same positive number.
Here, without loss of generality, we may choose H0 = 1/a0 and H̃0 = 1/c0. It is

easily seen that the fraction 1/(a0H0c0H̃0) in the definitions (3.19) and (3.20) is
simplified to be 1.

Proposition 3.2. Given any x0 > x1 > · · · > xn and y0 > y1 > · · · > yn+σ where

n and σ are nonnegative integers. Let Gσ
n, G̃

σ
n and Γl

n be defined in (3.16), (3.18)
and (3.20), respectively. We have

(3.21) Gσ
n(x, y;xs, yv)−Gσ−1

n (x, y;xs, yv) = Γ�σ/2�
n (x, y;xs, yv),

for σ ≥ 2, and

(3.22) Gσ
n(x, y;xs, yv) = 2G̃σ

n(x, y;xs, yv),

for σ ≥ 1.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LAGRANGE INTERPOLATION AT THE CHECKERBOARD NODES 2161

Proof. If σ = 2δ + 1 is odd with δ ≥ 1, we obtain from (3.16) and σ − δ − 1 = δ
that

Gσ
n(x, y;xs, yv)−Gσ−1

n (x, y;xs, yv)

=

n−1∑
j=0

ajpj(x)pj(xs)cn−j+δqn−j+δ(y)qn−j+δ(yv) + a0pn(x)pn(xs)cδqδ(y)qδ(yv).

If σ = 2δ is even with δ ≥ 1, the above equation also holds. Hence, (3.21) follows
from (3.20). Next, we note from (3.16), (3.18), (3.19) and (3.20) that

G̃1
n(x, y;xs, yv) =

n−1∑
j=0

n−j∑
k=0

ajpj(x)pj(xr)ckqk(y)qk(yv) + a0pn(x)pn(xr)c0

=G1
n(x, y;xs, yv)/2.

This proves (3.22) with σ = 1. A simple induction argument together with (3.21)
gives (3.22) for all σ ≥ 1. �

Coupling Theorem 3.1 and (3.22) proves [7, Conjecture 3].

4. Uniqueness of bivariate Lagrange basis polynomials

We use the same notations as in the previous section. To prove that the set of
bivariate Lagrange basis polynomials constructed in (3.17) is unique in a certain
quotient space of Pn+δ(x, y), we only need to find M = (n + δ + 1)(n + δ +
2)/2−Nτ linearly independent bivariate vanishing polynomials in Pn+δ(x, y), where
δ = 	σ/2
 and Nτ is the number of nodes in Sτ with τ = 0 or τ = 1. In other
words, we shall construct a linear subspace Q of bivariate vanishing polynomials
in Pn+δ(x, y) with dimension M and then apply Theorem 2.4. First, we introduce
the linear subspace of bivariate vanishing polynomials:

(4.1) V = span{(x− x0) · · · (x− xn)x
jyk, j ≥ 0, k ≥ 0, j + k ≤ δ − 1}.

It is obvious that V is a subspace of Pn+δ(x, y) with dimension δ(δ + 1)/2. Fur-
thermore, we have Lemma 4.1.

Lemma 4.1. Given τ = 0 or 1. If n = 2m − 1 is odd, then the polynomials
(x − x0) · · · (x − xn)x

jyk with j, k ≥ 0 and j + k ≤ δ − 1 and the polynomials
pn−l(x)ql+δ(y)− (−1)τpl(x)qn+δ−l(y) with 0 ≤ l ≤ m− 1 are linearly independent.
If n = 2m is even, then the polynomials (x − x0) · · · (x − xn)x

jyk with j, k ≥ 0
and j + k ≤ δ − 1 and the polynomials pn−l(x)ql+δ(y) − (−1)τpl(x)qn+δ−l(y) with
0 ≤ l ≤ m− 1 + τ are linearly independent.

Proof. We only consider the case when n = 2m− 1 is odd. The case when n = 2m
is even can be proved in a similar manner. Assume that∑

j≥0,k≥0,j+k≤δ−1

aj,k(x− x0) · · · (x− xn)x
jyk

+
m−1∑
l=0

bl[pn−l(x)ql+δ(y)− (−1)τpl(x)qn+δ−l(y)] = 0

for all (x, y) ∈ R2. We will prove that the coefficients aj,k and bl vanish. First, for
any j ≥ 1 and k ≥ 0 with j + k ≤ δ − 1, the coefficient of xn+jyk on the left-hand
side vanishes, which implies that aj,k = 0 for j ≥ 1 and k ≥ 0 with j + k ≤ δ − 1.
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Secondly, the coefficient of xnyδ on the left-hand side vanishes, which implies that
b0 = 0. Thirdly, for any 0 ≤ k ≤ δ − 1, the coefficient of xnyk on the left-hand
side vanishes, which implies that a0,k = 0 for 0 ≤ k ≤ δ − 1. Finally, for any
l = 1, · · · ,m − 1, the coefficient of xn−lyl+δ on the left-hand side vanishes, which
together with a successive argument implies that bl = 0 for l = 1, · · · ,m− 1. This
completes the proof. �

We shall consider the following three cases respectively.

Case I. σ = 2δ + 1 is odd.
We have N0 = N1 = (n+ 1)(n+ σ + 1)/2 and

M =
(n+ δ + 1)(n+ δ + 2)

2
− (n+ 1)(n+ σ + 1)

2
=

δ(δ + 1)

2

for either τ = 0 or τ = 1. We simply set

(4.2) Q = V.

Case II. σ = 2δ is even and n = 2m− 1 is odd.
We have N0 = N1 = (n+ 1)(n+ σ + 1)/2 and

M =
(n+ δ + 1)(n+ δ + 2)

2
− (n+ 1)(n+ σ + 1)

2
=

δ(δ + 1)

2
+m

for either τ = 0 or τ = 1. Note from (3.7) and (3.8) that

pn−j(xr)qj+δ(yu) = (−1)r+upj(xr)qn+δ−j(yu) = (−1)τpj(xr)qn+δ−j(yu),

for any (xr, yu) ∈ Sτ . We define

(4.3) Q = V + span{pn−j(x)qj+δ(y)− (−1)τpj(x)qn+δ−j(y), 0 ≤ j ≤ m− 1},

which, in view of Lemma 4.1, is a subspace of bivariate vanishing polyno-
mials in Pn+δ(x, y) with dimension M = δ(δ + 1)/2 +m.

Case III. σ = 2δ is even and n = 2m is even.
We have Nτ = [(n+ 1)(n+ σ + 1) + 1]/2− τ and

M =
(n+ δ + 1)(n+ δ + 2)

2
− (n+ 1)(n+ σ + 1) + 1

2
+ τ

=
δ(δ + 1)

2
+m+ τ

for τ = 0, 1. We define

(4.4) Q = V + span{pn−j(x)qj+δ(y)− (−1)τpj(x)qn+δ−j(y), 0 ≤ j ≤ m− 1 + τ},

which, in view of Lemma 4.1, is a subspace of bivariate vanishing polyno-
mials in Pn+δ(x, y) with dimension M = δ(δ + 1)/2 +m+ τ .

On account of Theorem 2.4, we have the following uniqueness property of bivariate
Lagrange basis polynomials for Sτ with τ = 0 or τ = 1.

Theorem 4.2. Given any x0 > x1 > · · · > xn and y0 > y1 > · · · > yn+σ where
n and σ are nonnegative integers. Let Sτ with either τ = 0 or τ = 1 be defined
in (3.1) or (3.2). Set δ = 	σ/2
. The set of bivariate Lagrange basis polynomials
for Sτ defined in (3.17) is unique in the quotient space Pn+δ(x, y)/Q, where Q is
defined in (4.2)-(4.4) depending on odd-even properties of σ and n.
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