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W ith the rapid advancements in synthetic aperture 
radar (SAR) satellites and associated processing al-

gorithms over recent decades, interferometric SAR (InSAR) 
has emerged as a routine method for monitoring large-
scale ground deformation and interpreting geophysical 
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processes. Statistical inference serves as a major compo-
nent in InSAR technique developments and applications. 
This article provides an overview of InSAR deformation 
measurement and InSAR-constrained geophysical inver-
sion, using a statistical inference point of view. Its objec-
tives are to facilitate understanding of the method by ad-
dressing its underlying mathematical challenges. We begin 
by introducing the concept of statistical inference and the 
structure of our content organization framework. Next, we 
investigate the distinct concerns associated with statistical 
inference in InSAR deformation measurement and InSAR-
constrained geophysical inversion. Finally, we propose 
several significant directions for future research. Table 1 
includes abbreviations used throughout this article. Ad-
ditionally, we highlight relevant resources, such as math-
ematical background, open source codes, and data reposi-
tories, in an appendix, which is available as supplementary 
material at https://doi.org/10.1109/MGRS.2023.3344159. 

MOTIVATION
In recent decades, InSAR has emerged to be a powerful method 
for measuring ground deformation and studying geophysi-
cal processes [1], [2], [3]. InSAR measurements, with milli-
meter precision and large coverage areas, enable the study of 
various geophysical phenomena. Using InSAR, researchers 
can, for instance, monitor ice stream movement [4], measure 
fault shifting during earthquakes [5], and observe ground 
changes resulting from fluid injection or extraction [6].

InSAR studies in geophysics typically consist of two 
stages: first, processing SAR images to produce InSAR de-
formation measurements and second, inverting these mea-
surements to derive geophysical parameters. Over time, 
numerous advanced methods have emerged in this domain 
[7], [8], [9], [10]. While these methods are developed by vari-
ous scientific communities, the fundamental mathematical 
issues they address are universally connected to statistical 
inference. Both InSAR deformation measurement, which 
estimates displacement parameters from SAR data, and geo-
physical inversion, which estimates geophysical parameters 
from displacement measurements, tackle similar statistical 
inference challenges. These challenges include constructing 
a proper statistical model, addressing ill-posed estimation 
issues, selecting multiple alternative models, and evaluating 
the quality of the estimated parameters.

The diverse backgrounds of researchers involved in 
method development, including fields like electrical 
engineering, geodesy, remote sensing, and computer 
science, have led to state-of-the-art methods being de-
scribed using varied terminologies. The complexity of 
these terminologies often makes them challenging to 
understand. Nonetheless, comprehending the funda-
mentals of InSAR processing and geophysical inversion is 
crucial for researchers. This importance is underscored by 
the frequent need for manual intervention in achieving 
optimal results, given the intricate nature of application 
scenarios and imperfections in SAR data. A robust grasp 
of the core mathematical concepts can provide deeper in-
sights. Notably, no existing work has yet to describe these 

©SHUTTERSTOCK.COM/QUARDIA

TABLE 1. ABBREIVATIONS USED IN THIS ARTICLE. 

ABBREVIATION FULL NAME

CCG Complex circular gaussian

MLE Maximum likelihood estimation

pdf Probability density function

CRLB Cramer–Rao lower bound

SCM Sample coherence matrix

EP Error propagation

CI Credible interval

InSAR Interferometric synthetic aperture radar

SLC Single-look complex

i.i.d. Independent identically distributed

DS Distributed scatterer

DSI DS interferometry

SBAS Small baseline subset

TomoSAR Tomographic SAR

PS Persistent scatterer

PSI PS interferometry

BIC Bayesian information criterion

FIM Fisher information matrix

MCMC Markov chain Monte Carlo

D-TomoSAR Differential TomoSAR

APS Atmospheric phase screen
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methods by specifically addressing their shared math-
ematical challenges. Our goal is to bridge this gap by  
offering a concise summary of current knowledge of In-
SAR deformation measurement and InSAR-constrained 
geophysical inversion methods, with a focus on statisti-
cal inference.

INTRODUCTION TO RELEVANT STATISTICAL 
INFERENCE CONCEPTS
Statistical inference is defined as the process of learning 
characteristics of a population from a sample. Basic concepts 
in statistical inference include statistical modeling, point 
estimation, interval estimation, and hypothesis testing 
[11]. A statistical model describes the complex phenomena 
that generate the data. It typically consists of mathematical 
formulations that link parameters and observations and 
assumptions about the probability distribution of the ob-
served variables. After selecting a statistical model, we can 
deduce statistical propositions using point estimation, in-
terval estimation, and hypothesis testing. Specifically, point 
estimation gives a single most likely value for a parameter, 
while interval estimation provides a range where the param-
eter value is expected to fall with a specific degree of confi-
dence. Hypothesis testing decides whether the data at hand 
sufficiently support a particular hypothesis.

InSAR deformation measurement and InSAR-con-
strained geophysical inversion are typical examples of 
statistical inference, using the observed data to derive esti-
mates and test hypotheses. Their statistical inferences can 
be generally divided into three stages (Figure 1):

1)	 Pre-estimation: A statistical model is constructed for the 
parameter estimation problem. It is defined by the ob-
servation variables, parameter variables, and probabil-
ity function.

2)	 Estimation: Typically, either maximum likelihood esti-
mation (MLE) or Bayesian estimation is selected based 
on the inclusion of any a priori knowledge. An optimi-
zation algorithm is then employed to search for the so-
lution based on the criterion defined by the estimator;

3)	 Postestimation: If alternative function models are con-
sidered, model testing/selection based upon hypothesis 
testing or information criteria is also required. Mean-
while, the quality of the parameter estimation can also 
be assessed using different approaches, such as the  
Cramer–Rao lower bound (CRLB), error propagation 
(EP), or the credible interval (CI).
In this article, mathematical symbols maintain distinct 

meanings within their respective sections. For example, 
symbols in the “Statistical Inference in Interferometric Syn-
thetic Aperture Radar Deformation Measurement” section 
have definitions specific to that context, while those in the 
“Statistical Inference in Interferometric Synthetic Aperture 
Radar-Constrained Geophysical Inversion” section pertain 
only to that section.

STATISTICAL INFERENCE IN INTERFEROMETRIC 
SYNTHETIC APERTURE RADAR DEFORMATION 
MEASUREMENT
InSAR processing is a remote sensing method that aims to 
extract Earth surface deformation parameters from initial 

single-look complex (SLC) data. It uses 
different statistical models and esti-
mators to accommodate variations in 
application scenarios and scatterers.

PROBLEM DEFINITION

TYPES OF SCATTERERS
SLC observations from SAR images 
are represented as complex num-
bers. Such a complex number con-
sists of the cumulative reflection 
of all the subresolution scatterers 
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FIGURE 2. The primary types of SAR scatterers: (a) PSs and (b) DSs.
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FIGURE 1. The main stages for conducting statistical inference. MLE: maximum  
likelihood estimation.
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within a resolution cell. According to the behavior of sub-
resolution scatterers, the radar pixel can be classified into 
two categories: persistent scatterers (PSs) and distributed 
scatterers (DSs). PSs are stable radar-reflective points pro-
viding consistent backscattering characteristics over time. 
DSs, in contrast, are more widespread radar reflections 
from various spatially distributed objects or surfaces, re-
sulting in less stable backscattering behavior over time. 
Additionally, PSs and DSs are further divided into sub-
categories according to the number of mechanisms inside 
the pixel, i.e., single-mechanism PS, multimechanism 
PS, single-mechanism DS and multimechanism DS (Fig-
ure 2). The statistical model and estimation approach vary 
for different types of scatterers, as detailed in the subse-
quent text.

MAIN PROCESSING CHAIN
The primary categories within multitemporal InSAR (MT-
InSAR), including PS interferometry (PSI), DS interferom-
etry (DSI), the small baseline subset (SBAS), differential 
tomographic SAR (D-TomoSAR), and so on [7], [8], were 
conceived independently by various inventors at different 
times. This has led to inconsistencies in their naming con-
ventions, as also pointed out by Hopper et al. [8]. More-
over, the boundaries among these methods are not strictly 
defined, especially since certain processing steps can over-
lap across categories. This review aims to describe the sta-
tistical inference problems related to InSAR. Consequently, 
our content is organized around the specific parameter es-
timation problems encountered, rather than strictly adher-
ing to conventional methodological categories.

InSAR deformation measurement involves using SAR 
image observations as input, which then leads to the gen-
eration of deformation results as output. This might seem 
like a straightforward parameter estimation process that 
uses SAR SLC observation to determine the deformation 
parameters. However, due to the complexity of scatterer 

types and varying application scenarios, there are multiple 
strategies and substeps involved (Figure 3). Specifically, 
for single-mechanism scatterers, this process is primarily 
divided into three steps: wrapped phase estimation, un-
wrapped phase estimation, and deformation estimation. 
For multiple-mechanism scatterers, processing strategies 
vary depending on the application scenarios and types of 
scatterers. A common application scenario involves esti-
mating the height and deformation for each mechanism 
through a D-TomoSAR step.

WRAPPED PHASE ESTIMATION
The initial step in InSAR deformation measurement in-
volves transitioning from SAR data to a wrapped interfero-
metric phase. In this context, the observed variable is the 
SAR SLC data, while the parameter variable pertains to the 
interferometric phase. Typically, as each pixel has only one 
observation in each SLC image, there is no redundancy in 
observations. Computationally, this step should be straight-
forward, eliminating the need for statistical methods in 
parameter estimation. In fact, for PS points, this phase is 
merely a complex conjugate multiplication calculation, 
aligning with the PSI processing method. However, for DSs, 
the phase derived directly from a single pixel exhibits high 
variance, making it challenging for subsequent processing. 
To enhance phase quality in SAR observations, we often 
assume that the observations are spatially stationary and 
ergodic. By doing so, we can treat observations from neigh-
boring pixels as repeated measurements, which allows us to 
refine the interferometric phase estimation. Both DSI and 
the SBAS employ this concept at this stage. This procedure is 
commonly termed filtering.

PRE-ESTIMATION: STATISTICAL MODEL
The complex value observation (z) on a DS is composed 
of many small reflections. If subresolution weak scatter-
ers share the same scattering mechanism, their summary 

Phase Estimation
• 2D Filtering (SBAS)
• 3D Filtering (DSI)
• Nonfiltering (PSI)
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FIGURE 3. Various strategies and substeps used in InSAR deformation measurement: (a) one mechanism and (b) multiple mechanisms.
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follows a complex circular Gaussian (CCG) distribution by 
applying the central limit theorem:
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where x Rs !  is the real part of the complex value observa-
tion z, y Rs !  is the imagery part of the complex value ob-
servation z, and Rz

2 !v  is the variance of xs  and .ys

Including the temporal dimension, the 1D SLC observa-
tion z is extended to p-dimensional observation vector z. 
The observations then follow a p-variate CCG distribution:

	 ,NCz 0+ C^ h� (2)

where p N!  is the number of SLC images, z Cp 1! #  is the 
random SLC observation vector along time for a pixel, and 
Cp p!C #  is the coherence matrix of z.

Under the one-scattering-mechanism assumption, the 
complex coherence matrix Cp p!C #  can be decomposed 
into a real-value coherence matrix and a diagonal complex 
matrix with consistent phase series:

	 G HC H H= � (3)

where G Rp p! #  is the real-value coherence matrix of the 
interferograms for a pixel, Rp 1!i #  is the consistent phase 
series for a pixel, and Cp p!H #  is the complex matrix con-
taining the consistent phase series ,i  with .ediag iH = i^ h

By the way, the stochastic characteristics of PSs are often 
considered a deterministic signal plus random noise, unlike 
DSs, which lack a deterministic signal [12]. This random 
noise can also be considered to follow a CCG distribution. 
In actual processing, the temporal random characteristics 
of these noises are usually simplified as independent identi-
cally distributed (i.i.d.). Since PSs are not addressed in this 
step, their stochastic characteristics will be discussed in 
greater detail in subsequent sections.

Let us assume a real-value coherence matrix and con-
sistent phase series to be the parameters. The conditional 
probability density function (pdf) of the time series data 
vector z can be given [13], [14], [15]:

	 )| , det expf G z zz G Gp H H1 1i r H H= -- - -^ ^ ^h hh6 @ � (4)

where det is the determinant operator and .f^ h is the prob-
ability function.

Note that determining the absolute phase series for 
each SLC image is ambiguous. In the time series, the 
phase of a chosen image is designated as zero, and the 
remaining phases are measured relative to this chosen 
datum [16]. Therefore, the estimated parameters H  are 
equivalent to the interferometric phase, with this arbi-
trary datum as the master image. Additionally, G here is a 
parameter variable. In the earliest DSI methods, the SCM 
was used as a substitute, turning this parameter variable 
into a known variable. However, in such a processing ap-
proach, the estimation bias of the SCM has a significant 
impact on the phase estimation. Some recent works in the 
literature have discussed this issue [13], [17].

In summary, the statistical model for wrapped phase 
estimation is given by
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PARAMETER ESTIMATION
Both DSI and the SBAS estimate the phase based on the 
statistical model in formula (5), that is, estimating pa-
rameter H  through observation z. However, their strate-
gies differ. The SBAS estimates each interferometric pair 
separately, while DSI estimates the entire time series at 
once (Figure 4). As a result, the wrapped phase estimation 
in the SBAS can be considered 2D spatial filtering (with-
out using the temporal dimension constraint), leading to 
phases of interferometric pairs that are inconsistent over 
the time series. On the other hand, DSI can be seen as 3D 
spatiotemporal filtering, producing phases that are consis-
tent over time and share the same characteristics as the in-
terferometric phases of PSI. After the DSI wrapped phase 
estimation, DSs can be processed in subsequent steps in 
the same manner as PSs.

In the SBAS, phase estimation is performed on a series 
of small baseline interferograms, with each interferogram 
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FIGURE 4. The phase estimation in (a) the SBAS and (b) DSI.
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estimated once. Consequently, the statistical model in 
formula (5) simplifies to a special case where .p 2=  This 
becomes equivalent to the maximum likelihood estimate 
of the interferogram phase between the ith and jth SLC, 
which is determined by [18], [19]

	 z z, , ,i j

k

N

i k
H

j k

1

+z =
=

/t � (6)

where N N!  is the number of adjacent pixels in the homo-
geneous patch, : t  is the estimation of a variable, R,i j !z  is 
the interferometric phase between the ith and jth SLC, and 
z R,i k !  is the SLC observation for pixel k in the ith SLC.

When the samples originate from a rectangular area 
adjacent to the pixel, it is equal to using a multilook filter. 
This process employs a basic rectangular neighborhood 
window for averaging, commonly referred to as a boxcar 
filter. Despite suffering from issues such as decreased reso-
lution and invalid assumptions due to oversimplified pro-
cessing, it is still widely utilized, particularly in large-scale 
scenes, due to its ease of implementation. In response, 
many adaptive filters have been developed to address the 
resolution reduction and independent identical distribu-
tion assumption issues caused by simple multilook fil-
tering. These methods can be roughly divided into four 
categories: spatial-domain Bayesian methods (such as Lee 
filtering [20] and improved Lee filtering [21]), transform-
domain Bayesian methods (such as the Goldstein filter 
[22] and wavelet filter [23]), selection-based filters (such 
as nonlocal filters [24]), and sparse constraint-based fil-
ters [25]. Additionally, there has been an effort to incor-
porate temporal information to enhance 2D filtering in 
the SBAS [26]. Recently, deep neural networks have also 
shown great potential for SAR image filtering [27].

In DSI, p is exactly the number of SLC images. Under 
the single-mechanism assumption, theoretically, MLE is 
the best estimation method. If G is assumed to be known 
and presented by the SCM, the MLE of the phase is given 
by [14], [15]

	 ( )argmax e ei H j1
%i C C= -i i-t t t^ h# -� (7)

where Ct  is the SCM, given by:

	 N zz1
z Ω

HC =
!
/t � (8)

where Ω  is a homogeneous patch containing adja-
cent pixels.

If the SCM Ct  is not positive definite, additional modi-
fications to the SCM may be necessary, such as inserting 
a damping factor [28] or incorporating calibration param-
eters [16], [29]. However, as the SCM is not the actual co-
herence matrix, any bias in the SCM can be propagated to 
the estimated parameters [30]. Recent efforts have been 
directed toward simultaneously resolving the coherence 
matrix and consistent phase series [13], [31], [32], which 
results in a new likelihood function, such as

	 argmax det Re Hi H CH= -t t^ h6 @" ,� (9)

where Re is the real part operator of complex values.
An example of DS phase estimation can be seen in Fig-

ure 5. After the wrapped phase estimation, the noise is sig-
nificantly reduced compared to the original interferogram 
phase. It is worth noting that the MLE described above is 
based on the idea of a single scattering mechanism within 
the DS unit. Nonetheless, when there are multiple scat-
tering mechanisms, the MLE can produce results that are 
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FIGURE 5. (a) DS interferometric phase estimation and (b) the original interferometric phase.
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biased. Recent works in the literature have extensively ex-
amined this issue [33], [34], [35].

In addition to the direct MLE for the phase, several other 
techniques have been developed to either improve compu-
tational efficiency or address multiple scattering mecha-
nisms. For instance, a sequential estimator was introduced 
to process large numbers of SAR images efficiently [36]. This 
is achieved by dividing the data stack into multiple mini-
stacks, thereby avoiding the calculation of the full SCM. 
The Eigen-decomposition-based maximum likelihood es-
timator for interferometric phase (EMI) [16] was designed 
to utilize matrix decomposition in place of iterative prob-
lem solving, thus enhancing the algorithm’s computational 
speed. Research indicates that when the height difference 
among the scattering center points related to different scat-
tering mechanisms surpasses a certain threshold, their con-
tributions can be considered approximately orthogonal. 
This insight allows the use of principal component analysis 
decomposition to segment the covariance matrix into sev-
eral orthogonal components, facilitating the separation of 
distinct scattering mechanisms [37]. For a more in-depth 
discussion, readers can refer to references [38] and [39].

POSTESTIMATION
In general practice, this step does not involve model test-
ing. After estimation, the main concern is the quality of the 
interferometric phase.

For the SBAS, the interferogram coherence can be used 
to represent the quality of the interferometric phase esti-
mation. The relation between interferogram coherence and 
phase variance can be referenced in [12]. The interferogram 
coherence is given by

	
E z E z

E z z
e j

1
2

2
2

1 2 ,1 2c c= =
)

z

"
"

",
,

, � (10)

where R!c  is the interferogram coherence.
For DSI, the phase estimation is not derived from a di-

rect mathematical formula but from the optimization of a 
nonlinear function. Its phase estimation quality can hardly 
be accurately quantified. Therefore, the CRLB is often used 
as an approximate representation. Specifically, the Fisher 
information matrix (FIM) associated with the consistent 
phase series reads

	 NJ I2 1 %C C= --^ h� (11)

where % is the Hadamard operation, referring to the ele-
ment-by-element multiplication of two matrices; J Cp p! #  
is the FIM; and I is the identity matrix.

The formula for the CRLB of consistent phase series is

	 .|m mJdiag2 1v =i
-^ ^ hh" , � (12)

The operator diag $" , retrieves the diagonal elements 
of a matrix; |m mJ^ h is obtained by removing the mth row 
and column of the matrix, where the index corresponds to 
the master scene. This removal results in 2vi  containing the 

variance of n 1-  estimated phases relative to the master 
scene. It is important to note that the phase variance of the 
master scene is zero and fixed as the datum of the time series, 
which means it is exempt from estimation. To say it differ-
ently, the mth phase is treated as a known random variable 
with the highest certainty and thus has zero variance.

However, it is evident that the calculation of the CRLB in 
DSI requires the value of coherence matrix ,C  which is not 
available in real-world scenarios. As a result, the CRLB is 
often used in simulated experiments to evaluate the degree 
of approximation of the estimation method to the theoreti-
cal lower limit of accuracy.

In practice, ensemble coherence, which represents the 
degree of the phase residual after model fitting, is often tak-
en for overall DSI quality assessment. The ensemble coher-
ence is also named posterior coherence [13], [40] in some DSI 
studies. It can be expressed using the following formula:

	 K e1
e

k

K
jr

1

,kc =
=

z/ � (13)

where K is the number of residual phases, r R,k !z  is the 
residual phase between the kth phase observation and the 
phase model, and Re !c  is the ensemble coherence.

UNWRAPPED PHASE ESTIMATION
After obtaining the wrapped phase, the next challenge is 
to estimate the unwrapped phase from it. This estimation 
problem is inherently underdetermined and requires ad-
ditional assumptions. For time series InSAR, unwrapping 
methods can be broadly categorized into 1D (temporal) 
and 2D (spatial) phase unwrapping. In the case of PSI, a 
1D approach is often employed [41], [42], where the phase 
observations for a specific pixel in the data stack are un-
wrapped over time. In the case of DSI, the interferometric 
phase of DSs is like that of PSs after the phase estimation 
step, and the subsequent processing method aligns with 
PSs, so the 1D approach is typically used also. In the case 
of the SBAS, a 2D approach is typically adopted, where the 
interferograms are unwrapped spatially. The 1D technique 
excels at accurately unwrapping phases in areas with dis-
continuities, though it demands a greater number of inter-
ferograms and insists on phase alignment with a set model. 
In contrast, the 2D approach can perform unwrapping with 
a reduced number of interferograms, offering enhanced 
adaptability in subsequent phase unwrapping stages. Yet, it 
may encounter unwrapping inaccuracies in regions where 
jumps disrupt the assumption of spatial continuity [7]. To 
fully leverage the 3D characteristics of signals, phase un-
wrapping methods in 3D space (azimuth, range, and time) 
have also been proposed [43], [44]. Phase unwrapping us-
ing machine learning has now become a new hotspot. A 
more comprehensive review of InSAR phase unwrapping 
can be found in [45] and [46]. Here, we use the 1D time 
unwrapping, which is frequently adopted in PSI, as an ex-
ample to explain the estimation problem in unwrapping.
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Phase unwrapping in the temporal dimension is an under-
determined problem, where many solutions exist. Here, we 
can assume that the wrapped phase series can be described by 
a phase model over time, and the range of the residual phase 
that is not described by the model is assumed to be , .r r-^ @  
After estimating the parameters of the phase model, the prob-
lem of unwrapping in the time dimension is naturally solved. 
Therefore, the phase unwrapping problem becomes a prob-
lem of solving the phase model parameters over time.

However, it should be noted that 1D time unwrapping 
can sometimes introduce significant uncertainty when the 
data are not well described by the phase model. In practice, 
the unwrapping process is more complex, incorporating 
various strategies. Typically, parametric estimation derived 
from 1D time unwrapping is used as an initial approxima-
tion, which is subsequently refined using phase unwrap-
ping algorithms that function in 2D [47] or 3D [48] spaces.

PRE-ESTIMATION: STATISTICAL MODEL
A PS observation is affected by various factors, such as at-
mospheric effects and topography. The PS interferometric 
phase observation equation is given by

	 W D A O H Nz z z z z z= + + + +^ h� (14)

where z is the interferometric phase series, Dz  is the defor-
mation phase, Az  is the atmospheric phase, Oz  is the orbital 
phase, Hz  is the topographic phase, and Nz  is random noise.

Among all the signal components in PSs, Dz  and Hz  
can be represented by parameterized models. For example, 

Dz  could be modeled using linear, exponential, periodic, 
or other deformation models with time as a variable, and 

Hz  could be modeled by a linear function with the base-
line as a variable. We simplify the phase observation as

	 W m A O Nz z z zU= + + +^ ^ h h� (15)

where m is the vector of unknown parameters to be esti-
mated and mU^ h is the phase model with parameters m.

However, the atmospheric phase often also occupies a 
significant portion, making the estimation of model param-
eters challenging. A common method involves creating a 
“double-difference” phase by computing the phase differ-
ences between nearby candidate pixels [49], [50], [51]. The 
edge connecting two points is typically referred to as an arc:

	 ∆ ∆ ∆ ∆W m∆ A O Nz z z zU= + + +^ ^ h h� (16)

where ∆ is a symbol representing the difference between 
two points on an arc.

We write the phase observation equation in the form of 
the complex domain:

	 g wm∆ .T W= +^ h � (17)

The arc complex interferogram observation ∆g  consists 
of the model arc component m∆W^ h and the unmodelled 

component w. Commonly, the unmodeled part is primar-
ily caused by atmospheric disturbances, orbital errors, and 
thermal noise, which are uncorrelated over time. Reflec-
tions from the DSs within the resolution grid can further 
contribute to the unmodeled values, and these are correlat-
ed over time. Since uncorrelated influences, such as atmo-
spheric disturbances and thermal noise, make the primary 
contribution to the unmodeled part, the unmodeled values 
are often assumed to be zero-mean i.i.d. CCG noise with a 
variance of :w2v

	 , .NCw I0 2 w
2+ v^ h � (18)

For a general function model ∆mW^ h, the conditional pdf 
for a PS arc wrapped phase given the model parameters is
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Note that the estimated parameters ∆m  on arcs can be 
integrated into parameters m on pixels through spatial net-
work adjustment. Then, the time series unwrapped phase 
on pixels can be obtained.

In summary, the statistical model for the 1D unwrapped 
phase estimation problem is given by

	
: ∆

: ∆
∆ |∆ .f

g
m

g m 19
 

Observation variable
Parameter variable

pdf: in formula^ ^h h
�

(20)

PARAMETER ESTIMATION
The MLE is an appropriate estimator for solving the prob-
lem defined in formula (20). The MLE, obtained by maxi-
mizing the probability function ∆ |∆f g m^ h, is equivalent to 
maximizing the periodogram [28], [52]:

	 ∆ .argmax p g mm 1∆ ∆
k

p

k k
H

1

W=
=

/ ^ h( 2\ � (21)

Although the periodogram is a widely recognized meth-
od for parameter estimation in InSAR, few studies link it to 
the probability function. Nonetheless, it is crucial to high-
light the statistical model underlying it. Given this context, 
some robust and advanced statistical models and estima-
tion algorithms could potentially be applied.

Considering the elevation and deformation parameters, 
the phase series model takes the form of
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(22)

where i is the look angle, h is the height, tk is the time variable 
for the kth SLC image, d tk^ h is the displacement as a function 
of ,tk  m is the wavelength of the SAR system, and bk  is the 
orthogonal baseline between the kth SLC and master SLC.
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The MLE of elevation and deformation parameters for PS 
points can be transformed into maximizing the periodogram:

	 ∆ ∆ .argmax exp sinp j
h d t

gm 1 2
2∆ ∆

k

p

k
k k

1

r
i

p
m

= - +
=

/ c c ^ h mm) 3\
�

(23)

Here, the parameter vector ∆m  is composed of the eleva-
tion parameter ∆h  and the coefficients of the deformation 
function ∆d tk^ h on an arc. To obtain the corresponding pa-
rameter solutions, one can discretize the elevation residu-
als and deformation coefficients (e.g., velocity and thermal 
coefficient) and use a grid search approach (Figure 6).

POSTESTIMATION
Similar to the DSI wrapped phase estimation, the statistical 
model for 1D temporal unwrapping operates in the com-
plex domain, and its estimation process is nonlinear. As a 
result, the CRLB used in DSI quality assessment can also 
be applied to approximate the variance of estimated pa-
rameters. However, few studies have tackled periodogram 
estimation in 1D temporal unwrapping from a statistical 
viewpoint, making this area relatively uncharted. None-
theless, a related yet more general estimation problem was 
analyzed earlier [52]. Drawing from this research, Ferretti  
et al. derived an approximation of the variance for estimat-
ing height and velocity parameters using the periodogram 
in their groundbreaking work on PSI [42].

In practice, ensemble coherence is widely used to assess 
the quality of parameter estimation. It shares the same for-
mula as DSI but is often termed temporal coherence [53]. This 
metric is also frequently used as a criterion for selecting 
high-quality arcs or pixels for subsequent processing.

DEFORMATION ESTIMATION
Once the unwrapped interferograms are obtained, the final 
step is to estimate the deformation. In this context, these un-
wrapped interferograms act as observations. The parameters 
are the deformation parameters. They can be either a series 

of deformations over time or a limited set of deformation 
parameters from a predefined deformation model.

For the SBAS and PSI/DSI, the types of unwrapped inter-
ferograms handled are different. The SBAS works with mul-
timaster unwrapped interferograms, while PSI/DSI works 
with single-master unwrapped interferograms. However, 
the unwrapped interferograms from both the SBAS and PSI 
can be interconverted. For instance, PSI interferograms can 
be transformed into multimaster interferograms [54]. On 
the other hand, unwrapped interferograms from the SBAS 
multimaster can be inverted to single-master unwrapped 
interferograms [55], [56], [57]. Consequently, the deforma-
tion estimation processes for the SBAS and PSI/DSI are es-
sentially interchangeable at this stage [8].

PRE-ESTIMATION: STATISTICAL MODEL
Unlike the first two steps, which estimate parameters in 
the complex domain, estimating deformation from the un-
wrapped phase of interferograms is a problem in the real do-
main. The observation function can be expressed as follows:

	 .m n{ {U= +^ h � (24)

Here, { is the unwrapped phase; n{  is the unmodeled 
noise, which includes instrument noise, atmospheric ef-
fects, signals from other scatterers, unwrapping errors, and 
deformation signals that are not captured by the model; 
and m includes the model parameters intended for un-
wrapped phase modeling, such as deformation parameters, 
topographic parameters, orbital parameters, and so on.

Generally, we can model n{  as Gaussian noise; i.e.,

	 , .N 0n
2+{ v{^ h � (25)

The pdf can be expressed as

	 | ( ) .expf m mm 2
2

1p H2
2{ { {v r
v

U U= - - -{
{

-^ c ^ ^ ^ ^h hh hhm
� (26)

In summary, the statistical model for the deformation 
estimation problem is defined as
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PARAMETER ESTIMATION
There are numerous methods to estimate the parameters 
once the phase data at the selected points have been un-
wrapped in all interferograms. The modeling of phase com-
ponents due to orbit and topography is relatively consistent, 
with little variation. The primary distinction among these 
methods is how deformation is modeled. Broadly, there are 
two categories: those that do not use a deformation model 
and those that do. Without a deformation model, the defor-
mation at each time point is treated as a parameter, making 
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the problem underdetermined. In contrast, when using a 
deformation model, a limited number of parameters de-
scribe the deformation over the time series, and in most 
cases, the problem is overdetermined.

For this underdetermined issue, nonparametric spatio-
temporal filtering methods are typically employed. Often, 
the first step is to estimate elevation residuals and orbital 
errors. In the remaining residual phase, the deformation 
phase is then separated from the atmospheric phase and 
noise through filtering in both time and space. The un-
derlying assumption is that deformation is correlated over 
time, the atmosphere is spatially correlated but not tempo-
rally, and noise is uncorrelated in both space and time.

Regarding parameter estimation algorithms, since the 
unmodeled noise is assumed to follow a Gaussian distri-
bution, the problem can be directly addressed using least 
squares. However, due to the influence of unwrapping er-
rors and other factors, outliers might arise. Consequently, 
some researchers prefer robust estimators over the least-
squares estimator [58]. Additionally, since the atmospheric 
signal contributes significantly to the noise term, it is often 
required to remove the atmospheric phase screen (APS) 
before conducting deformation parameter estimation [59]. 
The APS can be estimated using the nonparametric spatio-
temporal filtering method, external data source, or more 
advanced methods, as referenced in [60].

POSTESTIMATION
Nonparametric methods without a deformation model do 
not involve model verification and parameter quality as-
sessment issues. Therefore, postestimation is suitable only 
for methods that have adopted a deformation model. Both 
model testing and quality assessment can be implemented.

Hypothesis testing methods are often taken to test and 
select deformation models. There are many choices for the 
deformation mode, such as the linear model, temperature-
dependent model, exponential model, and so on. In prac-
tical applications, the hypothesis testing method can be 
designed according to the requirements of the scenario. For 
example, the augmented Dickey–Fuller (ADF) test method 
was proposed to test residuals in a bridge monitoring sce-
nario [61]. For this study, the null hypothesis ( )H0  being 
tested is the presence of a unit root, against alternative 
hypotheses ( ).Hj  The ADF test generates a p value, which 
represents the likelihood of rejecting the null hypothesis. 
Typically, a p value lower than 5% indicates that the null hy-
pothesis can be rejected, and thus, the time series is station-
ary. An alternative and more broadly applicable hypothesis 
testing method is the uniform test criterion for multiple 
hypotheses. The detection–identification–adaptation pro-
cedure is applied to enable multiple-hypothesis testing [62].

To assess the quality of estimated parameters of the de-
formation model, EP is an appropriate method when the 
parameter estimation is linear or approximately linear. To 
calculate the parameter variance from EP, accurate observa-
tion errors must be inputted. Although the original phase 

variance may be approximated from coherence [63], obser-
vation noise includes numerous contributions besides the 
original phase variance. Initial assumptions regarding the 
observation noise level may not be suitable. However, for a 
Gaussian distribution, observation variance can be estimat-
ed based on residual fitting of simulations. A simple model 
is to employ a covariance matrix with the same precision. 
Unbiased estimation of the precision parameters can then 
be achieved using the observation residual. If more com-
plex covariance structures are required, the method of vari-
ance component estimation can be used to estimate the 
variance of grouped data [64]. Using the estimated variance 
of observations, the variance of parameters can be calculat-
ed based on the EP law. In a linear system, this is equivalent 
to the CRLB, as the least-squares estimator is the best linear 
unbiased estimator in such cases.

DIFFERENTIAL TOMOGRAPHIC SYNTHETIC 
APERTURE RADAR PARAMETER ESTIMATION
The previous sections primarily discussed the InSAR defor-
mation measurement problem for single-mechanism scat-
terers. In scenarios like forests [65], [66], [67] and urban 
areas [68], [69], [70], there is often a phenomenon where 
multiple dominant scattering mechanisms are mixed with-
in a single radar pixel. Thus, their parameter estimation 
issues differ from those previously discussed. Due to the 
complexity of the multimechanism aliasing problem, here, 
we limit our discussion to situations where mechanisms are 
distributed at different heights, which is the scenario where 
the D-TomoSAR method is applicable.

The estimation problem of D-TomoSAR involves de-
termining the elevations and deformation parameters for 
all dominant scattering mechanisms within a single SAR 
pixel. The observation variable is the time series of the 
wrapped interferometric phase. This is similar to the PSI/
DSI parameter estimation problem in 1D temporal un-
wrapping. The key distinction is that the parameter vari-
ables arise from multiple subresolution scatterers rather 
than from a single scatterer.

PRE-ESTIMATION: STATISTICAL MODEL
The observation variables and stochastic characteristics of 
the observation noise are the same as those in the PSI/DSI 
parameter estimation for 1D temporal unwrapping. This 
implies that formula (15) is also applicable in this context. 
Additionally, the atmospheric phase often constitutes a 
significant portion, complicating the estimation of model 
parameters. To reduce the disturbance, two methods can 
be employed. The first one involves using the arc observa-
tion, formed by making phase difference with a nearby sin-
gle-mechanism PS pixel [58], to mitigate the atmospheric 
phase. The second approach involves initially estimating 
the APS of the interferogram and then directly removing it. 
A straightforward method is to employ the PSI technique 
to estimate the atmospheric phase of the PSs, followed by 
interpolating the APS of the interferogram [71].
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In D-TomoSAR, the phase model is more complicated, as 
multiple scatterers should be considered. It is expressed as

	
,

exps j s
d s t

ds2
2

k k
k

s

s

l

u

t r p
m

W = - +^ c c ^h h mm# � (28)

where st^ h is the complex reflectivity profile along the el-
evation direction of that pixel, m is the wavelength of the 
SAR system, ,d s tk^ h is the displacement as a function of 
the elevation and the acquisition time ,tk  and s  represents 
the elevation direction.

We discretize the continuous elevation variable s  and 
deformation rate variable v  in the search range, forming 
a 2D grid of size .M Ms v#  The grid cells are stacked into 
a vector of size ,M Ms v#  and the elevation value and rate 
value of the cell with index n are denoted as sn  and ,vn  re-
spectively. The contribution of the grid cell ,s va n n^ h to SAR 
observations can be expressed as

	 , exps v j s va t2n n n nr p= - +^ ^ ^h hh� (29)

where p  and t are the baseline vector and time vector.
The integral in (28) can also be simplified as a matrix 

multiplication:

	 g w A wt tW= + = +^ h � (30)

where , , ,s vA a n nf f= ^ h6 @ has the steering vectors and t  
denotes the M Ms v#  reflectivity profile vector.

The conditional pdf for the wrapped phase given model 
parameters t  is

	 ( ) .| expf g A g Ag 2
2

1
w

p

w

H2
2 t tt v r
v

= - - --^ a ^ ^h h hk � (31)

Compared to the phase model used in temporal un-
wrapping, the D-TomoSAR phase model incorporates dif-
ferent parameters. While both consider the elevation and 
deformation information of the scatterers, D-TomoSAR ac-
counts for scatterers in a continuous space. Since scatterers 
can exist at any position, the phase observation model cor-
responds to an infinite number of parameters. To render the 
model solvable, this continuous space must be discretized. 

As a result, the solution for the elevation and deformation 
parameters is transformed into the solution for the back-
scattering coefficient parameters of each discrete compo-
nent of the observation.

In summary, the statistical model for D-TomoSAR pa-
rameter estimation is given by
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PARAMETER ESTIMATION
Note that D-TomoSAR essentially uses limited observations to 
solve for continuous spatial parameters (in this case, a 2D con-
tinuous surface of the elevation and deformation rate). There-
fore, parameter estimation is inevitably an ill-posed problem. 
The process of discretizing the continuous problem can also 
be considered a form of regularization, which confines the 
solution space within a finite range. The least-squares solu-
tion to the discretized linear problem is as follows:

	 ( ) .A A A gH H1t = -t � (33)

However, using limited observations to solve for 
M Ms v#  backscattering coefficients may still result in an 
underdetermined problem, where the matrix A is rank de-
ficient or close to rank deficient. Direct least-squares solu-
tions to the problem above can lead to unstable solutions; 
i.e., the matrix A AH  may exhibit numerical anomalies. 
Common regularization methods include truncated singu-
lar value decomposition [72], L2 regularization (Tikhonov 
regularization), L1 regularization, and so on. Additionally, 
although beamforming [73] is not considered a regulariza-
tion method, we can see from the formula that it replaces 
A AH  with the identity matrix, thereby avoiding the insta-
bility of matrix inversion and achieving the same effect as 
regularization (Table 2). Regularization can essentially be 
seen as a prior modeling of parameters, especially L1 and 
L2 regularization, which can also be expressed as an ana-
lytical prior probability expression. Therefore, parameter 
estimation based on regularization can to some extent be 
equivalent to Bayesian estimation.

Here, a is the regularization parameter, L is the Tikhonov/
regularization matrix, u and v are the singular vectors of ,A d  
is the singular values, and ka  is the truncated number.

Because elevation scatterer points have spatial sparsity 
characteristics, L1 regularization performs well in high-
resolution interpretation (Figure 7) [74]. The least absolute 
shrinkage and selection operator is often used for process-
ing. First, the iterative shrinkage thresholding algorithm is 
used for an iterative solution, and then model selection is 
performed. The iterative algorithm is as follows [75], [76]:
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where n is the step-size and b is the threshold.

TABLE 2. THE DIFFERENCES AMONG THE SOLUTIONS  
FOR D-TomoSAR.

METHOD
OPTIMIZATION/LIKELIHOOD 
FUNCTIONS

Least squares A A) A g( 1H Ht = -t

L1 regularization g A< < < <t ta- +argmin 2
2

1t =t -#
L2 regularization z A L< < < <t ta- +

A A L L A g( )
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H H H1

2
2

2
2t

a

=

= + -

t " ,

Truncated singular value  
decomposition regularization v
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i
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1
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=
= +a

/t

Beamforming A gHt =t
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POSTESTIMATION
Model testing is a pivotal step in D-TomoSAR. Regardless of 
the regularization method employed for solving, a discrete 
range of heights will produce a certain number of nonzero 
values during the process. However, the presence of these 
nonzero values does not necessarily signify the existence 
of strong scattering objects at those heights. Different num-
bers and positions of scatterers correspond to various phase 
models. To identify the accurate model, researchers typical-
ly utilize model testing through hypothesis testing-based 
methods [77], [78] or information-theoretic criteria (ITC)-
based methods [79], [ 80].

While D-TomoSAR is deemed capable of resolving more 
than two scattering objects, in practical applications, often, 
only up to two scattering objects are considered. The subse-
quent multiple-hypothesis test is formulated as follows [77]:
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To determine which hypothesis to use, it is necessary to 
select the appropriate statistical measure for calculation and 
decision making. Commonly used statistical measures in-
clude the likelihood ratio and ensemble coherence. Existing 
research also indicates that if the intensity part of the observa-
tion z  is normalized to one, then the two statistical measures, 

the ensemble coherence and likelihood ratio, are equivalent 
[78]. The likelihood ratio-based test can obtain better results 
than the coherence test that considers only phase informa-
tion, as it considers both intensity and phase information 
simultaneously. Furthermore, in cases where only two hy-
potheses, H0  and ,H1  are necessary and the intensity is nor-
malized, this hypothesis test can be simplified into temporal 
coherence criteria, which are widely used in PS selection.

Various methods are available for selection based on 
ITC, including the Bayesian information criterion (BIC), 
the Akaike information criterion, and the minimum de-
scription length. Although they share similar fundamen-
tal principles, their primary distinction lies in the penalty 
term used. Let itt  denote the estimated vector of the un-
known parameters with i  scatterers. The general form of 
these information criteria can be represented as follows:

	 ;  ,argmax lni f Cg Hi i itt= - tt^ ^ hh h" , � (36)

where .C^ h represents the penalizing function for param-
eter .t  A typical application scenario of D-TomoSAR is the 
monitoring of urban surface and infrastructure deforma-
tion because urban structures are complex, and one SAR 
pixel often contains multiple scatterers. The phase compo-
sition of the scatterers is also complicated, composed of el-
evation, temperature deformation, and trend deformation, 
among others.
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SUMMARY
We examined several primary parameter estimation prob-
lems associated with InSAR deformation measurement from 
the standpoint of statistical inference. For each problem, we 
detailed the statistical model, the estimation approach, and 
the postestimation procedure. These parameter estimation 
challenges encompass key issues in DSI, PSI, the SBAS, and 
D-TomoSAR. The first major distinction among these prob-
lems is whether the variables are in the complex domain 
or real domain. This distinction corresponds to different 
stochastic models and estimation approaches. The second 
significant difference lies in the scatterer type. The statistical 

models for DSs and PSs, as well as for single-dominant-
mechanism scatterers and multiple-dominant-mechanism 
scatterers, differ significantly due to their inherent physical 
characteristics. The third notable discrepancy is whether 
the problem is underdetermined or overdetermined. For an 
underdetermined issue, an additional operation in terms of 
a simplified observation model or regularization must be 
made to enable a unique solution.

The objective of InSAR deformation measurement is to 
extract deformation signals from SAR observations. Since 
various deformation models are adopted for different ap-
plication scenarios, the resulting outputs can vary. Figure 8 
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presents an example of monitoring outcomes for PS points 
within an urban setting. In this context, considerations for 
thermal expansion and height residuals from a digital el-
evation model are essential for urban infrastructure. The 
outcomes include the results for elevation parameters, 
thermal expansion coefficient parameters, linear defor-
mation parameters, and the time series data of deforma-
tion components.

STATISTICAL INFERENCE IN INTERFEROMETRIC 
SYNTHETIC APERTURE RADAR-CONSTRAINED 
GEOPHYSICAL INVERSION
Compared to InSAR deformation measurement, InSAR-con-
strained geophysical parameter estimation follows a some-
what straightforward framework. The stochastic model for 
InSAR displacement remains consistent across all geophysical 
inversion scenarios. Consequently, the structure of this section 
differs slightly from the section on deformation measurement. 
This entire section can be viewed as a single type of estima-
tion problem, and we delve into pre-estimation, estimation, 
and postestimation in each part. During pre-estimation, we 
first examine the common function models used in InSAR-
constrained geophysical inversion, followed by a presentation 
of the stochastic characteristics of InSAR measurements. In 
the part covering estimation, we outline the parameter esti-
mation process based on the types of parameters involved, 
distinguishing between linear and nonlinear parameter esti-
mation. In postestimation, we discuss quality evaluation in-
dicators and methods relevant to the inversion results.

PRE-ESTIMATION: STATISTICAL MODEL

FUNCTION MODEL IN INTERFEROMETRIC 
SYNTHETIC APERTURE RADAR-CONSTRAINED 
GEOPHYSICAL INVERSION
In InSAR-constrained geophysical inversion, the input typical-
ly includes three types of measurements: displacement map, 
velocity map, and displacement time series. However, using 
time series displacements for inversion is not common, as 
the derivation of time series displacement is already based on 
some deformation models with specific spatiotemporal defor-
mation characteristics. MT-InSAR analysis can sometimes be 
insufficient for distinguishing complicated geophysical pro-
cesses, such as random aftershock deformation in postseismic 
deformation maps, so it is essential to examine the data care-
fully before directly using MT-InSAR results for analysis. When 
multitemporal inversion is necessary, there are two possible 
strategies. The first is to use the differential InSAR interfero-
gram and manually select the appropriate data, while the sec-
ond is to use the velocity map for deformation scenarios that 
can be adequately explained by a linear deformation model.

The inversion problem can be described the same way 
for all kinds of other geophysical problems, with the gen-
eral formula [81]

	 Ad m f= +^ h � (37)

where A  is the operator function for the forward model, m 
is the vector of model parameters, d is the observation data, 
and f  is the observation error.

Deformation models A m^ h provide the linkage between 
crustal deformation and the source underground. The ex-
isting models can be grouped into three types: analytical 
model, semianalytical model, and numerical model. The 
analytical model was the earliest model, giving ground dis-
placement due to an embedded source in the homogeneous 
half-space. However, geological and geophysical data all 
suggest that Earth’s crust is not a homogeneous layer, which 
has been assumed in analytical models. Therefore, semi-
analytical models with the consideration of a layered Earth 
structure were proposed. Differing from the homogeneous 
half-space, the kernel functions in the stratified case cannot 
be acquired analytically. Some mathematical methods, like 
numerical integration [82], [83] or approximation by a finite 
series of Lipschitz–Hankel integrations [84], were used to 
give the semianalytical solution. If more detailed consid-
erations, like the complex geometry, lateral variation, or a 
rigid layer, are required, we need to resort to the third type 
of deformation model, numerical models, including the 
finite-element model (FEM) and boundary element model, 
between which the FEM has been applied more widely, e.g., 
in [85], [86], and [87].

InSAR geophysical inversion is widely used in various 
fields, with earthquake and volcano deformation being the 
most common. Other applications include underground 
water exploitation, underground mineral resource develop-
ment, permafrost changes, and glacier activities.

Earthquakes occur when there is a sudden release of 
built-up energy within the crust, typically along fault lines. 
This sudden release of energy causes the rock on either side 
of the fault to rapidly move relative to the opposing side, 
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FIGURE 9. Different stages of the earthquake cycle. The fault 
region includes both rate weakening and rate strengthening areas. 
This distribution influences interseismic locking, coseismic rupture, 
and postseismic afterslip, with corresponding surface deformation 
patterns observable by InSAR [88].
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resulting in deformation of the surface [88]. The Okada 
model has been the most widely accepted model for fault 
slip modeling [89]. The model is based on the theory of 
linear elasticity and considers the crust a homogeneous, 
isotropic, and elastic solid. The model considers the ge-
ometry of the fault, the orientation of the fault plane, 
and the properties of the rock surrounding the fault. The 
Okada model predicts the displacement and strain of the 
crust caused by the movement of tectonic plates, including 
earthquakes. It has been widely used to study the behavior 
of faults and to estimate the degree of the seismic hazard 
in a particular region.

The Okada model can account for various mechanisms 
in different stages of the earthquake cycle, such as inter-
seismic locking, coseismic rupture, and postseismic after-
slip (Figure 9). However, some nonelastic processes in the 
postseismic phase, such as viscoelastic relaxation and po-
roelastic rebound, require other types of analytical mod-
els to explain them, such as power law models [90] for 
viscoelastic relaxation and effective medium models [91] 
for poroelastic rebound. Moreover, some earthquakes in-
volve complex geometry, rigid layers, or significant lateral 
variation that affect deformation modeling but cannot be 
handled by analytical or semianalytical models [85], [86], 
[87]. Therefore, numerical models are needed to address 
this kind of problem.

The deformation mechanism of a volcano involves the 
movement and pressure changes of magma beneath the sur-
face of Earth, causing the ground above to swell, contract, or 
shift, leading to noticeable changes in the volcano shape. The 
Mogi model is a one of the most popular models in volcano 
deformation modeling, and it assumes a spherical magma 
chamber in an elastic, homogeneous, and isotropic medium. 
The model relates the surface displacement to the volume 

change of the magma chamber using a closed-form solution 
based on the theory of dislocations (Figure 10).

The Mogi model can be expressed as
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Here, ur  and uz  are the horizontal radial and verti-
cal displacements at the surface, x  is the horizontal radial 
distance, G is the shear modulus of the medium, D is the 
depth of the magma chamber center, R x D2 2= +  is the 
distance from the magma chamber center to any point on or 
above the surface, o is Poisson’s ratio, and ∆P  is the source 
overpressure [92].

The Mogi model can be used to explain some features 
of volcanic deformation, such as uplift, subsidence, and 
horizontal motion. However, it has some limitations, 
such as neglecting topography effects, layered media ef-
fects, and nonspherical source shapes [93]. The Okada 
model can be taken for the finite rectangular dislocation 
model [89]. Additionally, an exact analytical solution for 
the finite ellipsoidal source model was derived and suc-
cessfully applied to parameter inversion for the Kilauea 
volcano [94]. Based on these three basic models—Mogi, 
Okada, and Yang—other models have been developed, 
such as flattened disc-shaped, closed (or open) conduit, 
and composite dislocation models with higher degrees 
of freedom, among others [93], [95]. These simple and ef-
fective analytical models for volcanic activity have been 
widely used in the study of volcanic motion systems at 
plate boundaries, including magma chamber parameters, 
intrusion processes, the spatiotemporal distribution of 
magma eruptions, and the coupling relationship between 

volcanic eruptions and fault move-
ments [96], [97].

Numerical models have also been 
adopted for modeling volcanic sys-
tems due to their flexibility [92]. 
This approach allows us to assess the 
effects of complexities such as non-
elastic rheology [98], layering and 
faulting [99], and topography [100]. 
However, creating complex realis-
tic numerical models often requires 
ground-collected data that are not 
available. Moreover, directly invert-
ing displacement fields within nu-
merical models is usually complex, 
so analytical models are often used to 
approximate source parameters first. 
Then, these initial analytical results 
are used within a numerical model 
that could incorporate heterogeneity, 
topography, and anelastic rheology to 
constrain the best-fitting source [101].
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spherical magma chamber at depth results in elliptical deformation at the surface.
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Besides earthquake and volcano activities, there are 
many other activities and objects that can result in ground 
deformation and be observed by InSAR:

◗◗ Groundwater overexploitation: Disasters such as ground 
subsidence, ground fissures, and seawater intrusion 
can be caused by groundwater overexploitation. InSAR 
can obtain a high-resolution surface deformation field, 
establish a function model of surface deformation and 
groundwater change, and detect physical characteris-
tics of groundwater change and invert corresponding 
aquifer parameters, providing a new perspective for hy-
drogeological applications. Hydrogeological parameter 
inversion uses InSAR-observed seasonal/interannual 
deformation data and a certain amount of groundwater 
well data. Combined with soil mechanics, stress–strain, 
and other theoretical models, it can identify and invert a 
series of hydrogeological parameters [102], [103].

◗◗ Underground goaf: The goaf left behind after underground 
mineral resource exploitation is prone to cause a series of 
disasters. For example, the overlying rock mass of a goaf 
can easily produce movement deformation due to losing 
support, which leads to geological disasters, such as surface 
subsidence and infrastructure damage. InSAR observation 
can constrain the inversion of underground goaf geo-
metric parameters [104], such as location, depth, length, 
width, thickness, dip angle, azimuth angle, and so on.

◗◗ Frozen soil active layer: InSAR technology can accurately 
obtain surface deformation in frozen soil areas, provid-
ing an observation basis for large-scale high-precision 
inversion of frozen soil physical parameters (such as 
melting depth and active layer thickness) [105], [106]. A 
series of models were built to link InSAR surface defor-
mation and active layer thickness in frozen soil areas, 
estimating multiyear frozen soil active layer thickness 
glacier surge parameter inversion.

STOCHASTIC CHARACTERISTICS  
FOR INTERFEROMETRIC SYNTHETIC  
APERTURE RADAR OBSERVATION
The noise f  in InSAR measurements is normally assumed 
to be of a Gaussian type and described by a covariance ma-
trix .R  The pdf follows:
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Please note that the observation d di !  denotes the In-
SAR measurement at pixel i. It differs from the time series 
InSAR measurement vector that uses the subscript to repre-
sent the time. The uncertainty of the InSAR results some-
times would be derived simultaneously during InSAR data 
processing, and the variance is usually estimated on a per-
pixel basis. However, the geophysical process is particularly 
concerned with the spatial stochastic characteristics, that 
is, the covariance between neighboring pixels, rather than 
the covariance among measurements of a pixel at different 
times. Therefore, an additional step is typically required to 
estimate the error statistics in the InSAR data.

To estimate the error variances and autocovariances in 
InSAR data, a common approach is to select an area in the 
interferograms where no geophysical deformation signal is 
expected or visible. The assumption is that the error statis-
tics in the nondeforming areas are the same as those in the 
adjacent deforming areas and that the errors are stationary. 
The size of the selected area should be similar to that of the 
investigation area to ensure that the whole bandwidth of 
periods present in the noise is captured. One method for es-
timating InSAR variances is to use sample semivariograms, 
while sample covariograms can be used to estimate spatial 
correlation in the data [107]. The discrete sample semivar-
iogram value for the kth distance class is
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where hk  is the distance for the kth class and N  is the num-
ber of data point pairs at locations ri  and .si  The distance 
between them is approximately .hk  Under the assumption 
of isotropic noise, the semivariogram is solely dependent 
on the distance h  between data points, while the sample 
covariogram can be expressed as

	 .C h N d r d s2
1

c
i

h

N

i i

r s
1

ci i

=

<< ,

=

-

/t ^ ^ ^h h h � (41)

1,000

500

500 1,000 0 200
0

2

4

6

8

ra
d

S
em

iv
ar

ia
nc

e 
(r

ad
2 )

C
ov

ar
ia

nc
e 

(r
ad

2 )

Lag Distance (m)X (m)

Y
 (

m
)

400

Sill
Semivariogram

Exponential Fit
Empirical Covariogram

0

5

10

600 800 0 200
Lag Distance

(b)(a) (c)

400 600 800

–5

0

5

10

FIGURE 11. An (a) InSAR noise map, (b) empirical semivariogram, and (c) empirical covariogram.
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In order to describe the covariances continuously, we 
fit functions to the sample covariogram. We select func-
tion types that guarantee positive definiteness, which is re-
quired by the definition of covariance [108]. Two examples 
of such functions are
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Here, ,a  ,b  and c  are the coefficients for the model, and 
s  is the sill given by the semivariogram. The decay of cor-
relation with distance is represented by the exponential 
function ,e /h a-  while the anticorrelation in certain scenarios 
is depicted by / .cos h c^ h  Figure 11 is an example of InSAR 
noise structure estimation.

In summary, the statistical model for InSAR-constrained 
geophysical inversion is defined as
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PARAMETER ESTIMATION

BASICS
When conducting geophysical inversion based on geo-
detic data, geophysical parameters can be divided into two 
categories: nonlinear parameters and linear parameters 
[109]. Linear parameters typically correspond to the mo-
tion parameters of underground sources in elastic media, 
such as fault slip and magma chamber volume changes. In 
contrast, nonlinear parameters generally relate to the geo-
metric or material parameters of the source and medium, 
including point source location, fault dip angle, fault strike, 
viscoelastic coefficient, Poisson’s ratio, and so on. When 
the underground source extends over a specific volume or 
area, grid division is needed to achieve higher spatial reso-
lution of the motion source distribution. In such situations, 
the number of linear parameters may exceed the amount of 
observation data, resulting in an ill-posed problem for pa-
rameter estimation (Figure 12). Consequently, the primary 
distinctions in parameter estimation depend on the linear 

or nonlinear nature of the parameters. In this section, we 
separately discuss nonlinear parameter estimation, linear 
parameter estimation, and mixed-parameter estimation.

NONLINEAR PARAMETER INVERSION
Nonlinear parameter inversion is utilized when the num-
ber of unknown parameters is limited and the linear 
parameters remain undiscretized. In this situation, the op-
erator A  is nonlinear, and obtaining an analytical optimal 
solution for the unknown parameters, as in a linear prob-
lem, is not feasible. The most straightforward approach to 
addressing this issue is by linearizing the parameters. This 
step involves initializing the parameter values based on a 
priori knowledge:

	 , , .m mmT
J0 10 0f= ^ h � (44)

Using a Taylor series to expand the right part of function 
model gives
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By ignoring terms above the first order, the nonlinear 
problem can be approximated by a linear formula:

	 y Jx= � (46)

where
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Equation (46) can be solved using the linear least-
squares method. The obtained x  is added to the initial 
parameter m0  to update it to .m x0+  This linearization 
and inversion process is repeated until x  reaches a cer-
tain threshold (Figure 13). The steepest descent method, 
which is a gradient-type method, is used to achieve this. 
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The method provides a local minimum around .m0  Other 
gradient-type methods, such as the Newton method and 
the conjugate gradient method, also provide the local mini-
mum but in a different way. There are also nonlinear in-
version methods that search for the global minimum, such 
as the genetic algorithm, the simulated annealing method, 
and artificial neural networks. For more details about these 
nonlinear methods, several works in the literature can be 
referred to [81], [110], [111], [112], [113].

Besides the linearization way, the Markov chain Monte 
Carlo (MCMC) method within the Bayesian framework is 
another commonly used approach for solving nonlinear pa-
rameters [114]. This approach directly provides the posterior 
pdf and is suitable for complex scenarios. The Metropolis–
Hastings algorithm is used to efficiently control the sam-
pling process such that after a large number of iterations, the 
sample density approximates the posterior distribution. To 
begin, an initial set of model parameters, denoted as ,m0  are 
selected from the prior distribution .f m^ h  This can be arbi-
trarily chosen or previously estimated using a direct search 
method, such as simulated annealing. Next, a new trial set 
of model parameters is generated by taking a random step 
within .f m^ h  If the prior for each model parameter is uni-
form and independent, this can be achieved by perturbing 

each parameter in mi  by an amount ,a m∆ j
n  where an  is a 

random value generated from a uniform distribution with-
in the range [−1, 1] and ∆mj  is the maximum random 
walk step-size for each parameter .mj  An acceptance ratio 

,  / ||minr f f d md m1 ii 1= +^ ^ ^h hh is then calculated and com-
pared with a random value u generated from a uniform 
distribution within the range [0, 1]. If ,u r1  the trial set is 
accepted. Otherwise, the previous set of model parameters 
is retained by setting .m m1 ii =+  The resulting sequence of 
states, , , , ,m m m0 1 2 f  forms a Markov chain with the target 
distribution |f m d^ h as its stationary distribution. The pro-
cess is repeated until a representative sampling of the poste-
rior distribution is achieved (Figure 14).

In general, the nonlinear parameter m in geophysi-
cal inversion often lacks prior information, and the prior 
probability can be modeled as the so-called uninformative 
Jeffreys prior, i.e., a uniform distribution over the real num-
ber field. However, if there is a finite range of values, f m^ h 
can be considered a uniform distribution with upper and 
lower bounds. In such cases, when generating a new set of 
parameters in the first step of the MCMC, a preprocessing 
step is required. If the new parameter set mi 1+  falls outside 
the value range, a wrapping operation can be performed to 
convert it back into the acceptable range.
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LINEAR PARAMETER INVERSION
When the nonlinear parameters are assumed to be known 
and the linear parameters are spatially discretized, the 
parameter solving process transforms into a linear inver-
sion. In cases where a priori knowledge about the param-
eters is lacking, the solution can be determined through 
MLE, which equates to the least-squares solution. How-
ever, inverting the spatial distribution of subsurface 
linear motion parameters using surface observations 
is frequently an ill-posed problem. The number of dis-
cretized parameters may surpass the number of observed 
data points, and surface deformation might not be sen-
sitive to deep movements. Consequently, incorporating 

additional prior probabilities for the discretized linear 
parameters becomes essential.

Laplacian smoothing is a commonly adopted approach 
for regularization [115]. Laplacian smoothing minimizes 
the sum of the second spatial derivatives, thereby seeking 
to keep the difference in the slip between patches small. A 
prior based on Laplacian smoothing is given by
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where 2a  is a hyperparameter controlling the slip variance 
and L  is a matrix that represents the finite-difference ap-
proximation of the Laplacian operator.
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Assuming ,Q2vR =  according to Bayesian formulation, 
the post-pdf of the slip is given by
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By introducing ,/2 2m v a=  the parameter inversion be-
comes the following optimization problem:
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Figure 15 gives an example of solving the linear slip pa-
rameters on fault patches for an earthquake sequence using 
the Laplacian smoothing. An alternative to regularization 
by Laplacian smoothing is regularization by constraining 
the slip distribution to be self-affine [9]. For example, the 
von Karman prior was used in fault slip regularization. In 
this study, the von Karman autocorrelation function was 
adopted to calculate the autocorrelation matrix Qm  for slip 
on the fault patches. The von Karman prior is given as
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The analytical solution for s  can also be given the same 
way. We note that a scalar smoothing factor controls the 
weight of this smoothing. Its value is usually determined by 
iterating the inversion for different factors, computing the 
misfit, and constructing an “L curve” of the smoothing fac-
tor versus the misfit. The tradeoff approach is employed the 

most, often without justification. Information criteria have 
been introduced to provide an objective determination 
of the smoothing factor, as a range of potential solutions 
may exist. Akaike’s BIC (ABIC) is a widely used objective 
method based on the entropy maximization principle that 
determines a suitable smoothing factor [116], [117].

MIXED-PARAMETER INVERSION
In real scenarios, it is common to encounter a mix of linear and 
nonlinear parameters that need to be solved simultaneously. 
This requires the development of a robust mixed-parameter 
inversion procedure that can accurately estimate both types of 
parameters. Currently, there are generally three types of inver-
sion procedures that can handle mixed parameters.

The first one is a two-step procedure and was proposed 
the earliest, and it has been commonly applied [118], [119], 
[120], [121], [122]. This method involves solving for the 
nonlinear and linear parameters in separate steps. First, the 
nonlinear source geometry is determined using a nonlin-
ear inversion method under the assumption of a uniform 
source on a fixed point or a rectangular surface. Second, 
the usual linear inversion is applied to solve for discretized 
parameters (e.g., slips on fault patches), with the geometry 
given by the first step. The advantage of this procedure is 
that the inversion process is easy to handle since the com-
plicated inversion problem is divided into two simple steps, 
both of which can be solved by numerous mature methods. 
However, the results obtained from this method may not be 
robust enough since the geometry obtained in the first step 
is based on the assumption of a uniform source. For simple 
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scenarios, e.g., earthquakes with only one slip concentra-
tion on a single fault plane, the first step may generate a 
nearly correct geometry. However, for more complex cases, 
the inverted geometry may deviate significantly from the 
real situation. Additionally, the uncertainties of nonlinear 
parameters obtained in the first step could propagate into 
the second step, resulting in an incorrect inversion result.

The second one is a mixed procedure, which combines the 
inversion of linear slip and nonlinear geometry and has been 
proposed to improve the accuracy of parameter solving [109], 
[117], [123], [124]. This procedure uses an iterative algorithm 
in the least-squares framework [123]. First, the nonlinear pa-
rameters are initialized based on a priori knowledge, such as 
field surface rupture maps, SAR offset maps, and aftershock 
locations. Then, preliminary linear parameters and the mis-
fit between the observation and prediction are obtained 
through a linear inversion. The linear inversion is iterated 
by gradually modifying the initial nonlinear parameters. If 
the data fitting improves to an expected value, the changes 
of the nonlinear parameters are accepted. After the iteration, 
the best-fitting solution during the search process is obtained. 
Alternatively, the nonlinear parameters can be introduced as 
hyperparameters, and information criteria are used to de-
termine the optimal values [117]. The inversion performs a 
forward grid search for the best-fitting solution. For each set 
of candidate nonlinear parameters, Green functions are recal-
culated to obtain an ABIC value. After all the calculations are 
completed, the minimum ABIC is found, and its correspond-
ing parameters are selected as the optimal solution.

The third inversion procedure type is fully nonlinear 
inversion, which brings nonlinear and linear parameters 
together in a unified framework [125]. The fully nonlin-
ear inversion is to treat linear slip parameters as nonlin-
ear parameters and then use a nonlinear method to solve 
all of them. For example, Fukuda solved linear fault slips 
and nonlinear smoothing parameters simultaneously in 
a Bayesian framework [125]. However, a significant draw-
back of treating linear parameters as nonlinear parameters 
relates to computing efficiency since nonlinear inversion 
requires much more time than linear inversion.

POSTESTIMATION
Geophysical inversion is highly challenging in evaluating 
the quality of parameter inversion because of the uncer-
tainty of the function model and prior information [126]. 
Currently, there are many forms of result evaluation. The 
first type is based on strict statistical inference, which uses 
EP or parameter interval estimation to quantify parameter 
estimation errors. The criteria include parameter variance 
and the CI. This type of result evaluation assumes that the 
function model and prior information modeling are cor-
rect. The second type is nonstatistical testing methods, 
which have various types and are mainly designed accord-
ing to the content of concern. They include checkerboard 
verification, Monte Carlo InSAR observation perturbation 
simulation, and the model resolution matrix:

◗◗ CI: When conducting geophysical parameter inversion 
using Bayesian estimation, the posterior probability 
density distribution of the parameter can be obtained. 
Therefore, the CI of the parameter, which is the preci-
sion or uncertainty of the parameter, can be obtained 
naturally while estimating the parameter. This method 
is relatively objective, so it has become a widely adopted 
and recognized method. However, it should be noted 
that Bayesian estimation involves sampling complex 
posterior probability distributions, and the results may 
differ depending on the sampling parameter settings. 
The uncertainty caused by the computational ability 
cannot be evaluated. Crucially, the parameter posterior 
probability distribution derived from Bayesian estima-
tion is based on the assumption that the function model 
and prior information are accurate. However, these as-
sumptions might not hold true in practical scenarios.

◗◗ EP: For linear estimation processes, the variance of pa-
rameters can also be calculated and used to evaluate the 
quality of estimation. The variance/covariance of a pa-
rameter can be directly obtained using variance–cova-
riance propagation. The covariance matrix of the input 
data of the InSAR deformation field can be estimated 
using the data from the nondeformed area introduced at 
the beginning of this section or using the residual after 
model fitting. Like the CI evaluation method, this meth-
od assumes that the function model and prior model 
are correct. This method is more suitable for accuracy 
evaluation of parameter estimation after linearization 
of geophysical nonlinear parameters in relatively simple 
deformation fields. The main reason is that this situa-
tion involves fewer parameters, the function model is 
approximately accurate, and there is no need to use an 
artificially assumed prior.

◗◗ Checkerboard validation: This method is mostly used in 
earthquake slip distribution inversion. It involves input-
ting a sliding distribution like a chessboard and compar-
ing the forward InSAR or other observations with the 
inverted results through consistency comparison [127]. 
This method was used to validate the resolution of dif-
ferent datasets for slip inversion results [128] and test the 
effectiveness of new inversion methods [129]. However, 
such studies conducted only a few simulation tests, and 
the selected simulated sliding distribution was not con-
sistent with the actual situation, so it cannot fully reflect 
the real situation from a statistical perspective.

◗◗ Monte Carlo perturbation simulation: This method deter-
mines solution uncertainty by introducing noise per-
turbations into observations. Wright et al. were among 
the initial researchers to employ this technique for es-
timating uncertainty in InSAR inversion [130]. They 
first estimated the noise structure using observation 
values from far-field undisturbed areas in InSAR, then 
generated a large set of spatially correlated InSAR noise 
based on this structure and incorporated it into the ac-
tual InSAR observations. Subsequently, they processed 
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the dataset with noise interference in InSAR to derive a 
sample distribution of inverted parameters, indicative of 
result uncertainty. While widely applied in later studies 
for assessing uncertainty in the inversion of nonlinear 
geometric and linear parameters in faults [118], [131], it 
is crucial to recognize that supplementing InSAR data, 
which inherently contain noise [132], with simulated 
noise does not precisely reflect real InSAR data charac-
teristics. Moreover, the resulting uncertainty assessment 
indicates only parameter sensitivity to perturbations in 
InSAR results and does not equate to the reliability of 
these results.

◗◗ Model resolution matrix: This method uses the diagonal 
elements of the model resolution matrix of the inver-
sion equation to represent the reliability of the solution. 
Considering that the inversion process can be represent-
ed by a Green function G  and its generalized inverse 

,G g-  the relationship between the estimated parameter 
value mest  and the true value mtrue  can be expressed as

	 .m d Gm G m mG G G Rg g gest true true true= = = =- - -6 @ � (51)

◗◗ Here, the matrix GR G g= -  is the resolution matrix [81], 
representing the mapping between the true value and 
the inversion result. If R  is an identity matrix, the es-
timated value is exactly the same as the true value. The 
diagonal elements of this matrix represent the degree 
of approximation between the estimated value and the 
true value, and the closer to one, the stronger the reso-
lution. In the literature [133], the diagonal elements of 
the model resolution matrix were used to evaluate the 
quality of the inversion result. In terms of error theory, 
the discrepancy between the resolution matrix and the 
identity matrix represents the bias in the biased estima-
tion error [115]. This discrepancy, to a certain extent, re-
flects the influence of prior constraints. It is important 
to note that the generalized inverse, denoted as ,G g-  can 
be analytically expressed only within a linear system. 
Often, inversion processes involve a combination of lin-
ear and nonlinear superposition. Furthermore, in cases 
of linear inversion with the application of nonnegative 
constraints, it becomes impossible to obtain an analyti-
cal expression for .G g-  Additionally, it is worth mention-
ing that resolution primarily measures the bias aspect 
and does not encompass all the uncertainty features of 
the inversion solution.

SUMMARY AND FUTURE TRENDS
Over recent decades, the advancement of SAR satellites 
and related processing methods has positioned InSAR as a 
standard method for monitoring large-scale ground defor-
mation and deciphering geophysical processes. Statistical 
inference plays a crucial role in InSAR methods and their 
applications. This article offered an overview of InSAR 
deformation measurement and InSAR-constrained geo-
physical inversion through the lens of statistical inference 

to facilitate a better understanding of existing methods. It 
investigated specific statistical inference issues in preva-
lent PSI, TomoSAR, DSI, and SBAS methods for InSAR 
processing, along with nonlinear, linear, and mixed-pa-
rameter inversion in InSAR-constrained geophysical in-
version. Furthermore, the article evaluated current open 
source code and data resources in the appendix included 
in the supplementary material. As SAR satellites like the 
NASA–Indian Space Research Organization Synthetic Aper-
ture Radar satellite, Sentinel 1C, and various commercial 
SAR deployments continue to roll out in the coming years, 
the number of SAR image observations will grow, and the 
observation frequency will shorten. Comprehensive high-
dynamic-range Earth observation will become achievable, 
spurring further innovations in InSAR geodetic measure-
ment and geophysics. To capitalize on the wealth of SAR 
data, novel approaches are required in InSAR deforma-
tion measurement and InSAR-constrained geophysical 
parameter estimation. Potential avenues for development 
include the following:

◗◗ Enabling end-to-end parameter estimation: As previously 
discussed, the current process for parameter statistical 
inference is quite complex, often necessitating multiple 
steps to transition from observation data to parameters. 
For example, in MT-InSAR processing, several statistical 
inference estimation steps are required. These include 
wrapped phase estimation, unwrapped phase estima-
tion, and deformation estimation. Errors in one step can 
propagate to the subsequent step, inevitably amplifying 
estimation errors. A crucial theoretical advancement in 
future research is to tightly couple this estimation pro-
cess, potentially allowing for direct geophysical param-
eter estimation based on SAR raw observations. This 
would minimize the intermediate preprocessing steps 
and enable end-to-end parameter estimation. Such an 
approach would prevent unnecessary parameter estima-
tion errors caused by multistep EP.

◗◗ Leveraging deep neural networks: This article primarily 
addressed parameter estimation issues in InSAR and 
geophysical inversion from an interpretable statistical 
inference standpoint. Nonetheless, deep learning has 
demonstrated significant potential in this field. For ex-
ample, some studies have employed deep learning to aid 
phase unwrapping [46], [134], [135], identify deformed 
areas [136], [137], and separate ground deformation sig-
nals [132]. However, research in this area remains in its 
early stages, primarily focused on case studies. Many as-
pects, such as training samples, network structures, and 
applicability to different scenarios, remain unexplored. 
Expanding and developing widely applicable solutions 
is an essential direction for future research.

◗◗ Enhancing a priori knowledge by integrating multisource 
datasets: In many ill-posed estimation problems, the 
accuracy of prior information modeling significantly 
impacts parameter estimation. However, many cur-
rent prior information models are relatively arbitrary, 

Authorized licensed use limited to: Shaanxi Normal University. Downloaded on March 14,2024 at 04:23:51 UTC from IEEE Xplore.  Restrictions apply. 



                                           IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE    MARCH 202430 

leading to considerable biases in parameter estimation 
results and unreliable CI estimation. Future research 
may focus on fusing multisource data. For example, 
in geophysical inversion, seismic data and geophysical 
exploration data can more accurately model the prior 
probability of parameters. In D-TomoSAR, semantic in-
formation can be further integrated. By modeling the 
prior probability of parameters with external real infor-
mation constraints, more accurate and reliable param-
eter estimation can be achieved.

◗◗ Promoting open source InSAR codes: InSAR geodesy and 
geophysical inversion play a vital role in sustainable 
human development and disaster prevention and man-
agement. However, compared to popular fields such as 
computer science and artificial intelligence, research in-
vestment and participation in this area remain relatively 
low. To stimulate growth in the research community, it is 
crucial to open source advanced processing algorithms. 
This strategy lowers barriers to entry, encourages wider 
participation, and consequently drives scientific and 
technological progress for the betterment of sustainable 
human development.
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