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a b s t r a c t

We study the dynamics of a delayed diffusive hematopoiesis model with two types
of Dirichlet boundary conditions. For the model with a zero Dirichlet boundary
condition, we establish global stability of the trivial equilibrium under certain
conditions, and use the phase plane method to prove the existence and uniqueness of
a positive spatially heterogeneous steady state. We further obtain delay-independent
as well as delay-dependent conditions for the local stability of this steady state. For
the model with a non-zero Dirichlet boundary condition, we show that the only
positive steady state is a constant solution. Results for the local stability of the
constant solution are also provided. By using the delay as a bifurcation parameter,
we show that the model has infinite number of Hopf bifurcation values and the
global Hopf branches bifurcated from these values are unbounded, which indicates
the global existence of periodic solutions.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we are concerned with the Dirichlet problem for the delayed diffusive hematopoiesis model
described by

∂u(x, t)
∂t

= d△u(x, t) − δu(x, t) + αu(x, t− τ)
1 + βuk(x, t− τ) , x ∈ Ω , t > 0, (1.1)

where Ω is a connected bounded open domain in RN (N ≥ 1) with a smooth boundary ∂Ω , u(x, t) ∈ L2(Ω̄ ,R)
represents the density of mature cells in blood circulation, ∆ is the Laplacian operator and d > 0 is the
diffusion coefficient, τ is the time delay between the initiation of cellular production in the bone marrow and
the release of mature cells into the blood. δ is the death rate, α is the intrinsic growth rate, β is a positive
constant, and k > 1 is an integer.
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Note that when spatial effect is neglected (i.e., d = 0), Eq (1.1) reduces to the following Mackey–Glass
equation proposed by Mackey and Glass [1] for studying the regulation of hematopoiesis

du

dt
= −δu(x, t) + αu(t− τ)

1 + βuk(t− τ) . (1.2)

Together with the classical delayed logistic equation and the delayed Nicholson’s equation, the Mackey–Glass
equation has greatly promoted the development of theory of nonlinear functional differential equations;
see [2–7] and references therein.

When α > δ, Model (1.1) admits a unique positive steady state

u∗ =
(

1
β

(α
δ

− 1)
)1/k

> 0. (1.3)

In [8], the traveling wave solutions connecting the trivial equilibrium 0 and the unique positive equilibrium u∗

were investigated. The Neumann problem of the delayed diffusive hematopoiesis model has been considered
by Wang and Li [9] for its dynamics around these two equilibria. Neumann problems for other delayed
diffusive systems have been extensively studied, see, for example, [10–12]. Compared to Neumann problems,
it is generally more challenging to analyze Dirichlet problems and only limited results have been obtained;
see [13–19].

In this work, we will consider Eq. (1.1) with a zero Dirichlet boundary condition and a non-zero Dirichlet
boundary condition. The zero Dirichlet boundary condition indicates that the boundary of the domain is
hostile to cells and the population vanishes on the boundary. For this case, we establish the existence,
uniqueness and asymptotic stability of the spatially heterogeneous steady state. Unlike the Neumann
boundary condition, zero Dirichlet boundary condition excludes the existence of positive homogeneous steady
state. Thus, we impose a non-zero Dirichlet boundary condition for the diffusive model (1.1) in the sense
that the environment on the boundary is hospitable to the cells and the population maintains at the positive
equilibrium level. We then prove the existence, uniqueness and stability of the positive homogeneous steady
state. Similar as in the ODE model, when the positive equilibrium is unstable, Hopf bifurcation occurs and
time-periodic solutions dominate the model dynamics. We will use time delay as the bifurcation parameter
to study the stability and direction of local Hopf branches. We also explore the continuation and structure
of global Hopf branches and show that the global Hopf branches are all unbounded, which implies the global
existence of periodic solutions.

We organize the rest of the paper as follows. In Section 2, we establish some preliminary results such as
existence, uniqueness, positiveness and boundedness of the solution for the Dirichlet problem. Section 3 is
devoted to the dynamics of Model (1.1) with zero Dirichlet boundary condition. In this section, a necessary
and sufficient condition for the existence of heterogeneous positive steady state is given. Also, we investigate
the stability of trivial equilibrium and positive steady state. In Section 4, we conduct stability and bifurcation
analysis of the model with non-zero Dirichlet boundary condition. In Section 5, we present some simulation
results to support our theoretical results and conclude the paper. An explicit algorithm for determining the
direction and stability of Hopf bifurcation is given in the Appendix.

2. Preliminary results

We consider Eq. (1.1) with Dirichlet boundary condition and nonnegative initial condition:⎧⎨⎩
∂u(x,t)

∂t = d△u(x, t) − δu(x, t) + f(u(x, t− τ)), x ∈ Ω , t > 0,
u(·, t) |∂Ω= ub ∈ [0, f(c)/δ], t ≥ 0,
u(x, θ) = u0(x, θ) ≥ 0, x ∈ Ω , θ ∈ [−τ, 0],

(2.1)
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where
f(u) = αu

1 + βuk
, c = [β(k − 1)]−1/k. (2.2)

Note that, given any integer k > 1, the function f(u) attains the maximum value at u = c.
Our next result establishes the existence, uniqueness and boundedness of the solution to (2.1).

Theorem 2.1. There exists a unique solution u(x, t) of (2.1). Moreover, the solution u(x, t) is nonnegative
and eventually bounded by f(c)/δ; namely, u(x, t) ≥ 0 for all (x, t) ∈ Ω̄ × [0,∞), and

lim sup
t→∞

u(x, t) ≤ f(c)/δ.

If further, u0(x, θ) ≥ 0( ̸≡ 0), then u(x, t) > 0 for all (x, t) ∈ Ω × (τ,∞).

Proof. Let ū0 = max{ub, supΩ̄×[−τ,0] u0(x, θ)}, and ū(t) be the unique solution to the ordinary differential
equation: {

dū(t)
dt = −δū(t) + f(c),

ū(0) = ū0.
(2.3)

It is readily seen that limt→∞ ū(t) = f(c)/δ and ū(t) is monotone in t. Furthermore, since ub ≤ f(c)/δ and
ub ≤ ū0, we have ū(t) ≥ ub for any t ≥ 0.

Now, we introduce u(x, t) = 0 and u(x, t) = ū(t), and claim that these two functions formulate a pair of
lower-solution and upper-solution to (2.1). To see this, we note that

u(x, 0) = 0 ≤ u0(x, t) ≤ ū0 = u(x, 0),

and for any u(x, t) ≤ h(x, t) ≤ u(x, t) in Ω̄ × [−τ,∞),

∂u(x,t)
∂t − d∆u(x, t) + δu(x, t) = f(c) ≥ f(h(x, t)),

∂u(x,t)
∂t − d∆u(x, t) + δu(x, t) = 0 ≤ f(h(x, t)).

Furthermore, for any x ∈ ∂Ω and t ≥ 0, u(x, t) ≤ ub ≤ u(x, t). This proves our claim; see [20, Definition
8.1.2] or [21]. It then follows from [20, Theorem 8.3.3] or [21, Theorem 3.4] that (2.1) has a unique global
solution u(x, t) which satisfies

0 ≤ u(x, t) ≤ ū(t) for all (x, t) ∈ Ω̄ × (0,∞).

Consequently, lim supt→∞ u(x, t) ≤ limt→∞ ū(t) = f(c)/δ.
If further, u0(x, θ) ≥ 0( ̸≡ 0), we then have u(x, t) ̸≡ 0 on Ω × [0, τ ]. Otherwise, it follows from (2.1) that

u0(x, θ) ≡ 0 on Ω × [−τ, 0], which contradicts to the nontrivial initial condition. Choose t0 ∈ [0, τ ] such that
u(x, t0) ≥ 0( ̸≡ 0) for x ∈ Ω . We obtain from (2.1) that⎧⎨⎩

∂u(x,t)
∂t − d∆u(x, t) + δu(x, t) ≥ 0, x ∈ Ω , t > t0,

u(·, t) |∂Ω≥ 0, t ≥ t0,
u(x, t0) = u0(x, t0) ≥ 0( ̸≡ 0), x ∈ Ω .

The strong maximum principle implies that u(x, t) > 0 for all (x, t) ∈ Ω × (t0,∞). This completes the
proof. □

Since mature cells are circulating in thin blood tubes, we can treat the space Ω to be one dimensional,
and in particular, we normalize it to be Ω = (0, π). Throughout the rest of this paper, we set Ω = (0, π).
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3. Zero Dirichlet boundary condition

3.1. Existence and uniqueness of heterogeneous steady state

Throughout this subsection, we assume that α > δ. The steady state u(x) of (2.1) satisfies the boundary
value problem: {

du′′(x) = δu(x) − f(u(x)),
u(0) = u(π) = 0. (3.1)

Taking v(x) = u′(x), we can rewrite the above second-order differential equation into the following system:{
u′(x) = v(x),
v′(x) = 1

d (δu(x) − f(u(x))) . (3.2)

We treat x as a time variable and find the Hamiltonian function for System (3.2):

H(u, v) = v2

2 − δ

2du
2 + 1

d

∫ u

0
f(ξ)dξ. (3.3)

Note that H(u, v) remains a constant along the solution curve of System (3.2). It is easily observed that,
System (3.2) has two equilibria (0, 0) and (u∗, 0) when k is odd, and three equilibria (0, 0) and (±u∗, 0) when
k is even, where u∗ is given in (1.3). The Jacobian matrix for the system (3.2) is given by

J(u, v) =
(

0 1
δ−f ′(u)

d
0

)
.

Since f ′(0) > δ > f ′(u∗), (0, 0) is a center and (u∗, 0) is a saddle. If k is even, then f ′(−u∗) = f ′(u∗) < δ,
which implies that (−u∗, 0) is also a saddle.

By using the Hamiltonian function (3.3), we plot the phase portrait of (3.2) in Fig. A.1. A nonnegative
solution of (3.2) with boundary conditions u(0) = u(π) = 0 corresponds to a trajectory starting from (0, v0)
when x = 0, striking at (ũ, 0) when x = π/2, and terminating at (0,−v0) when x = π, where v0 > 0 and
0 < ũ < u∗. To prove the existence or nonexistence of such a trajectory, we treat ũ ∈ (0, u∗) as a variable
and consider a family of trajectories striking at (ũ, 0) on the positive u-axis. Since H(u,−v) = H(u, v), we
only need to study the traveling times of the trajectories in the first quadrant, which are denoted by t(ũ).
A nonnegative solution of (3.2) with boundary conditions u(0) = u(π) = 0 exists if and only if t(ũ) = π/2
for some ũ ∈ (0, u∗). We first obtain the following properties of t(ũ).

Proposition 3.1.

(i) limũ→0 t(ũ) = π
2

√
d

α−δ .
(ii) The function t(ũ) is strictly increasing for ũ ∈ (0, u∗).

(iii) The function t(ũ) satisfies 0 < t(ũ) < ∞ for any ũ ∈ [0, u∗). Moreover, limũ→u∗ t(ũ) = ∞.

Proof. (i) Since the trajectory goes through (ũ, 0), the Hamiltonian function (3.3) has the expression

H(u, v) = H(ũ, 0) = − δ

2dũ
2 + 1

d

∫ ũ

0
f(ξ)dξ.

On the other hand, we obtain from (3.2) and (3.3) that

du

dt
= v =

[
H(u, v) + δ

d
u2 − 2

d

∫ u

0
f(ξ)dξ

]1/2
.
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Coupling the above two equations gives

dt

du
=
[
δ

d
(u2 − ũ2) + 2

d

∫ ũ

u

f(ξ)dξ
]−1/2

.

An integration of the above equation yields

t(ũ) =
∫ ũ

0

[
δ

d
(u2 − ũ2) + 2

d

∫ ũ

u

∫ ξ

0
f ′(η)dηdξ

]−1/2

du.

By a change of variable u = ũ sin θ with θ ∈ [0, π/2], we have

t(ũ) =
∫ π/2

0

[
− δ

d
+ 2
dũ2 cos2 θ

∫ ũ

ũ sin θ

∫ ξ

0
f ′(η)dηdξ

]−1/2

dθ.

We further set ξ = ũξ̃ and η = ũη̃. It follows that

t(ũ) =
∫ π/2

0

[
− δ

d
+ 2
d cos2 θ

∫ 1

sin θ

∫ ξ̃

0
f ′(ũη̃)dη̃dξ̃

]−1/2

dθ. (3.4)

Since f ′(0) = α, we obtain

lim
ũ→0

t(ũ) =
∫ π/2

0

[
− δ

d
+ 2
d cos2 θ

∫ 1

sin θ

∫ ξ̃

0
f ′(0)dη̃dξ̃

]−1/2

dθ = π

2

√
d

α− δ
.

(ii) In view of (3.4), to show t(ũ) is a strictly increasing function in ũ, it suffices to show that

g(sin θ) =
∫ 1

sin θ

∫ ξ̃

0
η̃f ′′(ũη̃)dη̃dξ̃ < 0

for any θ ∈ [0, π/2]. Let w = sin θ ∈ [0, 1]. It can be shown that g(1) = 0 and

g′(w) = −
∫ w

0
η̃f ′′(ũη̃)dη̃ = − 1

ũ2

∫ ũw

0
ηf ′′(η)dη = f(ũw) − ũwf ′(ũw)

ũ2 .

Since f(u) > uf ′(u) for any u > 0, we obtain g′(w) > 0 for 0 < w < 1, which together with g(1) = 0 implies
that g(w) < 0 for all 0 < w < 1. Thus, t(ũ) is strictly increasing for ũ ∈ (0, u∗).

(iii) For any ũ ∈ [0, u∗), we have f(ũ) > δũ, and thus∫ 1

sin θ

∫ ξ̃

0
f ′(ũη̃)dη̃dξ̃ =

∫ 1

sin θ

f(ũξ̃)
ũ

dξ̃ >

∫ 1

sin θ

δξ̃dξ̃ = δ cos2 θ

2 .

This implies that the integral on the right-hand side of (3.4) is well defined; namely, 0 < t(ũ) < ∞ for all
ũ ∈ [0, u∗). If limũ→u∗ t(ũ) exists, then from the monotonicity of t(ũ) and the integral representation in
(3.4), we have

t(u∗) =
∫ π/2

0

[
− δ

d
+ 2
d cos2 θ

∫ 1

sin θ

f(u∗ξ̃)
u∗

dξ̃

]−1/2

dθ < ∞.

As θ → π/2, the integrand has the following asymptotic formula:[
− δ

d
+ 2
d cos2 θ

∫ 1

sin θ

f(u∗ξ̃)
u∗

dξ̃

]−1/2

∼
[
− δ

d
+ 2δ(1 − sin θ)

d cos2 θ

]−1/2
∼

√
d/δ

π/2 − θ
,

which implies that the integrand has a simple pole at θ = π/2, a contradiction. Thus, we conclude that
t(ũ) → ∞ as ũ → u∗. This ends the proof. □
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By Proposition 3.1, there exists a unique heterogeneous positive solution, denoted by ϕ(x), of (3.1) if
and only if limũ→0 t(ũ) < π/2; i.e., α > d + δ. Let x∗ be a maximum point of ϕ(x) in [0, π]. We claim
ϕ(x∗) ≤ u∗. Otherwise, dϕ′′(x∗) = δϕ(x∗) − f(ϕ(x∗)) > 0. But ϕ′′(x∗) ≤ 0 because x∗ is a maximum point,
a contradiction.

Summarizing the above analysis, we have the following steady state bifurcation theorem for (2.1).

Theorem 3.2. If α ∈ (δ, d + δ], then (2.1) has no positive steady state. If α > d + δ, then (2.1) has a
unique heterogeneous positive steady state ϕ(x). Moreover, ϕ(x) ≤ u∗ for all x ∈ [0, π], where u∗ is defined
in (1.3).

3.2. Stability of the trivial equilibrium

In this subsection, we carry out the stability analysis of the trivial equilibrium for (2.1). Denote by
X = L2(Ω) the Hilbert space of integrable functions with usual inner product < ·, · >, and C := C([−τ, 0], X)
the Banach space of continuous maps from [−τ, 0] to X with the sup norm. Given a continuous function
u(x, t) on Ω × [−τ,∞), we define ut ∈ C as ut(θ) = u(·, t+ θ) for θ ∈ [−τ, 0].

Linearizing Eq. (2.1) about u(x, t) = 0, we obtain

∂u(x, t)
∂t

= d∆u(x, t) − δu(x, t) + αu(x, t− τ). (3.5)

Let L : C → X be a bounded linear operator defined as

L(ϕ) = αϕ(−τ) − δϕ(0) for ϕ ∈ C. (3.6)

It then follows from [22] that the characteristic equation for the above linearized equation is

λz − d∆z − L(eλ·z) = 0, for some z ∈ D\{0}, (3.7)

where
D =

{
u : u ∈ C2(0, π) ∩ C[0, π], u(0) = u(π) = 0

}
.

We also use D+ to denote the subset of all nonnegative functions in D. Note that the eigenvalue problem

−ψ′′(x) = λψ(x), x ∈ (0, π), ψ(0) = ψ(π) = 0

has eigenvalues {n2}∞
n=1 with eigenfunctions ψn(x) = sin(nx). Substituting z =

∑∞
n=0 zn sin(nx) into (3.7)

gives
Fn(λ) := λ+ dn2 + δ − αe−λτ = 0, (n = 1, 2, 3, . . .). (3.8)

We then analyze the distribution of the zeros of Fn(λ). From Lemma 6 in [23], we have (i) if α < d+δ, which
implies that α < dn2 + δ for any n ≥ 1, then all zeros of Fn(λ) have negative real parts for any n = 1, 2, . . .;
(ii) if α = d + δ, then 0 is the only real zero of F1(λ), all other zeros of Fn(λ) have negative real parts for
any n = 1, 2, . . .; (iii) if α > d+ δ, then F1(λ) admits one positive real zero and all other zeros of F1(λ) are
complex numbers with negative real parts. To summarize, we obtain the following results on stability of the
trivial equilibrium.

Theorem 3.3. The trivial equilibrium 0 of (2.1) is locally asymptotically stable if α < d+ δ, and unstable
if α > d+ δ.

Theorem 3.4. If α = d+ δ, then the trivial equilibrium 0 of (2.1) is unstable if k is odd, and stable if k
is even.
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Proof. If α = d+δ, then 0 is the only real eigenvalue for n = 1, and all other eigenvalues have negative real
parts. We investigate the stability of the trivial equilibrium by using the normal forms for partial functional
differential equations introduced by Faria in [24]. Let

Λ = {λ ∈ C, λ is an eigenvalue of (3.8) with Reλ = 0}.

It is easily obtained that Λ = {0} if α = d+ δ, and (2.1) satisfies the nonresonance condition relative to Λ.
Thus, there exists a one-dimensional ODE which governs the dynamics of (2.1) near the trivial equilibrium.

Eq. (2.1) can be written in abstract form in the phase space C = C([−τ, 0], X) as

d

dt
u(t) = d∆u(t) + L(Ut) +H(ut),

where X = {v ∈ L2(0, π) : v = 0 at x = 0, π}, L is defined in (3.6), and H(ϕ) = −αβϕk+1(−τ)+O(∥ϕ∥2k+1)
for any ϕ ∈ C. Define

χ0 = χ0(θ) =
{

0, −τ ≤ θ < 0,
1, θ = 0,

and

χ−τ = χ−τ (θ) =
{

0, −τ < θ ≤ 0,
1, θ = −τ.

By choosing
η(θ) = −(dn2 + δ)χ0 − αχ−τ ,

we obtain −dn2ϕ(0) + L(ϕ) =
∫ 0

−τ
ϕ(θ)dη(θ) for any ϕ ∈ C. Let P be the center space for the linear system

(3.5), and P ∗ the adjoint space of P . The adjoint bilinear form (·, ·) on C∗ × C is defined as

(ψ(s), ϕ(θ)) = ψ(0)ϕ(0) −
∫ 0

−τ

∫ θ

0
ψ(ξ − θ)ϕ(ξ)dξdη(θ),

where C = C([−τ, 0],R) and C∗ = C([0, τ ],R). We use the adjoint theory to decompose C by Λ as

C = P ⊕Q, where P = span{Φ(θ)}, Φ′(θ) = 0.

Then Φ(θ) = 1. We further choose a basis Ψ(s) = ψ(s) for P ∗ such that (Ψ ,Φ) = 1. Therefore, ψ(s) = 1
1+ατ .

We take the following Banach space as phase space

BC = {ϕ : [−τ, 0] → X : ϕ is continuous on [−τ, 0), ∃ lim
θ→0−

ϕ(θ) ∈ X}.

Then (2.1) can be rewritten as the following abstract differential equation in BC:

dut

dt
= Aut + χ0H(ut),

where Aϕ = ϕ̇(θ) + χ0[d∆ϕ(0) + L(ϕ) − ϕ̇(0)]. Define the projection π : BC → P by

π(ϕ+ χ0ξ) = Φ
[
(Ψ , < ϕ̇(·), φ1 >) + Ψ(0) < ξ, φ1 >

]
φ1,

where φ1 =
√

2
π sin x. The projection π leads to the topological decomposition BC = P ⊕ kerπ. By using

the decomposition, we have
ut = Φz(t)φ1 + y(t),

where z(t) = (Ψ , < ut(·), φ1 >) ∈ R, y(t) ∈ C1
0 ∩ kerπ := Q1 and C1

0 = {ϕ ∈ C : ϕ̇ ∈ C, ϕ(0) ∈ dom(∆)}.
Then we see that in BC system (2.1) is equivalent to the system{

ż = Bz + Ψ(0) < H(Φzφ1 + y), φ1 >,
dy
dt = A1y + (I − π)χ0H(Φzφ1 + y),
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where B = 0, and A1 is defined by A1 : Q1 → kerπ,A1ϕ = Aϕ for ϕ ∈ Q1. Thus, the flow on the center
manifold is given by the following one-dimensional ODE

ż =
−αβ

∫ π

0 φk+2
1 (x)dx

1 + ατ
(zk+1 +O(∥z∥2k+1)).

Therefore, the trivial equilibrium of (2.1) is unstable if k is odd, and stable if k is even. □

Next, we use energy method to prove the global stability of the trivial equilibrium if α < d+ δ.

Theorem 3.5. If α < d+ δ, then the solution of (2.1) satisfies limt→∞ u(x, t) = 0 uniformly in x.

Proof. Define
E(t) =

∫ π

0
u2(x, t)dx.

We multiply the first equation of (2.1) by u(x, t), integrate it over [0, π], make use of integration by parts,
zero Dirichlet boundary condition, and the fact that f(u) ≤ αu for all u ≥ 0. It follows that

1
2E

′(t) ≤ −d
∫ π

0
|∇u(x, t)|2dx− δE(t) + α

∫ π

0
u(x, t− τ)u(x, t)dx.

Poincaré inequality gives ∫ π

0
|∇u(x, t)|2dx ≥

∫ π

0
|u(x, t)|2dx = E(t).

Cauchy inequality yields∫ π

0
u(x, t− τ)u(x, t)dx ≤

∫ π

0

|u(x, t− τ)|2 + |u(x, t)|2

2 dx = E(t− τ) + E(t)
2 .

Thus, we have
E′(t) ≤ αE(t− τ) − (2d+ 2δ − α)E(t).

Let y(t) be a solution of the differential equation

y′(t) = αy(t− τ) − (2d+ 2δ − α)y(t)

with initial condition y(θ) = E(θ) for θ ∈ [−τ, 0]. By comparison principle, we have y(t) ≥ E(t) for all
t ≥ 0. If α < d+ δ, it follows from [25, Example 5.1] that limt→∞ y(t) = 0. Consequently, limt→∞ E(t) = 0;
that is, the trivial equilibrium is globally attractive. This, together with the local stability established in
Theorem 3.3, yields the global stability of the trivial equilibrium. This completes the proof. □

Remark 3.6. Theorem 3.5 implies that 0 is the unique nonnegative steady state of (2.1) if α < d+ δ.

3.3. Stability of the unique heterogeneous positive steady state

If α > d+δ, it follows from Theorem 3.2 that (2.1) has a unique heterogeneous positive steady state ϕ(x).
In this subsection, we investigate the stability of ϕ(x). The linearized equation of (2.1) at u(x, t) = ϕ(x) is
given by {

∂u(x,t)
∂t = d△u(x, t) − δu(x, t) + f ′(ϕ(x))u(x, t− τ), x ∈ (0, π), t > 0,

u(0, t) = u(π, t) = 0, t ≥ 0,
where

f ′(u) = α

1 + βuk
− αkβuk

(1 + βuk)2 .
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The corresponding eigenvalue problem is{
−d△ψ(x) + (δ + λ)ψ(x) − f ′(ϕ(x))e−λτψ(x) = 0, x ∈ (0, π),
ψ(0) = ψ(π) = 0. (3.9)

Denote
∆̃λ

ϕ := d△ − δ − λ+ f ′(ϕ(x))e−λτ . (3.10)

Eq. (3.9) can be written as ∆̃λ
ϕψ = 0, and (λ, ψ) with ψ ̸= 0 formulate a pair of eigenvalue and eigenfunction.

We also introduce a differential operator ∆ϕ := d∆ − δ + f(ϕ(x))/ϕ(x). Clearly, ∆ϕϕ = 0. It is readily seen
that

∆ϕ − ∆̃λ
ϕ = λ− f ′(ϕ(x))e−λτ + f(ϕ(x))

ϕ(x) .

To establish local stability of ϕ(x), we shall make use of the following lemma.

Lemma 3.7. For any P ∈ C[0, π] such that P (x) is positive in (0, π), the differential operator −∆ϕ +P (x)
has a trivial kernel in D; namely, φ(x) ≡ 0 is the unique solution to the boundary value problem{

−∆ϕφ(x) + P (x)φ(x) = 0, x ∈ (0, π),
φ(0) = φ(π) = 0.

Proof. Assume φ(x0) < 0 for some x0 ∈ [0, π]. Let (x1, x2) be the largest interval containing x0 where φ
remains negative. Thus, φ′(x1) ≤ 0, φ′(x2) ≥ 0, and φ(x1) = φ(x2) = 0. Especially,

[φ′(x)ϕ(x) − ϕ′(x)φ(x)]
⏐⏐⏐⏐x2

x1

≥ 0.

We rewrite the differential equations for φ and ϕ below:

−dφ′′(x) +
(
δ − f(ϕ(x))

ϕ(x) + P (x)
)
φ(x) = 0,

−dϕ′′(x) +
(
δ − f(ϕ(x))

ϕ(x)

)
ϕ(x) = 0.

Multiplying the first equation by ϕ(x) and the second equation by φ(x), then subtracting and integrating
over [x1, x2], we obtain ∫ x2

x1

P (x)φ(x)ϕ(x)dx = d

∫ x2

x1

[φ′′(x)ϕ(x) − ϕ′′(x)φ(x)]dx

= [φ′(x)ϕ(x) − ϕ′(x)φ(x)]
⏐⏐⏐⏐x2

x1

≥ 0.

However, P (x) > 0, φ(x) < 0 and ϕ(x) > 0 for x ∈ (x1, x2), which implies that the integral on the left-hand
side of the above inequality is negative, a contradiction. Thus, φ cannot be negative in (0, π). A similar
argument shows that φ is non-positive in (0, π). Hence, φ(x) ≡ 0 in [0, π]. The proof is complete. □

A direct application of the above lemma is that the differential operator ∆̃0
ϕ has only trivial kernel in D.

This is because ∆ϕ − ∆̃0
ϕ = −f ′(ϕ(x)) + f(ϕ(x))

ϕ(x) and −f ′(u) + f(u)/u > 0 for any u > 0. Another application
of the above lemma is that the eigenvalues of −∆ϕ are all nonnegative. To see this, we first note that −∆ϕ

is a self-adjoint operator and thus has only real eigenvalues. If it has a negative eigenvalue −µ < 0 with
eigenfunction φ ∈ D, then (−∆ϕ + µ)φ = 0, which contradicts to the above lemma that −∆ϕ + µ has only
trivial kernel in D.
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For any u ≥ 0, it follows from (2.2) that

uf ′(u)
f(u) = 1 − kβuk

1 + βuk
< 1.

Moreover, uf ′(u)/f(u) ≥ −1 if and only if βuk ≤ 2/(k − 2). Recall that u∗ is the unique positive solution
of f(u) = δu; namely, βuk

∗ = α/δ − 1. We conclude that |f ′(u)| ≤ f(u)/u for all u ∈ [0, u∗] if and only if
α ≤ δk/(k − 2).

Our next result gives delay-independent conditions for the local stability of the heterogeneous positive
steady state ϕ(x).

Theorem 3.8. Assume d + δ < α ≤ δk/(k − 2). The unique heterogeneous positive steady state ϕ(x) of
(2.1) is locally asymptotically stable for all τ ≥ 0.

Proof. Let λ and ψ ∈ D be a pair of eigenvalue and eigenfunction for the eigenvalue problem ∆̃λ
ϕψ = 0.

We have

0 =< −∆̃λ
ϕψ,ψ >= < −∆ϕψ,ψ >

+
∫ π

0

(
λ− f ′(ϕ(x))e−λτ + f(ϕ(x))

ϕ(x)

)
|ψ(x)|2dx.

Since all eigenvalues of −∆ϕ are real and nonnegative, the inner product < −∆ϕψ,ψ > is nonnegative.
Separating the real and imaginary parts, the above equation can be rewritten as∫ π

0

(
Imλ+ f ′(ϕ(x))e−Reλτ sin(Imλτ)

)
|ψ(x)|2dx = 0, (3.11)

and
< ∆ϕψ,ψ >=

∫ π

0

(
Reλ− f ′(ϕ(x))e−Reλτ cos(Imλτ) + f(ϕ(x))

ϕ(x)

)
|ψ(x)|2dx.

Since α ≤ δk/(k − 2), we have |f ′(u)| ≤ f(u)/u for any u > 0. It then follows from the above equation and
non-positiveness of < ∆ϕψ,ψ > that

0 ≥
∫ π

0

(
Reλ+ (1 − e−Reλτ | cos(Imλτ)|)f(ϕ(x))

ϕ(x)

)
|ψ(x)|2dx. (3.12)

Clearly, Reλ ≤ 0; otherwise, the quantity

Reλ+ (1 − e−Reλτ | cos(Imλτ)|)f(ϕ(x))
ϕ(x)

is positive in (0, π), and thus the integral on the right-hand side of (3.12) is positive, a contradiction. If
Reλ = 0 and | cos(Imλτ)| < 1, we still have positiveness of the above quantity in (0, π), which again
contradicts the inequality (3.12). If Reλ = 0 and | cos(Imλτ)| = 1, then sin(Imλτ) = 0. It follows from
(3.11) that Imλ = 0. Hence, λ = 0. However, by Lemma 3.7 and the fact f(u)/u > f ′(u) for any u > 0,
the equation ∆̃0

ϕψ = 0 has only trivial solution ψ(x) ≡ 0, which again leads to a contraction. Therefore, we
obtain Reλ < 0, and consequently, the heterogeneous positive steady state ϕ(x) of (2.1) is locally stable.
This ends the proof. □

Remark 3.9. If k = 2, then ϕ(x) is locally stable whenever it exists; i.e., α > d+ δ.

Theorem 3.8 implies that if d + δ < α ≤ δk/(k − 2), the positive steady state ϕ(x) is locally stable for
any value of τ . In the following, we consider the case with α > max{δk/(k − 2), d + δ}, and prove that a
small time delay is still harmless to the stability of ϕ(x).
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Theorem 3.10. Assume α > max{δk/(k− 2), d+ δ}. The positive steady state ϕ(x) is locally stable for all
τ ∈ [0, τ̂ ], where

τ̂ =
arccos( −1

k−1−kδ/α )

α
√

(k − 1 − kδ/α)2 − 1
. (3.13)

Proof. We will prove the contraposition that if ϕ(x) is unstable then τ > τ̂ . To see this, we assume ϕ(x) is
unstable, then the eigenvalue problem ∆̃λ

ϕψ = 0 has a complex eigenvalue, denoted by λ, with nonnegative
real part. Since the conjugate λ̄ is also an eigenvalue, we may assume without loss of generality that Imλ ≥ 0.
Also, we normalize the eigenfunction ψ(x) such that < ψ,ψ >= 1. Thus, we have

0 =< −∆ϕψ,ψ > +λ+ e−λτI1 + I2,

where
I1 = −

∫ π

0
f ′(ϕ(x))|ψ(x)|2dx, I2 =

∫ π

0

f(ϕ(x))
ϕ(x) |ψ(x)|2dx.

Since f(u)/u > 0 and f(u)/u > f ′(u) for all u > 0, we have I2 > 0 and I2 > −I1. Similar as in the proof of
Theorem 3.8, we separate the real and imaginary parts of the characteristic equation. It follows that

−e−Reλτ cos(Imλτ)I1 =< −∆ϕψ,ψ > +Reλ+ I2, (3.14)
Imλ = e−Reλτ sin(Imλτ)I1. (3.15)

Since Reλ ≥ 0 and < −∆ϕψ,ψ >≥ 0, we have from (3.14)

− cos(Imλτ)I1 ≥ I2. (3.16)

In view of I2 > −I1, the above inequality gives I1(1 − cos(Imλτ)) > 0. Thus, I1 > 0 and cos(Imλτ) < 1.
Especially, Imλτ > 0 (recall that we have assumed without loss of generality Imλτ ≥ 0), which, together
with I1 > 0 and (3.15), implies that sin(Imλτ) > 0. Furthermore, it follows from I1 > 0 and (3.16) that
cos(Imλτ) < 0. Thus, Imλτ ∈ (π/2 + 2jπ, π + 2jπ) for some j ∈ N0. Since Reλτ ≥ 0, we obtain from (3.15)
that

Imλ
sin(Imλτ) ≤ I1. (3.17)

To obtain a lower bound of τ , we shall derive a lower bound for I2/I1 and an upper bound for I1. For any
u ∈ (0, u∗], we have from (1.3) and (2.2)

f(u)
u

= α

1 + βuk
< α,

−uf ′(u)
f(u) = kβuk

1 + βuk
− 1 ≤ kβuk

∗
1 + βuk

∗
− 1 = k − 1 − kδ

α
.

Consequently,

I2 <

∫ π

0
α|ψ(x)|2dx = α,

I1 ≤
∫ π

0
(k − 1 − kδ/α)f(ϕ(x))

ϕ(x) |ψ(x)|2dx = (k − 1 − kδ/α)I2.

Especially, I1 < α(k − 1 − kδ/α). Substituting the above inequalities into (3.16) and (3.17) yields

− cos(Imλτ) ≥ (k − 1 − kδ/α)−1

and
Imλτ

sin(Imλτ) < α(k − 1 − kδ/α)τ.
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Let Imλτ = ξ + 2jπ for some ξ ∈ (π/2, π) and j ∈ N0. The first inequality implies ξ ≥ arccos( −1
k−1−kδ/α ).

Thus, the second inequality gives

α(k − 1 − kδ/α)τ > ξ

sin ξ ≥
arccos( −1

k−1−kδ/α )√
1 − ( 1

k−1−kδ/α )2
.

Here, we have used the fact that the function ξ/ sin ξ is increasing for ξ ∈ (π/2, π). Recall the definition of
τ̂ . The above inequality is the same as τ > τ̂ . The proof is complete. □

4. Non-zero Dirichlet boundary problem

We consider the non-zero Dirichlet problem:⎧⎨⎩
∂u(x,t)

∂t = d△u(x, t) − δu(x, t) + f(u(x, t− τ)), x ∈ (0, π), t > 0,
u(0, t) = u(π, t) = u∗, t ≥ 0,
u(x, θ) = u0(x, θ) ≥ 0, x ∈ [0, π], θ ∈ [−τ, 0],

(4.1)

where u∗ is defined in (1.3). Throughout this section, we assume α > δ, which guarantees that u∗ > 0.
First, we exclude the existence of heterogeneous steady state. Then, we carry out stability analysis of
the unique positive steady state u∗ and establish the existence conditions for Hopf bifurcation of (4.1).
Next, we analyze the properties of Hopf bifurcations and prove the existence of both spatial-dependent
and independent periodic solutions to (4.1). Finally, we study the global continuation of periodic solutions
bifurcating from u∗.

4.1. Nonexistence of heterogeneous steady states

Since u∗ = f(u∗)/δ ≤ f(c)/δ, where f and c are defined as in (2.2), it follows from Theorem 2.1 that
the solution of (4.1) is nonnegative for t ≥ 0, positive for t > τ , and eventually bounded above by f(c)/δ.
Furthermore, we have the following result regarding nonexistence of heterogeneous positive steady state of
(4.1).

Theorem 4.1. If α > δ, then the constant solution u(x) ≡ u∗ is the only positive steady state solution of
(4.1).

Proof. The steady state of (4.1) satisfies the following boundary value problem:{
du′′(x) = δu(x) − f(u(x)),
u(0) = u(π) = u∗.

A steady state solution is equivalent to a trajectory of (3.2) that starts on the vertical line u = u∗ at x = 0
and comes back on the same line when x = π.

First, we consider a special trajectory, denoted by X , passing through the point (u∗, 0). By (3.3), the
trajectory consists of all points (u, v) satisfying the equation:

v2 = δ

d
(u2 − u2

∗) + 2
d

∫ u∗

u

f(ξ)dξ.

It is readily seen that the trajectory in the right-half plane (u ≥ 0) formulates an X-shape as illustrated
by the green curves in Fig. A.1. We are ready to prove the nonexistence of heterogeneous positive steady
state of (4.1). Assume to the contrary that there exists a trajectory S = (u(x), v(x)) which starts on the
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line u = u∗ at x = 0 and comes back on the same line at x = π. Obviously, v(0) and v(π) cannot have
different signs; otherwise, the two trajectories S and X would intersect with each other, which contradicts
with the uniqueness of solution to (3.2). On the other hand, if both v(0) and v(π) are positive, the trajectory
S should always stay in the first quadrant, which implies that u(x) is increasing and thus, the trajectory
cannot move back onto the line u = u∗, a contradiction. Similarly, if both v(0) and v(π) are negative,
then u(x) is decreasing, which again, leads to a contradiction. Therefore, we have excluded the existence of
heterogeneous positive steady state of (4.1). This ends the proof. □

4.2. Stability analysis and existence of Hopf bifurcation

To translate the non-zero Dirichlet boundary condition to zero Dirichlet boundary condition, we replace
u(x, t) by u(x, t) + u∗ in (4.1). The resulting equation is⎧⎪⎨⎪⎩

∂u(x,t)
∂t = d△u(x, t) − δ(u(x, t) + u∗) + α(u(x,t−τ)+u∗)

1+β(u(x,t−τ)+u∗)k , x ∈ (0, π), t > 0,
u(0, t) = u(π, t) = 0, t ≥ 0,
u(x, θ) = u0(x, θ) − u∗ ≥ −u∗ (̸≡ −u∗), x ∈ [0, π], θ ∈ [−τ, 0].

(4.2)

Linearizing the above equation at the trivial steady state, we obtain

∂u(x, t)
∂t

= d∆u(x, t) − δu(x, t) + f ′(u∗)u(x, t− τ),

where
f ′(u∗) = δ − kδ(α− δ)

α
< δ.

The corresponding characteristic equation is

λ+ dn2 + δ − f ′(u∗)e−λτ = 0, n ∈ N. (4.3)

We use the delay τ > 0 as a bifurcation parameter and investigate the stability changes at u∗ and the
existence of Hopf bifurcation. Note that when τ = 0, the eigenvalues are

λ = −dn2 − δ + f ′(u∗) < 0 for all n ∈ N.

Thus a stability change at u∗ can only happen when one or more eigenvalues cross the imaginary axis to
the right. Since f ′(u∗) < δ, 0 cannot be an eigenvalue. We only need to look for a pair of purely imaginary
eigenvalues λ = ±iω with ω > 0 for some τ > 0. Substituting λ = iω into (4.3) and separating the real and
imaginary parts, we have

dn2 + δ = f ′(u∗) cos(ωτ), −ω = f ′(u∗) sin(ωτ). (4.4)

Squaring and adding both equations of (4.4) lead to

ω2 = (−f ′(u∗) + dn2 + δ)(−f ′(u∗) − dn2 − δ). (4.5)

Note that f ′(u∗) < δ. The above equation has a unique positive root

ωn =
√

(−f ′(u∗) + dn2 + δ)(−f ′(u∗) − dn2 − δ) for n ∈ N (4.6)

if and only if −f ′(u∗) − dn2 − δ > 0, or equivalently, δ
α < 1 − dn2+2δ

kδ . If this condition is not satisfied for all
n ∈ N; i.e., δ

α ≥ 1− d+2δ
kδ , then all eigenvalues of (4.3) stay in the open left-half complex plane. Consequently,

we have the following result on the stability of u∗.
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Theorem 4.2. Assume that 1− d+2δ
kδ ≤ δ

α < 1. The positive steady state u∗ of (4.1) is locally asymptotically
stable for all τ ≥ 0.

Corollary 4.3. If k = 2 and α > δ, then u∗ of (4.1) is locally asymptotically stable for all τ ≥ 0.

In the sequel, we assume that δ
α < 1 − d+2δ

kδ ; namely, f ′(u∗) < −d− δ. Let nmax be the maximum value
of n such that δ

α < 1 − dn+2δ
kδ is satisfied; namely,

nmax = [
√

(1 − δ/α)kδ − 2δ
d

],

where [·] denotes the greatest integer function. For any n ∈ {1, . . . , nmax}, we choose ω = ωn > 0 to be
defined as in (4.6). Since f ′(u∗) < 0, it follows from (4.4) that sin(ωτ) > 0 and cos(ωτ) < 0, which implies
that ωτ lies in the second quadrant; i.e., ωτ ∈ ( π

2 + 2jπ, π + 2jπ) for some j ∈ N0, where N0 = {0, 1, 2, . . .}
denotes the set of all nonnegative integers. Consequently, (4.4) gives infinitely many solutions:

τ = τ j
n = 1

wn
(arccos dn

2 + δ

f ′(u∗) + 2jπ) (4.7)

for all j ∈ N0. For convenience, we introduce the index set

P = {1, . . . , nmax} × N0.

For any pair (n, j) ∈ P, it is obvious that τ j+1
n > τ j

n. Furthermore, since ωn is strictly decreasing and
arccos dn2+δ

f ′(u∗) is strictly increasing with respect to n, we conclude that τ j
n is strictly increasing with respect

to n. Thus, we arrive at the following lemma.

Lemma 4.4. Assume that δ
α < 1 − d+2δ

kδ . Then τ j
n with (n, j) ∈ P is strictly increasing with respect to n

and j. Especially, τ0
1 = min(n,j)∈P τ

j
n.

Now, we verify the transversality condition for the occurrence of Hopf bifurcation at the bifurcation point
τ j

n. For any τ in a complex neighborhood of τ j
n, we denote λn(τ) = γn(τ) + iωn(τ) to be the root of (4.3)

such that γn(τ j
n) = 0 and ωn(τ j

n) = ωn. Note that the conjugate λ̄n(τ) = γn(τ) − iωn(τ) is also a root of
(4.3), but these two roots have the same real part. We have the following result.

Lemma 4.5. Assume that δ
α < 1 − d+2δ

kδ . Then dReλn(τ)
dτ |

τ=τ
j
n
> 0 for any (n, j) ∈ P.

Proof. By implicit differentiation, we obtain from (4.3) that

dλn(τ)
dτ

⏐⏐⏐⏐
τ=τ

j
n

= −iωn(iωn + dn2 + δ)
1 + τ j

n(iωn + dn2 + δ)
.

Taking the real part, we have

dReλn(τ)
dτ

⏐⏐⏐⏐
τ=τ

j
n

= ω2
n

(1 + τ j
ndn2 + τ j

nδ)2 + (ωnτ
j
n)2

> 0.

This completes the proof. □

Now, we consider the collection of all τ j
n with (n, j) ∈ P. If a value appears more than once in the collection,

then there are at least two pairs of purely imaginary roots and thus the condition of Hopf bifurcation is



X. Pan, H. Shu, L. Wang et al. / Nonlinear Analysis: Real World Applications 48 (2019) 493–516 507

violated. For this reason, we only keep the values which appear exactly once in the collection and rearrange
them in increasing order. Denote the new set by

Σ = {τ0, τ1, . . . , τn, . . .}. (4.8)

Obviously, τ0 = τ0
1 , τi < τi+1 and Hopf bifurcation occurs when τ = τi for each i = 0, 1, 2 · · · . Applying

Lemmas 4.4 and 4.5, we can draw the conclusion on the distribution of the roots of (4.3).

Lemma 4.6. Assume that δ
α < 1 − d+2δ

kδ . If τ ∈ [0, τ0), then all eigenvalues have negative real parts; if
τ = τ0, then all eigenvalues except ±iω1 have negative real parts; if τ > τ0, at least two eigenvalues have
positive real parts. Moreover, when τ increases through some τi for i = 0, 1, 2 · · · , the sum of the multiplicities
of the eigenvalues with positive real parts will increase by two.

The following results give the stability and existence of Hopf bifurcations.

Theorem 4.7. Assume that δ
α < 1− d+2δ

kδ . Then the positive steady state u∗ of (4.1) is locally asymptotically
stable for τ ∈ [0, τ0) and unstable for τ > τ0. Moreover, System (4.1) undergoes a Hopf bifurcation at u∗

when τ = τi ∈ Σ for i = 0, 1, 2 · · · , and the bifurcating periodic solutions are spatially non-homogeneous.

In what follows, by using the center manifold and normal form method for delay partial differential
equations developed by Hassard [26], Faria [24] and Wu [22,27], we study the direction of Hopf bifurcation
and the stability of the bifurcating periodic solutions from u∗, with the calculation of Re(c1(τi)) postponed
to the Appendix.

Theorem 4.8. Given any i ∈ N0, if Re(c1(τi)) is negative (resp. positive), then the direction of the Hopf
bifurcation is τ > τi (resp. τ < τi). Moreover, if i ≥ 1, the bifurcating periodic solutions are unstable; if
i = 0, the bifurcating periodic solutions are unstable when Re(c1(τ0)) > 0 and orbitally asymptotically stable
when Re(c1(τ0)) < 0.

4.3. Global Hopf bifurcation analysis

Assume δ
α < 1 − d+2δ

kδ . Theorem 4.7 states that periodic solutions can bifurcate from u∗ when τ is near
the local Hopf bifurcation values τi ∈ Σ . In this section, we study the global continuation of these local
bifurcating periodic solutions via the global Hopf bifurcation theorem [22,28].

Let z(t) = u(·, τ t) − u∗. Eq. (4.1) can be rewritten as a semilinear functional differential equation

z′(t) = AT z(t) + g(zt), (4.9)

where zt ∈ C([−1, 0], X) with zt(θ) = z(t+θ) for θ ∈ [−1, 0], AT = τd∆−τδ is the shifted Laplace operator,
and

g(zt) = τα(zt(−1) + u∗)
1 + β(zt(−1) + u∗)k

− τδu∗

is the nonlinear reaction function. Let {T (t)}t≥0 be the semigroup generated by the linear differential
operator AT with zero Dirichlet boundary condition on the interval (0, π). Since the principal eigenvalue of
AT is negative, we have T (t) → 0 as t → ∞. Moreover, the solution of (4.9) satisfies the following integral
equation:

z(t) = T (t)z(0) +
∫ t

0
T (t− s)g(zs)ds. (4.10)
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If z(t) is periodic, then it also satisfies the integral equation:

z(t) =
∫ t

−∞
T (t− s)g(zs)ds. (4.11)

To see this, we denote the period of u(t) by ω and obtain from (4.10)

z(0) = z(ω) = T (ω)z(0) +
∫ ω

0
T (ω − s)g(zs)ds

= T (ω)z(0) +
∫ 0

−ω

T (−s)g(zs)ds.

By using the above equation repeatedly, we have

z(0) = T (nω)z(0) +
∫ 0

−nω

T (−s)g(zs)ds.

Letting n → ∞, since T (nω)z(0) → 0, the above equation gives (4.11). On the other hand, it is easily
seen that a periodic solution of (4.11) is also a periodic solution of (4.10). We obtain from [22, Chapter
6.5] that the integral operator on the right-hand side of (4.11) is differentiable, completely continuous, and
G-equivariant.

If δ
α < 1 − d+2δ

kδ , Theorem 4.1 shows that u∗ is the unique positive steady state solution of (4.1). Note
that 0 cannot be an eigenvalue of (4.3) for any τ ≥ 0 since f ′(u∗) < δ. Hence, the assumption (H1) in [22,
Chapter 6.5] holds. It follows from Lemma 4.6 that when τ = τi ∈ Σ , there exists a unique pair (r, j) ∈ P
such that τ = τ j

r , and the characteristic equation (4.3) has exactly one pair of purely imaginary eigenvalues
±iωr. Thus, the assumption (H2) in [22, Chapter 6.5] holds. Following the definitions in [22, Chapter 6.5],
we introduce the local steady state manifold

M = {(u∗, τ, T ) : |τ − τi| < ϵ1, |T − 2π/(ωrτ)| < ϵ2} ⊂ ES1
× R2

+

for sufficiently small ϵ1, ϵ2 > 0, where E = C(S1, X) is a real isometric Banach representation of the
group S1 = {z ∈ C : |z| = 1}, and ES1 = {x ∈ E : gx = x for all g ∈ S1}. Then ES1 = X, and
E = ES1 ⨁∞

k=1{eiktx : x ∈ X}. From Lemma 4.6, we obtain that for (τ, ω) ∈ [τi−ϵ1, τi+ϵ1]×[ωr−ϵ2, ωr+ϵ2],
±iωr is an eigenvalue of (4.3) if and only if τ = τi and ω = ωr. Thus, the assumption (H3) in [22, Chapter
6.5] is satisfied, and we further conclude that (u∗, τi, 2π/(ωrτi)) is an isolated singular point in M .

Next, we define a closed subset Γ of X × R2
+ by

Γ = Cl{(z, τ, T ) ∈ X × R2
+ : z is a nontrivial T -periodic soltuion of (4.9)}.

Denote by Ci(u∗, τi, Ti) the connected component of (u∗, τi, Ti) in Γ . It follows from Theorem 4.7 that
Ci(u∗, τi, Ti) is a nonempty subset in Γ . Define the complete steady state smooth manifold:

M∗ = {(u∗, τ) : τ ∈ R+} ⊂ X × R+.

Then M = M∗ × (0,∞). Applying the global Hopf bifurcation theorem in [22, Theorem 6.5.5], we obtain
the following result.

Theorem 4.9. Assume that δ
α < 1 − d+2δ

kδ . For each i ∈ N0, the connected component Ci(u∗, τi, Ti) is
unbounded, i.e.,

sup
{

max
t∈R

|z(t)| + |τ | + T + T−1 : (z, τ, T ) ∈ Ci(u∗, τi, Ti)
}

= ∞.
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Proof. By Theorem 6.5.5 in [22], at least one of the following holds:

(a) Ci(u∗, τi, Ti) is unbounded in X × R2
+, or

(b) Ci(u∗, τi, Ti)∩M is finite, and
∑

(u∗,τ,T )∈Ci∩M ζm(u∗, τ, T ) = 0 for all integers m ≥ 1, where ζm(u∗, τ, T )
is the mth generalized crossing number.

It follows from Lemmas 4.5 and 4.6 that ζm(u∗, τ, T ) = 0 for all m > 1, and

ζ1(µ∗, τi, Ti) = −sgn
(
d(Reλr(τ))

dτ

⏐⏐⏐⏐
τ=τi

)
= −1.

We only need to exclude the possibility of case (b). If case (b) is true, then
∑
ζ1(u∗, τ, T ) = −k < 0, where

k is the number of elements in Ci ∩M , which leads to a contradiction. This completes the proof. □

To find the interval of τ in which periodic solutions exist, we shall further investigate the properties of
periodic solutions of (4.1).

Lemma 4.10. If α > δ, then all nonnegative periodic solutions of (4.1) are uniformly bounded; namely,
there exist two constants B1 > 0 and B2 > 0 such that for any nonnegative periodic solution u(x, t), we have
B1 ≤ u(x, t) ≤ B2 for all (x, t) ∈ Ω̄ × R+.

Proof. Note that u∗ = f(u∗)/δ ≤ f(c)/δ, where f and c are defined in (2.2). By Theorem 2.1, we have

lim sup
t→∞

u(x, t) ≤ f(c)/δ

for all x ∈ [0, π]. Denote B2 = f(c)/δ > 0. We claim u(x, t) ≤ B2 for all (x, t) ∈ Ω̄ × R+. Otherwise, if
u(x1, t1) > B2 for some (x1, t1) ∈ Ω̄ × R+, then

lim
n→∞

u(x1, t1 + nT ) = u(x1, t1) > B2,

where T is the period of u(x, t). This contradicts the fact that u(x1, t) is eventually bounded above by B2

as t → ∞. Thus, B2 is indeed the upper bound of u(x, t). To find a uniform lower bound for u(x, t), we first
note from Theorem 2.1 that u(x, t) should be strictly positive, and thus possesses a positive minimum at a
point (x2, t2). Since ∂

∂tu(x2, t2) = 0 and ∆u(x2, t2) ≥ 0, we obtain from the differential equation (4.1) that

δu(x2, t2) ≥ f(u(x2, t2 − 1)).

If 0 < u(x2, t2 − 1) < u∗, then

f(u(x2, t2 − 1)) > δu(x2, t2 − 1) ≥ δu(x2, t2),

a contradiction. Hence, we have u∗ ≤ u(x2, t2 − 1) ≤ B2. Consequently,

δu(x2, t2) ≥ f(u(x2, t2 − 1)) ≥ αu∗

1 + βBk
2
.

Denote B1 = αu∗/[δ(1 + βBk
2 )]. It follows that u(x, t) ≥ u(x2, t2) ≥ B1 for all (x, t) in Ω̄ × R+. Since B1

and B2 depend only on the model parameters, we conclude that all periodic solutions of (4.1) are uniformly
bounded in [B1, B2]. This completes the proof. □

Lemma 4.11. Assume that α > δ. Then System (4.1) has no nontrivial periodic solution of period τ .
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Proof. Assume to the contrary, v(x, t) is a nontrivial periodic solution of (4.1) with period τ . Then it
satisfies the following system⎧⎨⎩

∂v(x,t)
∂t = d△v(x, t) − δv(x, t) + f(v(x, t)), x ∈ (0, π), t > 0,

v(0, t) = v(π, t) = u∗, t ≥ 0,
v(x, 0) = u0(x, 0) ≥ 0, x ∈ [0, π].

(4.12)

We claim that
lim

t→∞
v(x, t) = u∗,

which precludes the existence of nontrivial heterogeneous periodic solution of system (4.12), and thus leads to
a contradiction. To prove the claim, we consider the non-diffusive ordinary differential equation corresponding
to (4.12):

z′(t) = −δz(t) + αz(t)
1 + βzk(t) , z(0) = z0 > 0 (4.13)

Note that the right-hand side of the above equation, as a function of z, has two equilibria z = 0 and
z = u∗ > 0. Moreover, this function is positive for z ∈ (0, u∗) and negative when z > u∗. It is readily seen
that the solution of Eq. (4.13) with positive initial condition converges to the unique positive equilibrium
u∗, that is, limt→∞ z(t, z0) = u∗.

Denote M0 = max{u∗,max[0,π] u0(x, 0)}, then v(x, t) = z(t,M0) and v(x, t) = 0 are upper-solution and
lower-solution of (4.12), respectively. Hence, System (4.12) has a unique solution v(x, t), which satisfies
0 ≤ v(x, t) ≤ z(t,M0). Furthermore, by strong maximum principle, we have v(x, t) > 0 for any t > 0 and
x ∈ [0, π]. Fix any t1 > 0, we have v(x, t1) > 0 for x ∈ [0, π]. Denote

m1 := min{u∗, min
x∈[0,π]

v(x, t1)} > 0, M1 := max{u∗, max
x∈[0,π]

v(x, t1)} > 0,

and w(x, t) = v(x, t+ t1). It is clear that w(x, t) satisfies the following system⎧⎨⎩
∂w(x,t)

∂t = d△w(x, t) − δw(x, t) + f(w(x, t)), x ∈ (0, π), t > 0,
w(0, t) = w(π, t) = u∗, t ≥ 0,
w(x, 0) = v(x, t1), x ∈ [0, π].

Moreover, z(t,M1) and z(t,m1) are upper-solution and lower-solution of the above equation, respectively.
Thus, we have

z(t,m1) ≤ w(x, t) = v(x, t+ t1) ≤ z(t,M1)

Note that limt→∞ z(t,m1) = limt→∞ z(t,M1) = u∗. This, together with the above inequality, yields
limt→∞ v(x, t) = u∗. Therefore, System (4.1) has no nontrivial periodic solution of period τ . □

We are now ready to analyze the structure of Ci and prove global existence of periodic solutions of (4.1).
For simplicity, let PΣ be the collection of all index pairs (n, j) ∈ P such that τ j

n ∈ Σ ; namely, τ j
n only

appears once in the set P.

Theorem 4.12. Assume that δ
α < 1 − d+2δ

kδ . For each (n, j) ∈ PΣ , denote by Cj
n = Cj

n(u∗, τ
j
n, T

j
n) the

connected component of (u∗, τ
j
n, T

j
n) in Γ . Then we have the following results.

(i) If i ̸= j, then Cj
n ∩ Ci

m = ∅ for any (m, i) and (n, j) in PΣ .
(ii) For each (n, j) ∈ PΣ with j ≥ 1, the global Hopf branch Cj

n is unbounded with unbounded τ -component,
bounded period component in (1/(j + 1), 1/j), and bounded solution component in [B1, B2].

(iii) Let τ̂ = min{τ j
n : (n, j) ∈ PΣ and j ≥ 1}. For any τ > τ̂ , there exists at least one periodic solution for

System (4.1).
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Proof. By Lemma 4.11, System (4.1) has no nontrivial periodic solution of period τ . Therefore, System
(4.9) does not have nontrivial periodic solutions of period 1, or nontrivial periodic solutions of period 1/j
for any j ∈ N. When τ is close to the bifurcation point τ j

n, we obtain from local Hopf bifurcation theorem
that

wnτ ∈ (2jπ + π/2, 2jπ + π) ⊂ (2jπ, 2jπ + 2π).

Let T = 2π/(wnτ) be the period. It follows that 1/(j + 1) < T < 1/j for j ∈ N, and T > 1 for j = 0. If
j ∈ N, since System (4.9) has no nontrivial periodic solution of period 1/j or 1/(j + 1), by continuity of
Hopf bifurcation branch, the periods on Cj

n are bounded by 1/j and 1/(j + 1). If j = 0, a similar argument
shows that the periods on C0

n are always greater than 1. Therefore, any two global Hopf branches Cj
n and

Ci
m with i ̸= j do not intersect. This proves (i).

For each (n, j) ∈ PΣ , we recall from Lemma 4.10 that the periodic solutions on Cj
n are bounded in

the interval [B1, B2]. Moreover, as proven in the proof of (i), the periods are bounded in the interval
(1/(j + 1), 1/j). It then follows from Theorem 4.9 and the unboundedness of Cj

n that the τ -component
should be unbounded. This proves (ii).

Finally, (iii) follows immediately from the unboundedness of τ on the global Hopf branch bifurcating from
the bifurcation point τ̂ . □

For simplicity, we consider the case when

δ

α
∈ (1 − 4d+ 2δ

kδ
, 1 − d+ 2δ

kδ
); (4.14)

namely, nmax = 1. It follows that Σ = {τ0
1 , τ

1
1 , . . .} with τj = τ j

1 . We have the following results.

Corollary 4.13. Assume (4.14) is satisfied, that is, nmax = 1. If j ≥ 1 and τ > τj, System (4.1) has
at least j periodic solutions. If j = 0, the global Hopf branch C0

1 has either unbounded period or unbounded
τ -component.

Proof. By Theorem 4.12, any two global Hopf branches Ci
1 and Cj

1 with i ̸= j do not intersect. Moreover, the
τ -component of Ci

1 with 1 ≤ i ≤ j is unbounded and thus has a periodic solution for any τ > τj . Therefore,
there exist at least j periodic solutions of (4.1). The second statement follows from Theorem 4.9. □

Note that if System (4.1) has no periodic solution of period 4τ , then we can further prove that the periods
on the global Hopf branch C0

1 are bounded in the interval [1, 4], which together with Corollary 4.13, implies
that the τ -component of this branch is unbounded. Consequently, for any τ > τj with j ≥ 0, there exist at
least j + 1 periodic solutions for (4.1). We leave the proof of nonexistence of 4τ -periodic solution of (4.1) as
an open problem.

5. Numerical simulations and discussion

In this section, we present some numerical simulations to demonstrate our theoretical results. First, we
simulate the system (2.1) with zero-Dirichlet boundary condition. The parameter values are chosen as

d = 0.5, δ = 1, k = 3, β = 8. (5.1)

If α < 1.5, by Theorems 3.2 and 3.5, the zero equilibrium is globally asymptotically stable for any τ ≥ 0. If
α ∈ (1.5, 3), by Theorems 3.2 and 3.8, there exists a unique heterogeneous positive steady state ϕ(x) which
is locally asymptotically stable for any τ ≥ 0. We set τ = 1 and choose α to be 1.25 and 2.8, respectively.
The simulation results are illustrated in Fig. A.2.
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If α > 3, the dynamics of System (2.1) may depend on the value of τ . In Fig. A.3, we fix α = 6 and choose
τ to be 1 and 4, respectively. It is noted that when τ = 1, the unique heterogeneous positive steady state
is still locally asymptotically stable. However, when τ = 4, the unique heterogeneous positive steady state
becomes unstable and a periodic solution is bifurcated from the unique heterogeneous positive steady state.
This suggests that if the condition in Theorem 3.8 is violated, then the delay may destabilize the positive
steady state and induce a bifurcation.

Next, we consider System (4.1) with non-zero Dirichlet boundary condition. We choose the same
parameter values as in (5.1). It follows from Theorem 4.2 that the unique positive steady state u∗ = 3√α− 1/2
is locally asymptotically stable for all τ ≥ 0 if 1 < α ≤ 6; see Fig. A.4, where we set α = 2, τ = 1, and the
initial condition u0(x, θ) = 0.5 + 0.015 sin x, θ ∈ [−τ, 0].

If α > 6, by Theorem 4.7, the positive steady state u∗ is locally asymptotically stable when τ < τ0
1 and

unstable for τ > τ0
1 . Furthermore, System (4.1) undergoes a Hopf bifurcation at u∗ when τ = τi ∈ Σ with

i ∈ N0; see Fig. A.5, where we set α = 9, and the initial condition u0(x, θ) = 1 + 0.1 sin x, θ ∈ [−τ, 0]. A
simple calculation gives u∗ = 1, nmax = 1, and ω1 ≈ 0.726483. Moreover, the local Hopf bifurcation values
are

τ0
1 ≈ 3.70355 < τ1

1 ≈ 12.3523 < · · · < τ j
1 ≈ 3.70355 + 8.64877j < · · · .

By using the formula given in the Appendix, we compute c1(τ0
1 ) ≈ −0.854693 − 0.158908i. Especially,

Re(c1(τ0
1 )) < 0. By Theorem 4.8, a forward Hopf bifurcation occurs at τ0

1 and the bifurcating spatially non-
homogeneous periodic solutions are stable; see Fig. A.5. Further simulations (not shown here) demonstrate
that spatial non-homogeneous periodic solutions exist for any large τ , which coincides with Corollary 4.13.

We conclude this paper by a discussion on two open problems.

1. For zero Dirichlet problem, we obtained global stability of trivial equilibrium, and established existence,
uniqueness and local stability of nontrivial steady state. It would be interesting, though challenging,
to analyze the periodic solutions bifurcated from the spatially heterogeneous steady state solution.

2. For non-zero Dirichlet problem, we provided existence, uniqueness and local stability of steady state
solution, studied properties of local Hopf branch and structures of global Hopf branches, and proved
global existence of periodic solutions. There is one open problem on the structure of the unbounded
Hopf branch which bifurcates from the first bifurcating point. We demonstrated that this branch is
unbounded in the sense that either the period component or the delay component is unbounded.
However, if one could exclude the existence of 4-periodic solution for the scaled problem, then the
period component is bounded and the delay component is unbounded. The nonexistence conjecture
has not been proved even for the spatial homogeneous problem.
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Appendix. Direction and stability of the bifurcating periodic solutions

Theorem 4.7 gives some sufficient conditions for the occurrence of Hopf bifurcation from the steady state
solution u∗ of System (4.1) at τ = τ j

n with (n, j) ∈ PΣ . In this appendix, we determine the direction
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Fig. A.1. The phase portrait of (3.2). Left: k is even. Right: k is odd.

Fig. A.2. Left: α = 1.25, the zero equilibrium is globally asymptotically stable. Right: α = 2.8, the unique heterogeneous positive steady
state is locally asymptotically stable.

Fig. A.3. Left: τ = 1, the unique heterogeneous positive steady state is locally asymptotically stable. Right: τ = 4, a periodic solution
is bifurcated from the unstable steady state.

and stability of the bifurcating spatially non-homogeneous periodic solutions established, and thus prove
Theorem 4.8.

Set τ = τ j
n + ϵ, then ϵ = 0 is the Hopf bifurcation value of System (4.1). We translate u∗ to the origin

and rescale the time to normalize the delay; namely, let U(t) = u(·, tτ) − u∗. System (4.1) can be written in
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Fig. A.4. The solution of (4.1) tends to the unique positive steady state u∗ for all τ ≥ 0.

Fig. A.5. Left: τ = 3, the unique positive steady state u∗ is locally asymptotically stable for all τ < τ0
1 . Right: τ = 4, a bifurcating

spatially non-homogeneous periodic solution exists when τ > τ0
1 .

the following abstract form:
U ′(t) = τ j

nL0Ut + Fϵ(Ut), (A.1)

where Ut ∈ C([−1, 0], X), and L0 is a linear functional and Fϵ a nonlinear functional on C([−1, 0], X) such
that

L0φ = (d△ − δ)φ(0) + f ′(u∗)φ(−1),
Fϵ(φ) = ϵL0φ+ (τ j

n + ϵ)
(

f ′′(u∗)
2 φ2(−1) + f ′′′(u∗)

6 φ3(−1) + O(4)
)
,

for any φ ∈ C([−1, 0], X). Denote by A
τ

j
n

the infinitesimal generator of the semigroup induced by the
solutions of the linearized equation U ′(t) = τ j

nL0Ut. Then we have

A
τ

j
n

(φ)(θ) =
{
φ̇(θ), θ ∈ [−1, 0),
τ j

nL0φ, θ = 0,

for φ ∈ C([−1, 0], X) such that φ̇ ∈ C([−1, 0], X), φ(0) ∈ D, and φ̇(0) = τ j
nL0φ. Thus, (A.1) can be rewritten

as the abstract ODE:
U ′

t = A
τ

j
n
Ut + χ0Fϵ(Ut).

By Riesz representation theorem, there exists a bounded variation function

η(θ) = −τ j
n(dn2 + δ)χ0 − τ j

nf
′(u∗)χ−1

such that
τ j

nL0φ =
∫ 0

−1
φ(θ)dη(θ)
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for φ ∈ C([−1, 0],R). Define an operator

A∗(ψ)(s) =
{

−ψ̇(s), s ∈ (0, 1],∫ 0
−1 ψ(−s)dη(s), s = 0.

It is easily seen that A∗ is the adjoint operator of A
τ

j
n

under the bilinear form

(ψ,φ) = ψ̄(0)φ(0) −
∫ 0

−1

∫ θ

0
ψ̄(ξ − θ)φ(ξ)dξdη(θ)

for ψ ∈ C([0, 1],R∗) and φ ∈ C([−1, 0],R); see [26,29]. By Lemma 4.6, A
τ

j
n

has exactly one pair of purely
imaginary simple eigenvalues ±iωnτ

j
n. Clearly, q(θ) = eiωnτ

j
nθ with θ ∈ [−1, 0] is an eigenvector of A

τ
j
n

corresponding to the eigenvalue iωnτ
j
n, and p(s) = Dne

iωnτ
j
ns with s ∈ [0, 1] is an eigenvector of A∗

corresponding to the eigenvalue −iωnτ
j
n. Here we choose Dn = (1+ τ j

nf
′(u∗)e−iωnτ

j
n)−1 such that (p, q) = 1.

We also note that (p, q̄) = 0. To study the properties of Hopf bifurcation, we follow the computation
algorithm as in [22,26] and calculate the following parameter values:

g20 = Dnτ
j
ne

−2iωnτ
j
nf ′′(u∗)

∫ π

0
sin3(nx)dx,

g11 = Dnτ
j
nf

′′(u∗)
∫ π

0
sin3(nx)dx,

g02 = Dnτ
j
ne

2iωnτ
j
nf ′′(u∗)

∫ π

0
sin3(nx)dx,

g21 = Dnτ
j
nf

′′(u∗)
(
eiωnτ

j
n

∫ π

0
W20(−1) sin2(nx)dx

+ 2e−iωnτ
j
n

∫ π

0
W11(−1) sin2(nx)dx

)
+Dnτ

j
nf

′′′(u∗)e−iωnτ
j
n

∫ π

0
sin4(nx)dx,

where
W20(θ) =

(
ig20

ωnτ
j
n

eiωnτ
j
nθ + ig02

3ωnτ
j
n

e−iωnτ
j
nθ

)
sin(nx) + E1e

2iωnτ
j
nθ,

W11(θ) =
(

− ig11

ωnτ
j
n

eiωnτ
j
nθ + ig11

ωnτ
j
n

e−iωnτ
j
nθ

)
sin(nx) + E2,

for θ ∈ [−1, 0), and

E1 =
∞∑

m=1

τ j
nf

′′(u∗)e−2iωnτ
j
n
∫ π

0 sin2(nx) sin(mx)dx
2iωnτ

j
n + dm2 + δ − f ′(u∗)e−2iωnτ

j
n

sin(mx),

E2 =
∞∑

m=1

τ j
nf

′′(u∗)
∫ π

0 sin2(nx) sin(mx)dx
dm2 + δ − f ′(u∗) sin(mx).

Consequently, we can compute the following quantities:

c1(τ j
n) = i

2ωnτ
j
n

(
g11g20 − 2|g11|2 − |g02|2

3

)
+ g21

2 , µ2 = − Re(c1(τ j
n))

Re(λ′
n(τ j

n))
.

It follows from Hopf bifurcation theory [22,24,26] that the sign of µ2 gives the direction of the Hopf
bifurcation, and the sign of Re(c1(τ j

n)) determines the stability of the bifurcating spatially non-homogeneous
periodic solutions. To be more specific, if µ2 > 0 (resp. µ2 < 0), then there exist bifurcating periodic solutions
when τ moves to the right (resp. left) of bifurcation point τ j

n; if Re(c1(τ j
n)) is negative (resp. positive), then

the bifurcating periodic solutions are orbitally asymptotically stable (resp. unstable) on the center manifold.
Since Re(λ′

n(τ j
n)) > 0 by Lemma 4.5, µ2 and Re(c1(τ j

n)) have different signs. Theorem 4.8 then follows from
the above argument.
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