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A B S T R A C T

In this paper, we propose a unified size-structured PDE model for the growth of metastatic tumors, which extends
a well-known coupled ODE-PDE dynamical model developed and studied in the literature. A treatment model
based on the proposed unified PDE model is investigated via optimal control theory, where its first-order ne-
cessary optimality system characterizing the optimal control is derived. We prove that the uniqueness of the
optimal control depends on the chosen objective functional, and the optimal control is of bang-bang type when it
is unique. For obtaining its efficient numerical solutions, a projection gradient descent algorithm based on the
characteristic scheme is developed for solving the established optimal treatment model. Several numerical ex-
amples are provided to validate our mathematical analysis and numerical algorithm, and also illustrate the
biologically interesting treatment outcomes of different models and control strategies. Our simple model reveals
that: (i) only the total drug dosage matters if one just cares about the final treatment output; (ii) given the same
total drug dosage, the optimal bang-bang treatment plan outperforms the others in the sense that it maximally
reduces the total tumor sizes during the whole period of treatment, although their final tumor sizes are the same.

1. Introduction

Cancer is a leading cause of death worldwide and many cancers
remain incurable, although the understanding of cancer biology has
been significantly improved over the past few decades. Being a major
obstacle to effective cancer therapy, the spread of cancer tumor cells
from one location to many other locations within the same organism,
called metastasis, accounts for the majority of cancer-related deaths
[14]. Unfortunately, the process of metastasis remains the least un-
derstood aspect of cancer biology [27,41]. For example, some recent
studies [54] on breast cancer suggest that, contrary to more conven-
tional thinking, metastatic dissemination can occur rather early in the
course of cancer development, but the mechanism of such early dis-
semination is yet unknown. Such early occult metastasis [17] are un-
detectable by any standard diagnosis modalities. For instance, one may
take a size of 108 cells (i.e., about 100mm3) as the threshold for a
metastasis to be visible. Hence, it is very important to equip the clin-
icians with suitable tools to determine or measure the number or mass
of metastases that are not or barely visible with current medical ima-
ging techniques. For more advances on understanding metastasis, we

refer to the recent review paper [27].
Quantitative approaches based on mathematical and computational

modeling have become increasingly important in cancer treatment re-
search [12,26,32,42], since insightful mathematical models built upon
laboratory data can augment experimental and clinical studies by
deepening our understanding of mechanisms driving tumorigenesis and
identifying possible better treatment strategies [1,10]. In this paper, we
will focus on studying a size-structured transport PDE model that
generalizes the ODE-PDE dynamical model in [23] for characterizing
the density or distribution of metastases. The advantage of the ODE-
PDE model in [23] with dedicated numerical algorithms [6,15] is that
we may be able to see beyond the current imaging technology and
accurately estimate the number or mass of both visible and non-visible
metastases. Since the pioneering work in [23], this type of metastatic
model has been mathematically analyzed and experimentally studied
and generalized in many different ways, such as adding appropriate
treatment components to describe the interaction between tumor cells
and chemotherapy/antiangiogenic therapy [8]. Remarkably, this me-
tastatic model without treatments has been recently validated through
laboratory experiments with tumor-bearing mice [16]. We believe this
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metastatic model will soon make its way to clinical trials.
To facilitate our following discussion, we now briefly introduce this

elegant ODE-PDE metastatic model [23], which belongs to the family of
age-structured McKendrick-Von Foerster equation [3,22]. It describes
the dynamics of the colony size distribution of multiple metastatic tu-
mors through two biological components:

(1) The growth of the primary tumor size, denoted by xp(t), follows a
nonlinear ODE:

= =x t g x t x x( ) ( ( )), (0) ,p p p p 0 (1)

where x0 denotes the initial tumor size, and gp(x) denotes the
growth rate corresponding to different growth models. In [23], a
Gompertz growth model with =g x ax b x( ) ln( / )p is used, where a is
growth rate constant and b>1 is the maximum tumor size (in
number of cells).

(2) The evolution of the size-structured metastatic density, denoted by
x t¯ ( , ), satisfies a transport PDE:

+ = >x t g x x t t x b¯ ( , ) ( ( ) ¯ ( , )) 0, 0, (1, ),t m x (2)

endowed with a zero initial condition

=x¯ ( , 0) 0 (3)

and a non-local boundary condition at =x 1

= + >g t x t x x t dx t(1) ¯ (1, ) ( ( )) ( ) ¯ ( , ) , 0.m p
b

1 (4)

Here gm(x) denotes the growth rate of metastases, which is usually
assumed to be identical to gp(x). The colonization (birth) rate is
chosen as =x µx( ) , where the parameter α∈ (0, 1] corresponds
to an emission proportional to a fractal dimension of the emitting
tumor. For example, it is chosen to be = 2/3 for tumors of sphere
shape.

In the above coupled ODE-PDE model, from modeling perspective it
is reasonably assumed that:

(i) There is no metastatic tumor at the initial time =t 0, which gives
the initial condition =x¯ ( , 0) 0;
(ii) The primary and metastatic tumors emit new metastases at the
same colonization (birth) rate β(x);
(iii) The newly created metastases has a single cell, this leads to the
boundary condition by noticing that the number of newly created
metastatic cells per unit time at time t (the left-hand side of (4)) is
the total rate of occurrences of metastases from both the primary
tumor and metastatic tumors (corresponding to the first and second
term of right-hand side of (4), respectively).

It is usually very difficult to find an analytic solution of such a PDE
model. Only in some simple cases could one obtain an exact solution via
Laplace transform; see [23]. Such an exact solution, however, is defined
in terms of infinity series, and thus is very cumbersome for practical use
and efficient computation. Therefore, it is more desirable to develop an
efficient and accurate algorithm to solve the model system numerically.
The main challenge in numerical algorithms for solving metastatic PDE
model is not only caused by the nonlocal boundary condition, but also
by the huge domain size. It is observed from clinical data that the tumor
size x usually ranges from 1 cell to =b O (10 10 )8 12 cells. Besides, the
duration of metastatic process is typically measured in years, say,

=T 10 20 years. Thus, many standard discretization schemes, whose
approximation accuracy depends on the mesh step sizes, will become
prohibitively expensive, since the computational domain [1, b]× [0, T]
is too large to use any reasonably fine mesh.

In the literature, there are very few research works on efficient
numerical methods for solving the above ODE-PDE model, although the
numerical methods for general age-structured population models are

well studied. In [6], following an earlier work [2] on general size-
structured population models, the authors conducted a thoroughly
mathematical analysis on the asymptotic behavior of the unique weak
solution of the model, and also constructed a simple convergent scheme
by computing the numerical solutions along the characteristic curves.
Different from such characteristic schemes, the authors in [11] pro-
posed to use a logarithmic change of variable =y b xln( / ) to map the
original large domain [1, b] into a far smaller domain [0, ln b]. To solve
the transformed PDE, they suggest combining a 5th-order WENO
(Weighted Essentially Non-Oscillatory) scheme in space with a 3rd-
order Runge–Kutta time discretization, which, however, lead to some
noticeable discrepancy between the numerical solution and the exact
solution. We provide in the Appendix A further discussion on why the
proposed scheme in [11] would lead to inaccurate approximations. In
more recent works [15,16], the authors proposed to reformulate the
original PDE model into a Volterra integral equation, which was shown
to have some advantages of getting more accurate numerical solutions
with less computational costs (based on FFT techniques). However,
such an integral equation approach also has its limitation. If treatment
input is modelled with time-dependent growth rates, then the obtained
Volterra equation will be not of convolution type and hence become
more expensive to solve, due to unstructured dense system upon dis-
cretization of the integral equation.

To the best of our knowledge, the only references regarding the
optimal treatment based on the above metastatic PDE model are
Benzekry’s two papers [8,9], where various combinations of the che-
motherapy and anti-angiogenic therapy are considered. In this paper,
we propose a different treatment model based on a unified PDE model
and optimal control formulation, and also develop an efficient algo-
rithm built upon the characteristic scheme for its accurate numerical
solutions. The use of deterministic ODE optimal control theory to op-
timize cancer treatment (chemotherapy) is an old topic, see e.g.
[31,45–47] and the references therein, but there are much less research
work on PDE-based optimal control models for size-structured cancer
treatment optimization, except a few marginally related papers (e.g.,
[21,29,40,50]). Our current paper contributes to advocate the appli-
cation of PDE optimal control theory with numerical optimization al-
gorithms to improve the treatment of metastatic cancer.

This paper is organized as follows. In Section 2, we present a unified
optimal control model and discuss the uniqueness of optimal control
under different objective functionals. In Section 3, we derive its first-
order necessary optimality system and introduce a projection gradient
descent (PGD) algorithm, where the characteristic schemes are ex-
tensively used for accurate discretization. Numerical examples are
presented in Section 4. Finally, some conclusions are drawn in Section 5
and some additional discussion are included in the Appendices.

2. A unified optimal treatment model

Motivated by the assumption that both the primary tumor and
metastatic tumor emit new metastases at the same colonization rate
( = =g g g:m p ; see [19,23,48]), it becomes more convenient to not treat
them separately. Especially, in the context of treatment model, the
contribution of primary tumor is of no more significance to the model
system than other metastatic cells. It is thus reasonable to include the
primary tumor into a unified density function of all tumor cells, rather
than consider a separate equation for the primary tumor. More speci-
fically, by introducing a Dirac delta density function for the primary
tumor

=x t x^ ( , ) ( ),x t( )p

and then defining a unified tumor density function (including both
primary tumor and metastatic tumors)

= +x t x t x t( , ) ¯ ( , ) ^ ( , ),

J. Liu and X.-S. Wang Mathematical Biosciences 314 (2019) 28–42

29



the aforementioned coupled ODE-PDE model (1)–(4) can be re-
formulated into a single PDE model

+ = < <

= >
=

x t g x x t x b t T

g t x x t dx t
x x x b

( , ) ( ( ) ( , )) 0, 1 , 0 ,

(1) (1, ) ( ) ( , ) , 0,
( , 0) ( ), 1 ,

t x
b

x

1

0 (5)

where the initial condition x( )x0 is derived from the initial condition
=x x(0) ,p 0 and

= =g x ax b x x µx( ) ln( / ), ( ) . (6)

Such a unified PDE model would allow us to more easily model the
situation with the metastatic tumors being present at the initial time, by
choosing the initial condition to be a density function ρ0(x) profiling the
initial tumors’ size distribution. Based the solution regularity analysis in
[6], the above PDE (5) in general admits only a unique weak solution
ρ∈ C([0, T], L1(1, b)), which indeed becomes a strong solution if the
compatibility condition (at =x 1) between the initial condition and the
boundary condition holds. It was further shown in [15] that the unique
weak solution ρ is continuously differentiable on the two domains se-
parated by the characteristic curve starting at =x 1.

We now introduce a bilinear optimal treatment (control) model
based on the above unified PDE model (5), where the treatment with
chemotherapy drug dosage (or intensity) over time is denoted as a
control/decision variable u(t). For simplicity, we assume the che-
motherapy drug has a uniform treatment effectiveness on all tumors
that is independent of the tumor’s size, which means the treatment term
u(t) only depends on time. This uniform treatment effectiveness as-
sumption is typical from the modeling point of view; see, for example,
[33]. For practical purpose, we also assume the treatment term u(t) to
be bounded by a given maximum dosage ū, i.e. u t u0 ( ) ¯. More
specifically, we consider the following simple form of objective func-
tional

= +

+

J u w x x T dx w x x t dxdt

u t dt

min ( , ): ( ) ( , ) ( ) ( , )

( ) ,

u t u

b T b

T
0 ( ) ¯ 1 0 1

0 (7)

where ρ(x, t) satisfies the unified PDE that describes the migration and
growth of metastatic tumors

+ =

< <
= >

=

x t g x x t d u t x t

x b t T
g t x x t dx t

x x x b

( , ) ( ( ) ( , )) ( ( )) ( , ),

1 , 0 ,
(1) (1, ) ( ) ( , ) , 0,
( , 0) ( ), 1 .

t x

b
1

0 (8)

Here w(x)≥ 0 is a given weight function. Note that the weighted total
metastases w x x t dx( ) ( , )b

1 is the total number of tumor cells (resp. the
total metastatic mass) if =w x( ) 1 (resp. =w x x( ) ). We denote by d(u(t))
the mortality (death) rate of metastatic tumors induced by drug treat-
ment. For simplicity, we assume =d u t u t( ( )) ( ). Another major differ-
ence between the tumor growth model without treatment (5) and the
treatment model (8) lies in the initial conditions. For the treatment
model, we let =t 0 be the time when drug therapy is applied. In
practice, the primary tumor has grown to a significant size (say 108

cells) and metastasis has already taken place at the time of cancer de-
tection and drug treatment. Thus, the initial profile for treatment model
is no longer a simple delta function, but a very general distribution
function ρ0(x)≥ 0. In the objective functional Jθ, we assume γ≥0 and
θ≥0. The first term of Jθ gives the weighted total metastases at the
final time T. The second term of Jθ provides the weighted total me-
tastases integrated over the whole treatment time interval [0, T]. The
third term of Jθ denotes the weighted total drug dosage during the
course of treatment. If the patient only cares about the outcomes at the
end of treatment period, one may take = 0, which allows the possible
large growth of tumor during the course of treatment and also leads to

non-uniqueness of optimal control; see below. We point out that our
treatment model is very different from the 2D treatment model devel-
oped in [9], where the control (treatment) u(t) is assumed to reduce the
growth rate g(x) to g x µxu t( ) ( ) for some positive constant μ>0. Si-
milar optimal control models have been studied in the context of age-
structured population models [3,4], which are usually referred to as the
maximum harvesting problem. But the analysis and algorithms devel-
oped in [3] can not be directly applied to our current treatment model,
due to the significant difference in the objective functional.

The optimal treatment model (7) and (8) leads to a bilinear optimal
control problem with a transport PDE as the state equation and also
with boxed control constraints. Before presenting the optimization al-
gorithms for solving (7) and (8), we need to first discuss the existence of
an optimal solution to the optimal control problem, and then derive the
first order necessary optimality conditions on the optimal control. The
existence of an optimal control can be shown by following the similar
arguments in [3], but its uniqueness will depend on the objective
functional as discussed further below.

2.1. Non-uniqueness of optimal control for the J0 model

We will solve the transport PDE (8) along its characteristic curves.
First, we define a characteristic function

=z b( ) e1 az
(9)

such that =z g z( ) ( ( )) and =(0) 1. It is also clear that χ(z)→ b as
z→∞. Next, we define =v z t g z z t( , ) ( ( )) ( ( ), ) to rewrite (8) as

+ = < <
= >
=

v z t v z t u t v z t z t T
v t z v z t dz t
v z v z x

( , ) ( , ) ( ) ( , ), 0, 0 ,
(0, ) ( ) ( , ) , 0,
( , 0) ( ), 0,

t z

0

0 (10)

where = =z z mb( ) ( ( )) e az and =v z g z z( ) ( ( )) ( ( ))0 0 . Note
that =g z a b e b( ( )) ( ln ) az e1 az

. If we make a change of variable
= =x z b( ) ,e1 az

then we have =dx g x dz( ) , =b x b/e az and
+ = =t z b b x b( ) ( / )e e1 az at at

. The first equation in (10) can be ex-
actly solved along the characteristic lines:

=
>

v z t v t z e z t

v z t e z t
( , ) (0, ) , ,

( , 0) , .

u s ds

u s ds

( )

( )

t z
t

t
0 (11)

It then follows from the boundary condition and initial condition in
(10) that

=

+

v t z v t z e dz

z v z t e dz

(0, ) ( ) (0, )

( ) ( ) ,

t u s ds

t
u s ds

0
( )

0
( )

t z
t

t
0 (12)

which gives a Volterra-type integral equation [5,28] for v(0, t). We
introduce a function =t v t e( ) (0, ) u s ds( )t

0 . The above integral equation
can be simplified as

= + = +t z t z dz f t t z z dz f t( ) ( ) ( ) ( ) ( ) ( ) ( ),
t t

0 0 (13)

where the inhomogeneous term

= = +

=

f t z v z t dz t z v z dz

mb x b x dx

( ) ( ) ( ) ( ) ( )

( / ) ( )

t
b e

0 0 0

1 0
at

(14)

only depends on the initial condition. It is remarkable that ϕ(t) is in-
dependent of the treatment function u(t). Moreover, we note that
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=

=

+

= +

=

w x x t dx w z v z t dz

w z v t z e dz

w z v z t e dz

e dz w z t z dz

w z v z t dz

e t

( ) ( , ) ( ( )) ( , )

( ( )) (0, )

( ( )) ( )

( ( )) ( )

( ( )) ( )

: ( ),

b

t u s ds

t
u s ds

u s ds t

t

U t

1 0

0
( )

0
( )

( )
0

0

( )

t z
t

t

t

0

0

where

=U t u s ds( ) ( )
t

0 (15)

is the cumulative drug dosage during [0, t], and

= + +

= +

t w z t z dz w z t v z dz

w z t z dz w b x b x dx

( ) ( ( )) ( ) ( ( )) ( )

( ( )) ( ) ( ( / ) ) ( )

t

t b e

0 0 0

0 1 0
at

(16)

is a quantity independent of the treatment function u(t). Thus, the ob-
jective functional can be rewritten as

= + +J e T e t dt U T( ) ( ) ( ).U T T U t( )
0

( )

If = 0, the objective functional J0 is minimized when
=U T T( ) ln[ ( )/ ] and the minimum is given as = +J U T(1 ( ))min .

This proves that the optimal strategy (i.e., the allocation of dosage
within the time interval) is not unique because the same total dosage U
(T) with different dosage allocations u(t), t∈ [0, T] have the same effect
on the objective functional J0. The non-uniqueness of optimal control
will also be observed in numerical examples, where two different op-
timal treatment plans give the same minimal objective functional. In
particular, we have proved that different treatment strategies with the
same total drug dosage U(T) will lead to the same final metastatic size
ρ(x, T). It thus seems more realistic to consider the Jθ model with θ>0
in clinical use; see [37].

2.2. Uniqueness of optimal control for the J1 model

The optimal control of Jθ model with θ>0 turns out to be unique
due to the extra path-dependent integral term in the objective func-
tional. Denote =W t e( ) U t( ). To show uniqueness mathematically, we
have to prove that the objective functional

= +J W W T T W t t dt W T( ) ( ) ( ) ( ) ( ) ln ( )
T

0

has a unique minimum for all continuous, positive, and non-increasing
functions W(t) such that =W (0) 1. Assuming that u t u( ) ¯, we have an
additional constraint thatW t e( ) ut¯ . First, we show that the minimum
of Jθ must be achieved at a bang-bang control (as a minimizer). For any

u t u0 ( ) ¯ and fixed T>0, we define

= >u t u t
t˜ ( ) ¯, ,

0, ,

where = U T u( )/ ¯. Denote

=W t e˜ ( ) .u s ds˜ ( )
t

0

It is readily seen thatW t W t˜ ( ) ( ) for all t∈ [0, T] and =W T W T˜ ( ) ( ).
Therefore, J W J W( ˜ ) ( ) and we only need to consider minimizing the
objective functional over the admissible set of bang-bang functions u t˜ ( )
with only one jump (switching) point τ. Note that

=W t e t
e t

˜ ( ) , ,
, .

ut

u

¯

¯

We can rewrite the objective functional as a single variable function of
τ:

= + + +J e T e t dt e t dt u( ) ( ) ( ) ( ) ¯ .u ut T u¯
0

¯ ¯

By taking its first-order and second-order derivatives with respective to
τ, we observe

= +

= + + >

dJ
d

ue T u e t dt u d J
d

u e T u e u e t dt

¯ ( ) ¯ ( ) ¯,

¯ ( ) ¯ ( ) ¯ ( ) 0.

u T u

u u T u

¯ ¯
2

2

2 ¯ ¯ 2 ¯

Thus, Jθ has a unique minimum at some τ*∈ [0, T]. Note that

= +

= +

= =
dJ
d

u T u t dt u dJ
d

ue T u

| ¯ ( ) ¯ ( ) ¯, |

¯ ( ) ¯.

T
T

uT

0 0

¯

If +T t dt( ) ( ) ,T
0 then =* 0. This implies that no drug should

be used if the side effect is too strong. If e T( ),uT¯ then = T* . This
means that all possible drugs should be applied if the side effect is too
weak. If < < +e T T t dt( ) ( ) ( ) ,uT T¯

0 then τ* (i.e., the stopping
time of drug treatment) is the unique root of the following nonlinear
transcendental function

= +F T t dt e( ): ( ) ( ) .
T ū

It is easy to check that

=F ue( ) ( ) ¯ .ū

To numerically find the unique root τ*, we may use a standard Newton
iteration (e.g., starting with = T/20 ):

= +
+

++
T t dt e

ue
( ) ( )

( ) ¯
.n n

T u

n
u1

¯

¯
n

n

n

Such a Newton iteration, however, is computationally expensive due to
the integral term and also only locally convergent. Alternatively, we
suggest to use more efficient direct search algorithm to find the unique
minimum for the objective function Jθ(τ). First, we discretize the in-
terval [0, T] by uniform grids: = i ,i and calculate = ( )i i by
solving the integral equation of ϕ. Then we may use trapezoidal rule
and recurrence relation to calculate the two integrals at = i:

= =I e t dt I t dt( ) ( ) , ( ) ( ) .ut T
1 0

¯
2

Next, we evaluate = + + +J e T I I u( ) ( ( ) ( )) ( ) ¯i
u

i i i
¯

2 1i . Finally, we
use a loop to find the unique optimal index =i i* such that
J J( ) ( )i i* for all i, and then set =* i*. Once all Φ(τi) are com-
puted, the remaining computation cost is only linear in the number of
mesh points. Obviously, the obtained τ* by direct search has an accu-
racy of Δτ, which is mainly used for verifying our following numerical
algorithms.

3. Optimality system and numerical algorithm

We are now ready to derive the first-order necessary optimality
system (also known as the Karush–Kuhn–Tucker (KKT) conditions in
optimization community), which will be useful in the development of
adjoint-based gradient descent optimization solvers [30]. Moreover, it
shows the bang-bang structure [25,44,49] of the optimal control, which
further validates our analysis on the uniqueness of optimal control.
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3.1. First-order necessary KKT optimality system

We will use the standard Lagrangian approach [49] to derive the
first-order necessary optimality system, which characterizes the optimal
control and state. It is interesting to notice the nonlocal boundary
condition in the state equation leads a nonstandard (nonlocal) adjoint-
state equation that contains its boundary values.

Define the Lagrangian with a Lagrange multiplier p (using integra-
tion by parts in both x and t)

= + + +

= +

+

+

L u p J u g u pdxdt

J u x t p x t dx p dxdt

g x x t p x t dt g p dxdt

u pdxdt

( , , ) ( , ) ( ( ) )

( , ) ( , ) ( , )

( ) ( , ) ( , )

T b
t x

b
T

T b
t

T
b

T b
x

T b

0 1

1
0

0 1

0
1

0 1

0 1

By applying the initial and boundary conditions in (8), the objective
functional in (7), and the fact that =g b( ) 0, we have

= +

+

+ +

L u p w x x T x T p x T x p x dx

u t dt

p gp up x p t w x dxdt

( , , ) ( ( ) ( , ) ( , ) ( , ) ( ) ( , 0))

( )

( ( ) (1, ) ( )) .

b

T

T b
t x

1 0

0

0 1

Then, for its partial derivative w.r.t. ρ, in the direction y with
=y x( , 0) 0, we have

= = +

+ +

L u p y w x p x T y x T dx

p gp up x p t w x y

dxdt

0 ( , , ) ( ( ) ( , )) ( , )

( ( ) (1, ) ( ))

,

b

T b
t x

1

0 1

which (due to the arbitrary choice of y) gives the so-called adjoint state
equation:

= + +

=

p x T w x p gp up x p t

w x

( , ) ( ), ( ) (1, )

( ).
t x

Unlike the tumor growth equation in (8), no boundary condition is
needed when we solve the adjoint state equation in backward time. This
is because all characteristic curves of the above equation cannot exceed
the bound =x b and the final condition at =t T is sufficient.

The optimality of u under the control constraints
=u U u L T u t u: { (0, ): 0 ( ) ¯}ad implies L(ρ, u, p) is increasing in

all admissible directions v u( ) with v∈Uad (since Uad is convex), that
is

=

+

= +

L u p v u v t u t dt

v t u t pdxdt

pdx v t u t dt

0 ( , , )( ) ( ( ) ( ))

( ( ) ( ))

( ( ) ( )) .

u
T

T b

T b

0

0 1

0 1

Define =z t x t p x t dx( ) ( , ) ( , )b
1 . We have

+ x t p x t dx v u t v u( , ) ( , ) ( ( )) 0 [0, ¯]
b

1

for almost every t∈ [0, T]. This implies that the optimal control u is
given by

=
+ >
+ =
+ <

u t
z t

u z t
u z t

( )
0 if ( ) 0,

[0, ¯] if ( ) 0,
¯ if ( ) 0, (17)

which is of bang-bang type if the set = + =t T z t: { [0, ]: ( ) 0} is
assumed to have a zero Lebesgue measure. In general, an optimal
control u(t) is called bang-bang if u t u( ) {0, ¯} for a.e. t∈ [0, T], i.e., the
control constraints are active for almost all the time. To summarize, we
have derived the following first necessary optimality KKT conditions.

Theorem 3.1. A control =u U u L T u t u: { (0, ): 0 ( ) ¯}ad with the
associate state ρ is optimal for the optimal control problem (7–8) if and only
if the corresponding Lagrange multiplier (adjoint state) p satisfies the
following adjoint equation (marching backward in time from the right
endpoint =x b)

+ + =

< <
=

p x t g x p x t u t p x t x p t w x

x b t T
p x T w x x b

( , ) ( ) ( , ) ( ) ( , ) ( ) (1, ) ( ),

1 , 0 ,
( , ) ( ), 1 ,

t x

(18)

and the optimal control u is of bang-bang type as given in (17). Moreover,
we have ρ(x, t)> 0 and p(x, t)< 0 for all x∈ [1, b) and t∈ [0, T].

Proof. We only need to prove the statement in the last sentence. From
the Volterra integral Eq. (12), we have v(0, t)> 0, which together with
(11) implies that = >v z t g z z t( , ) ( ( )) ( ( ), ) 0 for all z≥0 and t≥0.
The positiveness of ρ(x, t) follows. Similarly, we define

=P z t e p z t( , ) ( ( ), )U t( ) and rewrite the adjoint Eq. (18) as

+ = +
< < <

= <

P z t P z t z P t w z e
z t T

P z T w z e z

( , ) ( , ) ( ( )) (0, ) ( ( )) ,
0 , 0 ,
( , ) ( ( )) , 0 .

t z
U t

U T

( )

( )

Solving the above equation along the characteristic lines gives

= +

+ + + + +

P z t w z T t e

z s P t s w z s e ds

( , ) ( ( ))

[ ( ( )) (0, ) ( ( )) ] .

U T

T t U t s

( )

0
( )

(19)

Especially, by choosing =z 0, we have the Volterra integral equation

=

+ + +

P t w T t e

s P t s w s e ds

(0, ) ( ( ))

[ ( ( )) (0, ) ( ( )) ] ,

U T

T t U t s

( )

0
( )

from which we have P(0, t)< 0 for all t∈ [0, T]. Substituting this into
(19) gives P(z, t)< 0 for all z≥0 and t∈ [0, T]. Consequently, p(x,
t)< 0 for all x∈ [1, b] and t∈ [0, T] □

It is readily seen that = 0 (side effect is ignored) should give the
optimal control =u t u( ) ¯ for all t∈ [0, T], which agrees with the in-
tuition that all possible drugs should be used. On the other hand, if
γ>0 is large enough (the drug is too poisonous) such that + >z t( ) 0
for all t∈ [0, T], then we would expect the trivial optimal control

=u t( ) 0. The values of z(t), however, is not easy to compute since it
depends globally on the values of ρ and p. For an appropriately chosen
γ>0, we anticipate to observe the typical bang-bang control with only
one switching point.

3.2. A projection gradient descent (PGD) algorithm

For numerically solving PDE-constrained optimal control problems,
there are two types of algorithms: (i) optimize-then-discretize (OD) and
(ii) discretize-then-optimize (DO). In OD algorithms, one discretizes the
first-order necessary optimality system and then solves the discretized
linear/nonlinear optimality system with efficient iterative linear/non-
linear solvers. While in DO algorithms, one directly discretizes the
original optimization problem to obtain a fully discretized large-scale
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finite-dimensional optimization problem, which is then solved by any
existing optimization solvers. Both the OD and DO algorithms have
their own advantages. Intuitively, the DO approach is more straight-
forward to implement, since the optimization can be automatically
operated by black-box optimization solvers, but it may become less
efficient unless the gradient and Hessian information can be analyti-
cally provided, especially for large scale problems. We will develop an
OD type algorithm, which seems to be more efficient for our considered
problems.

Recall the first-order necessary optimality KKT PDE system reads

+ + =

< <
= >

=

+ + =

< <
=

+

x t g x x t u t x t

x b t T
g t x x t dx t

x x x b

p x t g x p x t u t p x t x p t w x

x b t T
p x T w x x b

x t p x t dx v u t v u

( , ) ( ( ) ( , )) ( ) ( , ) 0,

1 , 0 ,
(1) (1, ) ( ) ( , ) , 0,
( , 0) ( ), 1 ,

( , ) ( ) ( , ) ( ) ( , ) ( ) (1, ) ( ),

1 , 0 ,
( , ) ( ), 1 ,

( ( , ) ( , ) )( ( )) 0 [0, ¯],

t x

b

t x

b

1

0

1

(20)

where the last variational inequality couples ρ with p through the
control constraints. In one-shot OD algorithms, all variables in (20) will
be discretized and solved simultaneously, which would lead to a huge
discretized system that is very expensive to store and solve. Hence, we
will adopt the cheaper projection gradient descent method [24,39] to
solve (20) by iteratively updating the control u with a forward solving
of ρ and a backward solving of p, where the variational inequality is
implemented as a projection mapping.

Given a time interval [0, T], we define a uniform mesh = =t nh{ }n n
N

0
with a step size =h T N/ . For the space domain [1, b], we compute a
non-uniform mesh = =x x t{ ( )}j j j

N
0 from solving the characteristic ODE

= =x t g x x( ) ( ), with (0) 1.

In general, one may use some numerical methods for solving the above
ODE. For example, one can use the second-order accurate modified
Euler method ( =j N0, 1, , 1)

= + + =+x x hg x hg x x[ 0.5 ( )], with 1,j j j j1 0

Notice the spatial mesh =x{ }j j
N

0 needs to be computed only once, since
the growth rate function g(x) does not explicitly depend on time t.
Otherwise, the spatial mesh should be recomputed at each time step.

Let x t x s¯ ( ; , ) be a characteristic curve starting at =x s x¯ ( ) and sol-
ving the characteristic ODE

=dx
dt

t x s g x¯ ( ; , ) ( ¯).

For the given =g x ax b x( ) ln( / ), the solution of above equation is ex-
plicitly given as

=x t x s b x b¯ ( ; , ) ( / ) .e a t s( )

Along such a characteristic curve x t x s¯ ( ; , ), the above transport PDE is
then reduced to an ODE

= +d
dt

x t x s t g x t x s u t x t x s t( ¯ ( ; , ), ) ( ( ¯ ( ; , )) ( )) ( ¯ ( ; , ), ),

which has the following explicit solution expression (starting at
=x s x s s x s( ¯ ( ; , ), ) ( , ))

= +

=

x t x s t x s g x x s u d

x s g x
g x t x s

e

( ¯ ( ; , ), ) ( , )exp ( ( ¯ ( ; , )) ( ))

( , ) ( )
( ¯ ( ; , ))

.

s

t

u d( )
s

t

(21)

Let =y x t( , )j
n

j n and =g g x( )n n . Now, we choose =x x ,j =s tn and
= +t tn 1 in the above equation. It is noted that =x t x t x¯ ( ; , )n j n j
and =+ +x t x t x¯ ( ; , )n j n j1 1. Therefore, = =x s x t y( , ) ( , ) ,j n j

n

= = =+ + + + +
+x t x s t x t x t t x t y( ¯ ( ; , ), ) ( ¯ ( ; , ), ) ( , ) ,n j n n j n j

n
1 1 1 1 1

1

= =g x t x s g x t x t g x( ¯ ( ; , )) ( ¯ ( ; , )) ( ),n n j n j and =+g x t x s( ¯ ( ; , ))n 1

=+ +g x t x t g x( ¯ ( ; , )) ( )n j n j1 1 . To evaluate the integral s
t g x x s d( ( ¯ ( ; , )) ,

we make a change of variable x̄ . The end points = tn and = +tn 1
correspond to the end points = =x t x s x t x t x¯ ( ; , ) ¯ ( ; , )n n j n j and

= =+ + +x t x s x t x t x¯ ( ; , ) ¯ ( ; , ) ,n n j n j1 1 1 respectively. Then we can obtain a
discrete recursion formula along the characteristic curves:

= +

=

=

+

+
+

+

+
+

+

+ +

+

y y g x x s u d

y g x x s
g x x s

dx u d

y
g x

g x
u d

y
g

g
h u t u t

exp ( (¯ ( ; , )) ( ))

exp ( ¯ ( ; , ))
( ¯ ( ; , ))

¯ exp ( )

( )
( )

exp ( )

exp( 0.5 ( ( ) ( ))),

j
n

j
n

t

t

j
n

x

x

t

t

j
n j

j t

t

j
n j

j
n n

1
1

1

1
1

n

n

j

j

n

n

n

n

1

1 1

1

where the last approximation is based on the trapezoidal rule. This
characteristic recursion formula starts with the initial condition

=x x( , 0) ( ),0 that is =y x j N( ), 0 .j j
0

0 Finally, the non-local in-

tegral boundary condition =g t x x t dx(1) (1, ) ( ) ( , )b
1 at time

= +t tn 1 can also be approximated with the composite trapezoidal rule

= + ++

=

+
+ +

+
+g y

s
y y x x t dx(1)

2
( ¯) ( ¯, ) ¯,n

j

N
j

j j
n

j j
n

x

b
n0

1

0

1
1

1 1
1

1
N

where = +s x x( )j j j1 and = x( )j j . This can be further simplified into

=
+

+ ++

=

+ +
+g

s
y

s s
y s y R t( (1)

2
)

2 2
( ).n

j

N
j j

j j
n N

N N
n

N n
0 0

0
1

1

1
1 1 1 1

1

The last truncated integration term (was neglected in the characteristic
scheme developed in [6])

=+ +R t x x t dx( ) ( ¯) ( ¯, ) ¯N n x

b
n1 1

N

may be approximately zero if xN is sufficiently close to b. In general, xN
is far less than b when T is small. In this case, we shall make use of (21)
with =s 0 and = =x t x s x t x x x¯ ( ; , ) ¯ ( ; , 0) ¯ N to compute +R t( )N n 1 . It is
easily seen that =x b x b( ¯/ )eat and

=x t b x b g b x b
g x

e( ¯, ) ( ( ¯/ ) ) ( ( ¯/ ) )
( ¯)

e
e

u r dr
0

( )at
at t

0

for x x b¯ [ , ]N . Thus, we obtain an explicit expression (assume u is
known)

=

=

+ +

+
+ +( )

R t x x t dx

x b x b g b x b
g x

dx e

( ): ( ¯) ( ¯, ) ¯

( ¯) ( ¯/ ) ( ( ¯/ ) )
( ¯)

¯ ,

N n x

b
n

x

b e
e

u r dr

1 1

0
( )

N

N

atn
atn tn1

1

0
1

which can be then approximated by numerical quadrature (e.g. the
integral function in MATLAB).

The characteristic scheme for p will be slightly different due to the
extra term β(x)p(1, t) with unknown boundary value p(1, t). Let
x t x s¯ ( ; , ) be the same characteristic curve starting at =x s x¯ ( ) . Along
such a characteristic curve x t x s¯ ( ; , ), the above adjoint state PDE is then
reduced to an ODE (treating p(1, t) as a known function depends on t)
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=

+

dp
dt

x t x s t u t p x t x s t x t x s p t

w x t x s

( ¯ ( ; , ), ) ( ) ( ¯ ( ; , ), ) ( ¯ ( ; , )) (1, )

( ¯ ( ; , )),

which has the following explicit solution expression (starting at s with
=p x s x s s p x s( ¯ ( ; , ), ) ( , ))

=

p x t x s t

u d p x s u r dr x x s

p w x x s d

( ¯ ( ; , ), )

exp ( ) ( , ) exp( ( ) )[ ( ¯ ( ; , ))

(1, ) ( ¯ ( ; , ))] .

s

t

s

t

s

(22)

By letting =s tn and = +t t ,n 1 we can obtain the recursion formula (used
trapezoidal rule twice)

=
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+

+ +
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which can be marched backward according to (with j≥2 and the end
condition =p wj

N
j)

= + +

= + +

+

+ +
+

+
+

+
+

+ +
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Using characteristic curves, the effective boundary condition at =x xN
is

=

+ + + +

=

+ + +

+

=

+ +

+

+

p p T t T e

T s p t s w T s e ds

w h N n e

Q h N k p w h N k e
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N
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0
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0
, 1
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n
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tn s
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where =U u s ds( )k
t

0
k and =Q h (1 /2 /2)n k k n k, , ,0 denotes the

quadrature weights of trapezoidal rule.
Based on the above described characteristic schemes, a projection

gradient descent (PGD) algorithm for solving (20) is to construct a fixed
point iteration for iteratively updating u(t) along the gradient descent
direction. In each iteration it requires time-marching along the

characteristic curves to solve the decoupled independent PDE for ρ and
p, respectively. The complete PGD algorithm is summarized in the
following Algorithm 1, where the step size αk is selected by the standard
Armijo rule [30]. Based on our following numerical simulations, we
have observed a linear convergence rate of the proposed PGD algo-
rithm. However, we remark that a rigorous convergence analysis of the
above PGD algorithm is beyond the scope of this paper, which will be
left as our future work.

4. Numerical results

In this section, we will provide several numerical examples to va-
lidate our obtained theoretical conclusions and also demonstrate the
approximate accuracy of our proposed characteristic schemes. All si-
mulations are implemented using MATLAB 2017b on a Dell Precision
Workstation with Intel(R) Core(TM) i7-7700K CPU@4.2GHz and 32GB
RAM. The CPU time (in seconds) is estimated by timing functions tic/
toc.

Following [23], we will use the Gompertz growth rate
=g x ax b x( ) ln( / ) and birth rate =x µx( ) . The stopping tolerance of

the PGD algorithm is =tol 10 8 and =k 5000max . Throughout this sec-
tion, we set =w x x( ) and define the total metastatic masses at time t as

=M t x x t dx( ) ( , ) .
b

1 (23)

Example 1.In our first toy example, we choose the following academic
parameters

= = = = = =a day b e µ day u1/ , , 1/ , 1, 0.1, ¯ 2.

We also set =T 10 and =N 100. Given the same initial colony
=x e( , 0) ,x we compare the metastatic masses M(t), the final colony

ρ(x, T) and the optimal controls u(t) for the J0 and J1 models, respec-
tively, in Fig. 1. The treatment outcomes of the J0 and J1 model are very
different, where the J1 model gives much smaller total metastatic
masses M(t) and the corresponding computed optimal control matches
closely with the exact bang-bang control. Notice the computed optimal
control in the J0 model is uniform and not of bang-bang type, which is
not surprising due to its non-uniqueness. The V-shape trajectory of the
metastatic mass M(t) in J1 model implies the tumor will continue to
grow at the normal growth rates once the drug dosage becomes zero.
We remark that, in the right bottom panel of Fig. 1, the computed
optimal control for J1 model (blue dashed line) will become more
vertical across the exact switching point and eventually approach the
exact optimal control (green dotted line) if we choose a smaller toler-
ance and allow more iterations. Similar behavior is also observed
among the following related figures.

In Table 1, we report the computed objective functional (Jh
0 and Jh

1 )
and the corresponding total drug dosage U(T). In the last row of
Table 1, we give the benchmarking exact optimal objective functional
and total drug dosage, which are computed via solving the integral
equation derived in Section 2 with a much smaller mesh size. Due to the
approximation errors in numerical quadrature used for computing the
provided exact reference values, we should understand the ‘exact’ va-
lues are accurate only up to about 10 3 accuracy. It is also worthwhile to
notice that the J1 model takes more iterations to reach convergence,
and the convergence rates of J0 model seem to be mesh-independent,
which is expected according to [24].

Figs. 2 and 3 provide the surface plot (with =N 100) of the com-
puted optimal state ρ and adjoint state p in the J0 and J1 model, re-
spectively, where we clearly observe ρ(x, t)> 0 and p(x, t)< 0, as
shown in Theorem 3.1. The incompatible initial-boundary condition at

=x 1 and =t 0 leads to the discontinuity of ρ at the corner (1,0).
Comparing J0 and J1 models, the dynamics of the optimal state ρ are
similar, but it is interesting to note that the adjoint state p demonstrates
very different dynamics. This may partially explain why the required
numbers of iterations are significantly different for the J0 and J1 model.
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Now, we fix the optimal total drug dosage to be =U T( ) 17.37 (with
=T 10) and compare the treatment outcomes of the bang-bang control

=u t t
t

( ) 2, [0, *],
0, ( *, 10],

with = = =U T u* ( )/ ¯ 17.37/2 8.685 and the uniform control

= =u t U T T t( ) ( )/ 1.737, [0, 10].

It is observed from Fig. 4 that the final metastatic masses of two
treatment plans are the same, which agrees with our theoretical result
that the final metastatic masses only depends on the total drug dosage.
However, the metastatic masses for the (optimal) bang-bang treatment
over (0, T) are always smaller than that for the simple uniform dosage
treatment. The biological interpretation of this result is that the max-
imum drug dosage should be administrated from the beginning of the
treatment period, otherwise the metastatic mass may become too high
for the patient to survive until the treatment ends (see also Example 2).

Example 2. We choose the following parameters in a preclinical
scenario [15]:

= = × = = = =a day b µ day u0.08/ , 6 10 , 10 / , 2/3, 0.1, ¯ 2.8 5

We also set =T 15, =N 150 and =x e( , 0) x in the simulation. The

comparison between J0 and J1 models is illustrated in Fig. 5. We notice
the J0 model shows the undesirable growth in the total metastatic
masses during the early stage of the treatment period, which also il-
lustrates the importance of choosing a realistic treatment model. We
remark that the huge spatial domain = ×b[1, 6 10 ]8 will lead to nu-
merical difficulty for any standard finite difference and finite element
discretization schemes that introduce mesh-based discretization errors
in space. However, the characteristic scheme adopted in our numerical
simulation does not suffer from possible large discretization errors in
space, because it uses exact formulas along the characteristic curves and
the only approximation errors are introduced in the quadrature rule. It
is also worthwhile to mention again the shape of computed optimal
control used by the PGD algorithm only approximates the exact bang-
bang control, whose sharpness in switching behavior is controlled by
the chosen stopping tolerance tol. If a smaller tolerance were used, the
computed optimal control would better approximate the bang-bang
shape of the exact control, but the drawback is that more iterations and
thus more computation time would be needed. Example 3. We choose
the following parameters in a clinical scenario [9]:

= = × = = =
=

a day b µ day u0.0084/ , 6.25 10 , 0.001/ , 2/3, 0.1, ¯
0.5.

8

Fig. 1. Ex 1: Results for the J0 model (red solid line) and the J1 (blue dashed line) model: initial metastatic density (left top), final metastatic density (left bottom),
metastatic mass dynamics (right top), and the computed optimal drug dosage treatment plans (right bottom). The green dotted line in the right bottom panel
illustrates the exact optimal control for J1 model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

Table 1
Comparison of the J0 model and the J1 model (with =T 10).

J0 model J1 model

N Iter Jh
0 U(T) CPU N Iter Jh

1 U(T) CPU

100 9 1.792320 16.926107 0.07 100 1313 2.853595 17.373909 5.79
200 9 1.792249 16.923214 0.14 200 1630 2.853041 17.369267 18.98
300 9 1.792236 16.922678 0.23 300 2075 2.852935 17.370359 47.14
400 9 1.792231 16.922491 0.35 400 1765 2.852903 17.370896 66.91
500 9 1.792229 16.922404 0.56 500 1910 2.852885 17.369670 109.36
Exact 1.792225 16.922400 6.69 Exact 2.852847 17.370000 6.26
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We first set =T 30, =N 300 and =x e( , 0) x in the simulation. It is
observed from Fig. 6 that the J1 model has much better treatment
outcomes and the optimal switching time for the bang-bang control is
τ*≈ 16.7. Different from Example 2, a much smaller a gives much
slower growth rate g(x), which requires a much larger time T to gen-
erate a spatial mesh adequately resolving the domain [1, b].

To illustrate the effects of different initial conditions, we also test
the case with a constant initial colony =x( ) 0.50 and a larger time

=T 90 (set =N 900), as shown in Fig. 7. We observe from Figs. 6 and 7
that the distribution of initial colony does not affect the treatment
outcomes significantly. For the given two initial conditions, the final
colony will take similar shape of a decreasing function; see left bottom
panels of Figs. 6 and 7. We also note that the total drug dosage of op-
timal control for J1 model is slightly more than that in J0 model, but the
treatment outcome of J1 model is significantly better than the J0 model

in the sense that the metastatic mass is much smaller over the treatment
period.

5. Conclusions

In this paper, we have proposed a unified optimal treatment model
based on a validated metastatic cancer growth PDE model. The first-
order necessary optimality condition is derived for characterizing the
optimal control. After that, a projection gradient descent algorithm
built upon the characteristic scheme is developed for its efficient nu-
merical solutions. Numerical results confirm our theoretical conclusions
regarding the non-uniqueness and uniqueness of optimal control in the
J0 and J1 model, respectively.

Based on our analytic and computational studies, we have learned
how the side effects of drug affect the optimal strategy in cancer

Fig. 2. Ex 1: Surface plots of the optimal state ρ and the adjoint state p in J0 model.

Fig. 3. Ex 1: Surface plots of the optimal state ρ and the adjoint state p in J1 model.
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treatment. If the drug is too poisonous, one should always avoid using
it. On the other hand, if the side effect of the drug is negligible, we
should use all possible drug dosages to optimize the outcome. However,
in the case when the side effect of the drug is neither too strong nor too

weak, we need to balance the tumor treatment with drug abuse. So, we
need to consider different types of objective functionals. If the tumor
sizes during the treatment are ignored and we only want to reduce the
final tumor size, it is proved in this paper that the optimal total dosage

Fig. 4. Ex 1: Results for bang-bang treatment (green dotted line) and uniform treatment (black dash-dotted line) with the same optimal total drug dosage
=U T( ) 17.37: initial metastatic density (left top), final metastatic density (left bottom), metastatic mass dynamics (right top), and the drug dosage treatment plans

(right bottom). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Ex 2: Results for the J0 model (red solid line) and the J1 (blue dashed line) model: initial metastatic density (left top), final metastatic density (left bottom),
metastatic mass dynamics (right top), and the computed optimal drug dosage treatment plans (right bottom). The green dotted line in the right bottom panel
illustrates the exact optimal control for J1 model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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Fig. 6. Ex 3 ( = =x e T( ) , 30x
0 ): Results for the J0 model (red solid line) and the J1 (blue dashed line) model: initial metastatic density (left top), final metastatic

density (left bottom), metastatic mass dynamics (right top), and the computed optimal drug dosage treatment plans (right bottom). The green dotted line in the right
bottom panel illustrates the exact optimal control for J1 model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 7. Ex 3 ( = =x T( ) 0.5, 900 ): Results for the J0 model (red solid line) and the J1 (blue dashed line) model: initial metastatic density (left top), final metastatic
density (left bottom), metastatic mass dynamics (right top), and the computed optimal drug dosage treatment plans (right bottom). The green dotted line in the right
bottom panel illustrates the exact optimal control for J1 model. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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is unique but the optimal drug therapies are not unique. In other words,
it does not matter when the drug is applied, as long as by the end of
cancer treatment, the total drug dosage is maintained at a unique op-
timal value. If we take into consideration the tumor sizes along the
whole treatment time, our analysis demonstrates that the optimal drug
therapy becomes unique and the unique optimal solution is of bang-
bang type; namely, one should apply all possible drug dosages at the
beginning of treatment. The J1 model seems to be more realistic than J0
model because the patient may not be able to survive from the high
concentration of tumor cells before the drug treatment completes. The
bang-bang optimal control for J1 model provides mathematical justifi-
cation on the importance and effectiveness of early diagnosis and early
treatment for cancer disease.

Our model can be improved in many different directions. For ex-
ample, we may add nonlinear drug resistance and immunotherapy ef-
fects. We can enforce state constraints to keep a safe level of drug
concentration within the body. For clinical purposes, it is also inter-
esting to consider the time-optimal control problem, where the objec-
tive is to minimize the total treatment time for the given treatment
goals (such as a fixed minimal amount of tumor mass reduction). We
observe from Table 1 that the CPU time of solving the J1 model is much
higher than that of the J0 model. It seems that the computational cost of
the J0 model is roughly of order O(N), while that of the J1 model is
about O(N2), where N is the number of mesh points. Regarding the

efficiency of the developed numerical algorithms, it is possible to fur-
ther speed up our current optimization algorithms by combining mul-
tilevel optimization techniques [20,34] and Nesterov’s accelerated
gradient descent methods [7,35].

Finally, we remark that the size-structured metastatic density ρ(x, t)
itself may not be of obvious biological interests, hence it is also desir-
able to calculate the biological quantities directly without first com-
puting ρ(x, t). For instance, in [15], the authors reformulated the PDE
into a Volterra integral equation of the second kind of convolution type
regarding the biologically observable quantity M(t) only, which allows
more efficient numerical algorithms, such as FFT. Hence, it is very in-
teresting to build optimal control models upon such integral equations,
where the control term u(t) acts on M(t) in a collective manner.
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Appendix A. revisit the technique of change of variables

In [11], the authors suggested to handle the large spatial domain by introducing a change of variable

= =y b
x

i e x beln . . , y

1: procedure u∗=PGD(θ, γ,N, h, tol, kmax)
2: choose an initial guessu(k)

n = 0, 0 ≤ n ≤ N;
3: for k=0:kmax do
4: solve fory(k) = {yn

j : 0 ≤ n, j ≤ N} using the characteristic scheme (forward withy0
j = ρ0(xj))

yn+1
j+1 = (gj/gj+1)yn

j exp
(
−0.5h(u(k)

n + u(k)
n+1)
)
, 0 ≤ n, j ≤ N − 1

yn+1
0 =

1

(g0 − s0β0

2 )

N−1∑
j=1

sj−1 + sj

2
β jy

n+1
j +

sN−1

2
βNyn+1

N + RN(tn+1)

, 0 ≤ n ≤ N − 1.

5: solve forp(k) = {pn
j : 0 ≤ n, j ≤ N} using the scheme (backward withpN

j = −θw(xj))

pn
1 =
[
(pn+1

2 + 0.5h[β2pn+1
1 − θw2]) exp

(
−0.5h(u(k)

n + u(k)
n+1)
)
− 0.5hθw1

]
/(1− 0.5hβ1),

pn
j = (pn+1

j+1 + 0.5h[βj+1pn+1
1 − θwj+1]) exp

(
−0.5h(u(k)

n + u(k)
n+1)
)
+ 0.5h[βj p

n
1 − θwj ],

pn
N = −w(χ(h(2N − n)))e−UN+Un +

N−n∑
j=0

QN−n, j [β(χ(h(N + j))) pn+ j
1 − θw(χ(h(N + j)))]e−Un+ j+Un.

6: computez(k) by the trapezoidal rule

z(k)
n =

∫ b

1
ρ(k)(x, tn)p(k)(x, tn)dx≈

N∑
j=0

QN, j [y
(k)]n

j [ p(k)]n
j

7: updateu(k) to getu(k+1) along the negative gradient direction (based on optimality condition):

u(k+1) = max{0,min{ū,u(k) − αk(γ + z(k))}},
whereαk is the step size computed with the Armijo rule or just taken asαk = 1.

8: if ‖u(k+1) − u(k)‖ ≤ tol then
9: return u∗ = u(k+1); //return the optimal control

10: end if
11: end for
12: end procedure

Algorithm 1. A projection gradient descent (PGD) algorithm: Initialization: =N h T N tol k, , , / , , max Output: The optimal control vector u n N*, 0n .
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and then a change of function

= =v y t x x t be be t( , ) ( , ) ( , ),y y

which lead to the following transformed model (with =f y ay( ) and =b b¯ ln )

+ = < <

= >

=

v y t f y v y t y b t T

f b v b t be v y t dy t

v y ab be y b

( , ) ( ( ) ( , )) 0, 0 ¯, 0 ,

( ¯) ( ¯, ) ( ) ( , ) , 0,

( , 0) ( ), 1 ¯.

t y
b y

y y
1

¯

0

In the finite difference scheme proposed in [11], a uniform spaced mesh in y is used, which creates an exponentially nonuniform mesh in x that
concentrates most of the grid points near the left boundary =x 1. It seems reasonable to accurately resolve the left boundary condition due to its
importance, but their numerical results indicate such a nonuniform mesh in x has difficulty or lower accuracy in approximating the numerical
solutions near the right boundary =x b. In view of the success of the characteristic scheme, which in fact stretches most of the grid points to the right
boundary =x b, we believe a nonuniform mesh in y is needed so that the numerical solutions at large x can be more accurately resolved. Notice that
the nonlocal left boundary condition will not be accurate anyway if the numerical solution is inaccurate near the right boundary.

Based on the above transformed model, we can also develop its characteristic scheme or discretize the y variable in a nonuniform way so that it
produces better grid mesh in the x variable. For example, we may choose the following nonuniform mesh points

= = =y be t jh h T N¯ , , / ,j
at

jj

which corresponds to the following nonuniform mesh in x (clustering towards b)

= = = = =( )x b be b t t jh h T Nexp ¯ ( ), , / .j
at e

j j
1j at j

Due to the large mesh step size in yj or xj near b, any standard finite difference scheme will provide very lower approximation accuracy, while the
nonuniform mesh based characteristic scheme leads to more accurate approximations since it is exact along the characteristic curves and the
approximations to the integral terms are of second-order accuracy. Hence, characteristic schemes are more suitable for optimal control models.

Appendix B. optimal control with Tikhonov regularization

In general, the bang-bang optimal control problem may be ill-posed, in the sense that its optimal solution does not depend continuously on the
data, which hence often needs careful numerical treatments to get numerically stable approximations. For practical numerical approximations, it is a
standard technique (see e.g. [43,51,52] and the references therein) to add a Tikhonov regularization term u t dt( )T

2 0
2 to the original objective

functional to get a regularized problem of minimizing

= +J u J u u t dt( , ): ( , )
2

( )
T

, 0
2

where λ>0 denotes the Tikhonov regularization parameter. For the treatment purpose, we are mainly interested in the limit problem with λ→0,
which can be implemented by taking = h2 for a discretization with a mesh step size h. Such an extra regularization term will turn the last ’bang-
bang’ type variational inequality into a semi-smooth projection formula. Specifically, we arrive at the following optimality condition

= + +

= + +

L u p v u u t v t u t dt v t u t dt v t u t pdxdt

u t pdx v t u t dt

0 ( , , )( ) ( )( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

( ) ( ( ) ( )) ,

u
T T T b

T b

0 0 0 1

0 1

which further leads to the following projection formula for characterizing the optimal control

= + =
+ + >

+ + + =
+ + <

u t z t
u t z t

z t u t z t
u u t z t

( ) 1 ( ( ) ) :
0 if ( ( ) ) ( )) 0,

( ( ) ), if ( ( ) ) ( )) 0,
¯ if ( ( ) ) ( )) 0.

U
1

ad

For simplicity, such a Tikhonov regularization term was not implemented in our numerical simulations, but our proposed PGD algorithm can easily
combine such a Tikhonov regularization term if needed.

Appendix C. A discretize-then-optimize (DO) algorithm

For completeness, we also present a discretize-then-optimize (DO) algorithm for solving our optimal control problem. Let =w w x( )j j . The dis-
cretized objective functional with the composite trapezoidal rule reads

= + = + =y u c c y u c y c c c yu c yuJ ( , ) [ ] [ ] [ ^ ] [ ] [ ]h N1 2 3 3 1 2

where = = = =y yvec y j N n N y y y({ : 0, , , 0, , }), [ , , , ]j
n N N N

N
N

0 1 is the tumor colony size distribution vector at the final time = =t t T,N
=u u u u[ , , , ]N0 1 is the drug dosage decision vector, and the constant quadrature weights vectors

= + + + =c cs w s s w
s s

w s s w s w h h h h[
2

,
2

, ,
2

, ,
2

,
2

], [
2

, , , ,
2

],j j
j

N N
N

N
N1

0
0

0 1
1

1 2 1
1

1
2

=c c c3 1 2 corresponds to the double integral term, and = +c 0 c^ [ ]N N1 ( 1) 1 denotes the obvious zero extension of c1 to match with the length of c3.
Here ⊗ denotes the standard matrix Kronecker product.
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Putting all pieces together, we obtain the following discretized nonlinear optimization problem
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(24)

For better computational efficiency in numerical optimization solvers, we may further linearize the nonlinear constraints in the optimization pro-
blem (24) by introducing a change of variable =z yln( ),j

n
j
n which will then lead to a nonlinear objective function. More specifically, we get a

‘linearized’ problem
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=
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where we need to assume ρ0(xj)> 0. The above linearized formulation is expected to be computationally more favorable to be used in the standard
nonlinear optimization solvers, since it has a smaller number of nonlinear constraints and hence requires fewer computational costs in calculating the
constraints’ Jacobian matrix to be used in optimization solvers (e.g., the SQP algorithm in SNOPT [13] and the interior point algorithm in IPOPT
[53]). The above discretized optimization model treats the states zj

n and control un at all time steps as decision variables (of O(N2)), which leads to a
large-scale sparse nonlinear optimization that can not be easily handled by any black-box optimization solvers. It is often necessary to develop a
specific optimization solver by making use of the sparsity structure of the Jacobian matrix and some efficient preconditioning techniques [18,36,38].
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