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a b s t r a c t

Ever since Richards proposed his flexible growth function more than half a century ago, it has been a

mystery that this empirical function has made many incredible coincidences with real ecological or

epidemic data even though one of its parameters (i.e., the exponential term) does not seem to have

clear biological meaning. It is therefore a natural challenge to mathematical biologists to provide an

explanation of the interesting coincidences and a biological interpretation of the parameter. Here we

start from a simple epidemic SIR model to revisit Richards model via an intrinsic relation between both

models. Especially, we prove that the exponential term in the Richards model has a one-to-one

nonlinear correspondence to the basic reproduction number of the SIR model. This one-to-one relation

provides us an explicit formula in calculating the basic reproduction number. Another biological

significance of our study is the observation that the peak time is approximately just a serial interval

after the turning point. Moreover, we provide an explicit relation between final outbreak size, basic

reproduction number and the peak epidemic size which means that we can predict the final outbreak

size shortly after the peak time. Finally, we introduce a constraint in Richards model to address over

fitting problem observed in the existing studies and then apply our method with constraint to conduct

some validation analysis using the data of recent outbreaks of prototype infectious diseases such as

Canada 2009 H1N1 outbreak, GTA 2003 SARS outbreak, Singapore 2005 dengue outbreak, and Taiwan

2003 SARS outbreak. Our new formula gives much more stable and precise estimate of model

parameters and key epidemic characteristics such as the final outbreak size, the basic reproduction

number, and the turning point, compared with earlier simulations without constraints.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In a well known study of malaria prevention, Ross (1911)
introduced the concept of basic reproduction number which turns
out to be a crucial index measuring the disease outbreak poten-
tial. This index, normally denoted by R0, is defined as the number
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of secondary infections generated by an introduction of a primary
infection into the total population previously unexposed to the
disease. The basic reproduction number has a clear biological
significance as it describes the speed of the disease spreading
through the susceptible population. It is thus important to
estimate the basic reproduction number as early as possible
during the outbreak of a disease. One of the methods for
estimating the reproductive number is to use Richards empirical
growth function to estimate the growth rate of cumulative
infected incidence and then express R0 as an exponential function
involving both the infectious growth rate and another parameter
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defined as the generation time from primary infected case to a
secondary case.

In spite of its many successful applications in real-time data
fitting and prediction of infection dynamics, there seems no clear
biological explanation of the Richards model. Here, we provide an
intrinsic connection between the Richards model and a simple SIR
model with standard incidence function. Especially, we prove that
the basic reproduction number can be explicitly determined from
parameters in the Richards model, and all parameters in the
Richards model can be linked to the parameters of the SIR model
which have explicit biological interpretation.

During a disease outbreak, we are interested in the peak time
with maximal infected incidence and the turning point when the
growth rate reaches its maximum. It is reasonable to expect a
time lag from turning point to peak time. In this paper, we will
show that this time delay can be approximated by the serial
interval. The biological significance of this result is that as long as
we have detected the turning point of an epidemic outbreak, we
know the peak time will be just approximately one serial interval
away. Moreover, we will show that the ratio of peak epidemic size
to the final outbreak size is an explicit function of the basic
reproduction number. This relation enables us to predict the final
size using the peak epidemic value and the basic reproduction
number.

The Richards model originates from the standard logistic
model proposed by Verhulst (1838) who incorporated self-reg-
ulation in the study of population growth. Let N(t) represent the
population size at time t and assume it evolves as follows:

N0ðtÞ ¼ rNðtÞ 1�
NðtÞ

K

� �
, ð1Þ

where r is the intrinsic growth rate and K is the carrying capacity.
There is extensive literature discussing and extending the logistic
model and we refer the reader to the book by May (2001) and
references therein. This model was later generalized by Richards
(1959) with one additional freedom (i.e., the exponent of devia-
tion a) in density dependence as

C0ðtÞ ¼ ~rCðtÞ 1�
CðtÞ

K

� �a� �
: ð2Þ

The Richards model, also named as theta-logistic model in some
literatures (Gilpin and Ayala, 1973; Ross, 2009) was initially
introduced for ecological population growth, but recently adapted
in epidemiology for real-time prediction of outbreak of diseases
such as SARS (cf. Hsieh, 2009; Hsieh and Cheng, 2006; Hsieh et al.,
2004), dengue fever (cf. Hsieh and Chen, 2009; Hsieh and Ma,
2009) and pandemic influenza H1N1 (cf. Hsieh, 2010; Hsieh et al.,
2010).

A simple calculation shows that the solution to (2) can be
explicitly given by

CðtÞ ¼ K½1þae�a~r ðt�tc Þ��1=a, ð3Þ

where tc is the turning point defined as the time when the second
derivative of C(t) vanishes, or equivalently, when C(t) takes the
value Kð1þaÞ�1=a. Set

r :¼ a~r : ð4Þ

Then formula (3) becomes

CðtÞ ¼ K½1þae�rðt�tc Þ��1=a: ð5Þ

We have to mention that in the existing literature, (5), instead of
(3), was used to simulate disease outbreaks. From the mathema-
tical point of view, these two formulas are exactly the same with
a scaling of parameters; see (4). However, from the biological
point of view, we should be careful in applying formula (5) for
practical use because the growth rate here should be r=a, not r.
There is a common minor mistake in Hsieh (2009, 2010), Hsieh
and Chen (2009), Hsieh and Cheng (2006), Hsieh et al. (2010,
2004), and Hsieh and Ma (2009) where r was regarded as the
growth rate.

The Richards model is an empirical model, and one of its
parameters (i.e., the exponential term a) seems to have no clear
biological meaning. Here we intend to revisit the Richards
formula based on a simple SIR model, and to provide epidemio-
logical interpretations to the parameters (for instance, the expo-
nential term a) in the Richards model. Especially, we will show
that the exponential term a has a clear one-to-one relationship
with the basic reproduction number R0.

Moreover, it has been observed that fitting Richards model to
some data is not ideal and the parameters could ‘‘play-off against
each other’’ so that their values become extreme and biologically
implausible (Clark et al., 2010). We believe this is a problem of
over fitting and propose a constraint to reduce the number of
parameters by one. Numerical simulations demonstrate that
fitting with constraints provides more stable and precise estima-
tion of some parameter values.

The remaining part of this paper is organized as follows. In the
next section, we will provide some mathematical analysis on how
to revisit and formally derive the Richards model from the SIR
model. Then, we discuss the over fitting problem and address it by
introducing a constraint. We will also conduct some real data
fittings using the reported data of a few diseases to validate our
approach. The conclusion and discussion are given in the last
section.
2. Revisiting the Richards model from SIR model

Compartmental models are built and analyzed for epidemic
outbreaks. The population is separated into compartments and
assumed to be transferred from one compartment to another with
certain rates. In general, the terminology SIR is used to describe
the phenomenon that the individual is moving from the suscep-
tible class to the infective class I and finally flows into the
recovery class R. In a deterministic formulation, the behavior of
the disease dynamics is determined totally by its current status
and by the rules which describe the rate of change of population
in each compartment (Brauer, 2008).

Let S(t), I(t) and R(t) be the numbers of individuals in the
susceptible, infected and removed (i.e., recovered or quarantined)
class at time t, respectively. Based on the aforementioned trans-
mission dynamics, we consider the following SIR model:

S0 ¼ �bS
I

Sþ I
, ð6Þ

I0 ¼ bS
I

Sþ I
�gI, ð7Þ

R0 ¼ gI, ð8Þ

where b denotes the transmission rate and g is the recovery rate,
or more precisely, the rate of individuals removed from the
infected class by recovery or being quarantined. Here we only
consider the simple case when there is no birth or death. Also, we
assume the population in the infected class will restrict their
social activity after being recovered/quarantined. Therefore, the
denominator in the transmission term is the sum of susceptible
and infected individuals Sþ I, not the total population Sþ IþR.
Throughout this paper, we will still name g to be the recovery
rate.

Note that in what follows, the initial value S(0) is not the total
population of the community. Instead, we regard S(0) as the
number of individuals in the susceptible class who will eventually
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be infected, namely, the value of S(t) vanishes as t goes to infinity.
The initial value I(0) is positive but relatively small compared
with S(0), and the initial value R(0) is set to be zero. Using the
next generation method (Diekmann et al., 1990, 2010; van den
Driessche and Watmough, 2002; Heffernan et al., 2005), it is easy
to calculate the basic reproductive ratio of this model as

R0 ¼ b=g: ð9Þ

From (6) and (7), it follows that

dðSþ IÞ

dS
¼
gðSþ IÞ

bS
:

Solving the above equation, we obtain

SðtÞþ IðtÞ ¼ cSðtÞg=b, ð10Þ

where

c :¼ ½Sð0Þþ Ið0Þ�Sð0Þ�g=b: ð11Þ

A combination of (6) and (10) gives

S0 ¼ �bS½1�ðS=LÞa�, ð12Þ

where

a :¼ 1�g=b ð13Þ

and

L :¼ c1=ð1�g=bÞ: ð14Þ

Note that Eq. (12) has exactly the same form as Eq. (2). It can be
solved explicitly by

SðtÞ ¼ L½1þaebðt�tjÞ��1=a, ð15Þ

where

b : ¼ ab ð16Þ

and tj is the turning point defined as the finite time where
S00ðtÞ ¼ 0, or equivalently,

SðtjÞ ¼ Lð1þaÞ�1=a:

As mentioned before, we set the initial value S(0) to be the
population in the susceptible class that will eventually be
exposed to virus. This is the reason why we observe from (15)
that

lim
t-1

SðtÞ ¼ 0:

We are interested in the number of the accumulated cases
defined as

JðtÞ :¼ IðtÞþRðtÞ

¼N�SðtÞ

¼N�L½1þaebðt�tjÞ��1=a, ð17Þ

where N is the constant total population. It is easily seen from
(11), (14) and the equation N¼ Sð0Þþ Ið0Þ that

N� L ð18Þ

as Ið0Þ=Sð0Þ-0. Consequently,

JðtÞ � L�L½1þaebðt�tjÞ��1=a: ð19Þ

As in the Richards model, here the parameter L is (asymptotically
equal to) the final outbreak size and tj is the turning point. Note
from (9), (13) and (16) that a¼ 1�1=R0 is related to the basic
reproductive ratio, and b¼ b�g is the infectious rate.

Now we are ready to formulate some explicit relations
between the parameters in (5) and (19). Firstly, we hope that
the final size and the turning point should be the same in both
formulas, namely, we set

K ¼ L ð20Þ
and

tc ¼ tj: ð21Þ

Furthermore, we require the accumulated cases at the turning
point be the same, leading to

CðtcÞ ¼ JðtjÞ:

From (5) and (19), we obtain

ð1þaÞ�1=a
þð1þaÞ�1=a

¼ 1: ð22Þ

It can be shown that viewing as a function of a, a¼ aðaÞ is a
decreasing function which maps [0,1] into ½1,1Þ; see Appendix.
With the aid of Lambert W-function (DLMF, 2011, Section 4.13),
we have the following explicit formula (cf. Appendix):

a¼
WmW�1

p ½lnð1�ð1þaÞ
�1=a
Þ�

lnð1�ð1þaÞ�1=a
Þ

�1, ð23Þ

where Wp(x) and Wm(x) are two branches of solutions to the
equation WeW

¼ x. Noting that a¼ 1�1=R0, the above equation
provides an explicit one-to-one connection between the basic
reproduction number and the exponential term a. Finally, we
require the derivatives of C(t) and J(t) at the turning point
t¼ tc ¼ tj are the same, which gives rise to

r

ð1þaÞ1=aþ1
¼

b

ð1þaÞ1=aþ1
: ð24Þ

In view of (4), (13) and (16), Eqs. (22) and (24) provide us an
explicit and one-to-one connection between the parameters ð~r ,aÞ
in the Richards model (2) and ðb,gÞ in the SIR model (6). Define

f ðtÞ :¼ ð1þae�rtÞ
�1=a

ð25Þ

and

gðtÞ :¼ 1�ð1þaebtÞ
�1=a: ð26Þ

It then follows from (5) and (19) that

CðtÞ ¼ Kf ðt�tcÞ, JðtÞ � Lgðt�tjÞ: ð27Þ

Given any aA ½0,1� (i.e., R0 ¼ 1=ð1�aÞZ1) and b40, we set

vða,b,tÞ :¼ f ðtÞ�gðtÞ

or equivalently,

vða,b,tÞ ¼ ð1þae�rtÞ
�1=a
þð1þaebtÞ

�1=a
�1, ð28Þ

where a and r are functions of a and b determined by the relations
(22) and (24). It is readily seen from (24) and (28) that

vða,b,tÞ ¼ vða,1,btÞ:

The functions vða,1,tÞ for different values of a are plotted in Fig. 1.
We observe from numerical calculations that vða,1,tÞo0:022 for
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all aA ½0,1� and tAR; see Table 1. Thus, we have

sup
aA ½0,1�,b40,tAR

vða,b,tÞo0:022:

Therefore, we conclude from (27) and (28) that the functions C(t)
in (5) and J(t) in (19) are close to each other for all tAR provided
the four connection formulas (20), (21), (22) and (24) are satisfied.
We would like to mention that the connection formulas (22) and
(24) can also be obtained by matching the local linearizations of
the functions f(t) in (25) and g(t) in (26) near zero. (When t is far
away from zero, the difference between these two functions is
exponentially small.)

Before ending this section, we provide two explicit formulas
for peak time and peak epidemic value in terms of parameters in
the SIR model. The peak time ti is defined as the time when
I0ðtiÞ ¼ 0, which coupling with Eq. (7) gives

bSðtiÞ

SðtiÞþ IðtiÞ
¼ g:

In view of (10), (13) and (14), we then obtain

SðtiÞ ¼ Lðb=gÞ�1=a: ð29Þ

Coupling the above two equations yields

IðtiÞ ¼ LR�R0=ðR0�1Þ
0 ðR0�1Þ, ð30Þ

where we have used the definition of basic reproduction number
(9). Thus we have found an intrinsic relation among the peak
value, the final size and the basic reproduction number. Conse-
quently, we are able to predict the final outbreak size from the
above expression with the knowledge of peak epidemic value and
basic reproduction number. Moreover, substituting (29) and (15)
gives

1þaebðti�tjÞ ¼ b=g:
Table 1

Numerical calculations of a, r and JvJ¼ suptAR9vða,1,tÞ9 for b¼1 and a varies from

0 to 1.

a a r JvJ

0 3.04886 2.35634 0.02183

0.1 2.66933 2.09303 0.01899

0.2 2.35535 1.87871 0.01630

0.3 2.09135 1.70123 0.01377

0.4 1.86631 1.55209 0.01139

0.5 1.67222 1.42519 0.00916

0.6 1.50313 1.31603 0.00708

0.7 1.35450 1.22124 0.00512

0.8 1.22284 1.13824 0.00330

0.9 1.10540 1.06502 0.00159

1 1 1 0

Table 2

Results for the 2009 pandemic H1N1 cases in Canada by using different approaches w

compute a¼ 0:488328. Similarly, from a¼ 0:477159 and ð1þaÞaþð1þaÞa ¼ 1 we can c

Parameters Richards best fit Computation from SIR best fit and ou

K 316.551 319.435

a 1.69349 1.71416

r 0.412008 0.397669

tc 16.4575 16.5552

SIR best fit Computation from Richards best fit and our fou

L 319.435 316.551

a 0.477159 0.488328

b 0.273789 0.286314

tj 16.5552 16.4575
Taking (9) and (13) into account, we have

R0 ¼ ebðti�tjÞ: ð31Þ

When b¼ ab¼ b�g is small (i.e., R0 � 1), we can approximate the
exponential function on the right by a linear function 1þbðti�tjÞ.
On the other hand, we have R0 ¼ 1þb=g from (9) and (16). It
follows that

ti�tj � 1=g, ð32Þ

which means that the time interval between the turning point
and the peak time is approximately the serial interval T ¼ 1=g.
3. Over fitting problem

In fitting the real data by our formula (19), we found that the
best fit sometimes lead to estimation of a outside of the interval
(0,1), which is biologically unreasonable. A similar phenomenon
occurred when the Richards formula is used. This is due to the
redundancy of parameters which causes the over fitting. To
address this over fitting issue, we introduce one constraint to
reduce the number of parameters in (19) from four to three. In
practise, one may be able to obtain an estimate of the recovery
rate at the early stage of a disease outbreak. We choose to fix this
parameter and use our formula (19) for real time prediction of
disease outbreaks. Later on, we carry out some sensitivity analysis
to see how our results depend on the choice of this parameter.

We should mention that our simulations do produce different
results from those reported in the existing literature because we
have added one constraint. However, the numerical simulations
(cf. Table 2) based on both Richards and our formulas with the
same constraints should not vary too much because these two
formulas have intrinsic connections with each other, as shown in
the previous section.
4. Validation and application

In this section, we validate our formula (19) by applying it to
four real data: Canada 2009 H1N1 two-stage epidemic outbreak
data, GTA 2003 SARS two-stage epidemic outbreak data, Singa-
pore 2005 dengue data, and Taiwan 2003 SARS data. We wish to
show that our formula does provide a reliable tool for simulation
of a disease outbreak, and for detecting the turning point and
multiple waves/phases.

Case 1: Canada 2009 H1N1 outbreak. The Canada 2009 H1N1
outbreak occurred from April 12 to June 19, 2010 and it involved
two stages: 4/12-5/4 and 5/4-6/19. In order to fit the data by
using our formula, we have to determine the recovery rate which
is the reciprocal of serial interval; see Lipsitch et al. (2003) for the
ith fixed recovery rate g¼ 0:3. From a¼1.69349 and ð1þaÞaþð1þaÞa ¼ 1 we can

ompute a¼1.71416.

r four relationships Absolute difference Relative difference (%)

2.884 0.9

0.02067 1.2

0.014339 3.5

0.0977 0.6

r relationships Absolute difference Relative difference (%)

2.884 0.9

0.011169 2.3

0.012525 4.6

0.0977 0.6



Table 3
Results for the 2009 H1N1 cases in Canada using our formula with fixed recovery rate g¼ 0:3.

Time period Basic reproduction number Turning point Final size

4/12-5/4 1.9127 [1.8370, 1.9883] 16.56 [16.00, 17.11] 319.4 [301.0, 337.9]

5/4-6/19 1.3577 [1.3467 1.3687] 31.81 [31.32, 32.29] 5093 [4996, 5189]
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Fig. 2. Numerical simulation for the Canada 2009 H1N1 outbreak with two waves:

the first stage is from April 14 to May 4, 2009 and the second stage is from May

4 to June 16, 2009.

Table 4
Parameter estimates (with recovery rate fixed as g¼ 1=8:4) during the period 2/

23-4/30 of the GTA 2003 SARS outbreak.

Time

period

Basic reproduction

number

Turning point Final size

2/23-4/04 2.42 [2.31 2.53] 30.34 [29.50 31.19] 123.4 [116.8 130.0]

2/23-4/14 2.30 [2.24 2.36] 31.75 [31.33 32.18] 135.6 [133.0 138.1]

2/23-4/18 2.27 [2.21 2.33] 32.02 [31.65 32.40] 137.5 [135.5 139.6]

2/23-4/20 2.26 [2.20 2.31] 32.16 [31.79 32.51] 138.4 [136.6 140.3]

2/23-4/22 2.25 [2.19 2.31] 32.25 [31.91 32.60] 139.1 [137.4 140.8]

2/23-4/24 2.24 [2.18 2.29] 32.33 [31.99, 32.66] 140.0 [138.0 141.2]

2/23-4/26 2.23 [2.18 2.28] 32.40 [32.08 32.73] 140.2 [138.7 141.6]

2/23-4/28 2.22 [2.17 2.27] 32.46 [32.15 32.78] 140.5 [139.1 141.9]

2/23-4/30 2.21 [2.16 2.27] 32.54 [32.22 32.85] 141.0 [139.7 142.4]

Table 5
Parameter estimates (with recovery rate fixed as g¼ 1=8:4) during the period 4/

18-6/11 of the GTA 2003 SARS outbreak.

Time

period

Basic reproduction

number

Turning point Final size

4/18-5/31 2.29 [2.21 2.37] 37.82 [36.67 38.95] 276.0 [264.9 287.0]

4/18-6/02 2.37 [2.29 2.46] 36.53 [35.76 37.30] 263.3 [257.2 269.5]

4/18-6/04 2.44 [2.35 2.52] 35.88 [35.30 36.46] 257.6 [253.6 261.7]

4/18-6/06 2.48 [2.39 2.56] 35.48 [35.01 35.95] 254.4 [251.5 257.4]

4/18-6/08 2.51 [2.42 2.59] 35.27 [34.87 35.68] 252.8 [250.5 255.2]

4/18-6/11 2.53 [2.45 2.61] 35.12 [34.78 35.46] 251.7 [249.9 253.5]
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definition of serial interval. Cowling et al. (2009) estimated the
95% confidence interval for serial interval of seasonal influenza (in
days) is [2.9, 4.3]. Hence, we fix the recovery rate in our formula
to be 0.3. Sensitivity analysis shows that the results do not vary
much if we choose the recovery rate between 0.23 and 0.34; see
Appendix B.

We list in Table 3 the estimates obtained by using our formula:
the basic reproduction ratio R0 is 1.91 for the first stage and 1.36
for the second; the turning point of first wave occurred on April
29 (tj¼16.56) and the turning point of second wave is June 5
(tj¼31.81); the final sizes in each stage are 319.4 and 5093,
respectively. The fitted curve is shown in Fig. 2. Our estimates on
turning points coincide with those obtained by Hsieh et al. (2010)
but their estimates on final sizes are slightly larger than ours. If
we introduce the same constraint g¼ 0:3 to the Richards model,
then the difference between two models is insignificant; see
Table 2. We would also like to remark that the basic reproduction
number in Hsieh et al. (2010) was computed by using the formula
R0 ¼ expðrTÞ where T is the serial interval. The more accurate
formula should be R0 ¼ expðrT=aÞ because r=a, instead of r, is the
growth rate; see discussion in the Introduction.

Case 2: GTA 2003 SARS outbreak. Health Canada pinpointed that
the first phase for the Great Toronto Area (GTA) SARS started from
February 23 and ended on April 21, 2003. Moreover, it was
reported that the actual infected number of the first stage is
141. Here we will apply our formula to fit the GTA 2003 SARS
data. First of all, we fix the recovery rate to be g¼ 1=T where
T¼8.4 is the serial interval of SARS (Lipsitch et al., 2003). In
Table 4, we list numerical estimates of model parameters by using
the data in different time intervals. It is remarkable that our
estimates for the basic reproduction number, turning point and
final size are very stable. By using a similar method as in Hsieh
and Cheng (2006), we detect that the first stage ended near April
18, which is very close to the Health Canada’s assessment (April
21). Based on the data of first wave (2/23-4/18), we estimate the
basic reproduction number as 2.27 with 95% confidence interval
(CI) [2.21, 2.33]. The turning point for the first outbreak is March
27 (tj¼32.02), and the final size is 137.5 [135.5, 139.6]. This is
similar to the result obtained by Hsieh and Cheng (2006).

For the second stage (4/18-6/11), we estimate that (cf. Table 5)
the basic reproduction number is 2.53 [2.45, 2.61], the turning
point is May 23 (tj¼35.12), and the final size is 251.7 [249.9,
253.5]. This result again coincides with that obtained in Hsieh and
Cheng (2006) where they estimated that the turning point is May
24 and the final size is 249. It is worth to mention that if we use
the formula R0 ¼ expðrTÞ to calculate the basic reproduction
number, it will give unreasonable value 21.8. However, if we
use the corrected formula R0 ¼ expðrT=aÞ, the result becomes 3.3;
noting that r¼0.367, a¼2.576 in the last line of Table 3 in Hsieh
and Cheng (2006) and T¼8.4 (cf. Lipsitch et al., 2003; Hsieh,
2009). This justifies that the growth rate in the Richards model
should be r=a, instead of r.

In Table 5, we also use the data with different end points to
demonstrate that our estimates of model parameters are stable.
The epidemic curve is illustrated in Fig. 3.

Case 3: Singapore 2005 dengue outbreak. We apply our formula
to Singapore 2005 dengue outbreak data from e-week 17 to
e-week 52. We choose the serial interval to be T¼19/7 weeks;
see Aldstad (2007) and Hsieh and Ma (2009). Hence, the recovery
rate is fixed at g¼ 1=T ¼ 7=19. The basic reproduction ratio R0 is
estimated to be 1.45. The turning point fitted by using our
formula is e-week 35 (tj¼18) and the final size is 10,971. This
coincides with the result obtained by using the Richards model
(Hsieh and Ma, 2009). Note that the basic reproduction number
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Fig. 3. Numerical simulation for the GTA 2003 SARS outbreak with two stages: 2/

23-4/18 and 4/18-6/11.

Table 6
Results for the Singapore 2005 weekly dengue outbreak data (e-week 17–52). The

recovery rate is fixed as g¼ 7=19.

Time

period

Basic reproduction

number

Turning point Final size

17–44 1.46 [1.43 1.49] 18.74 [18.05 19.44] 10,979 [10,475 11,483]

17–45 1.46 [1.43 1.49] 18.68 [18.11 19.26] 10,928 [10,530 11,327]

17–46 1.46 [1.43 1.49] 18.64 [18.15 19.13] 10,892 [10,569 11,215]

17–47 1.46 [1.44 1.48] 18.63 [18.19 19.05] 10,880 [10,611 11,149]

17–48 1.46 [1.44 1.48] 18.63 [18.24 19.00] 10,884 [10,655 11,114]

17–52 1.45 [1.44 1.47] 18.75 [18.47 19.04] 10,971 [10,824 11,119]
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Fig. 4. Epidemic curve for the cumulative dengue cases in Singapore during e-

weeks 17–52, 2005.

Table 7
Estimated results for the 2003 SARS cases in Taiwan. The recovery rate is fixed as

g¼ 1=8:4.

Time

period

Basic reproduction

number

Turning point Final size

2/25-6/25 1.88 [1.85 1.91] 69.18 [68.88 69.49] 453.2 [450.3 456.0]
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Fig. 5. Epidemic curve for the 2003 Taiwan SARS cases.
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(1.89) calculated in Hsieh and Ma (2009) was using the formula
R0 ¼ expðrTÞ. If we use the corrected formula R0 ¼ expðrT=aÞ, then
the number would be 1.56, which is very close to our estimate.
We would also like to mention that the parameters in our formula
are stable by using different end weeks; see Table 6. The
numerical simulations are also illustrated in Fig. 4.
Case 4: Taiwan 2003 SARS outbreak. We conduct a numerical
estimation for 2003 SARS outbreak in Taiwan. As before, we set
the recovery rate to be g¼ 1=T where T¼8.4 days is the serial
interval of SARS; see Lipsitch et al. (2003) and Hsieh (2009). The
basic reproduction number is estimated as 1.88 with 95% CI [1.85,
1.91]. The turning point is May 5 (tj¼69.18) and the final size is
453.2 [450.3, 456.0]; see Table 7. The epidemic curve is also
illustrated in Fig. 5.
5. Conclusion and discussion

In this paper, we derived from the SIR model an explicit
formula for the accumulated infected cases in terms of four
parameters: final size, turning point, basic reproduction number
and infectious rate. We showed that our formula has an intrinsic
connection with the Richards empirical formula. In other words,
we are able to provide biological interpretations to all of the
parameters in the Richards model, especially the exponential
term a.

Furthermore, we observed that four parameters in either the
Richards model or our simulation based on the SIR model are too
much to do data fitting and we propose one constraint that one
parameter such as the recovery rate is fixed. This assumption is
reasonable because in practice we may obtain the value of this
parameter shortly after the disease outbreak.

Moreover, we conducted some numerical simulations for real
time prediction of several diseases (H1N1, SARS, dengue) and
provided more stable and precise forecast of final outbreak size
and the basic reproduction number, compared with previous
simulations with no constraint.

It is an important issue to be addressed whether our formula
(and thus the Richards model) provide equally good prediction of
turning points and multiple waves when there are more disease
stages rather than the setting of SIR.



Table B1
Statistical test with 5000 samples generated by Poisson distribution. Richards

(constraint) means the Richards model with constraint g¼ 0:3, and the last line is

obtained by applying the Richards model without constraint.

Models Final size (std) Turning point (std)

SIR 320.4 (22.4) 16.57 (0.57)

Richards (constraint) 323.4 (21.4) 16.24 (0.59)

Richards 465.5 (91.5) 16.84 (1.35)
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Appendix A. The relation between a and a

From (22) we have

ð1þaÞ�1=a
þð1þaÞ�1=a

¼ 1:

Note that

ð1þaÞ�1=a
¼ exp �

1

a
lnð1þaÞ

� �

and the function

hðxÞ :¼
1

x
lnð1þxÞ

is a decreasing function on the positive real line because

h0ðxÞ ¼
x�ð1þxÞlnð1þxÞ

x2ð1þxÞ
o0

for any x40. Hence, the function ð1þaÞ1=a is increasing for a40.
Similarly, the function ð1þaÞ�1=a is increasing for a40. Conse-
quently, viewing as a function of a, a¼ aðaÞ is decreasing for
aAð0,1Þ; recall from (9) and (13) that a¼ 1�1=R0Að0,1Þ since
R041. Numerical computation shows that when a increases from
0 to 1, a should be decreasing from 3.04886 (precise to the fifth
decimal place) to 1; see the first two columns in Table 1.

Now we are ready to prove (23), namely,

a¼
WmW�1

p ½lnð1�ð1þaÞ
�1=a
Þ�

lnð1�ð1þaÞ�1=a
Þ

�1:

Note from (DLMF, 2011, Section 4.13) that Wm and Wp are two
solutions to the equation WeW

¼ x and Wp(x) is an increasing
function which maps ½�1=e,1Þ onto ½�1,1Þ, while Wm(x) is a
decreasing function which maps ½�1=e,0Þ onto ½�1,�1Þ. For
aAð0,1Þ, it is easily seen that ð1þaÞ�1=aAð1=e,1=2Þ and thus
lnð1�ð1þaÞ�1=a

ÞAð�1,0Þ. Consequently, W�1
p ½lnð1�ð1þaÞ

�1=a
Þ�A

ð�1=e,0Þ and WmW�1
p ½lnð1�ð1þaÞ

�1=a
Þ�Að�1,�1Þ. Especially,

WmW�1
p ½lnð1�ð1þaÞ

�1=a
Þ�o lnð1�ð1þaÞ�1=a

Þo0,

which implies a40. By the monotonicity of ð1þaÞ1=a for a40, we
are left to verify that a given above is indeed a (and thus the
unique positive) root to the equation

ð1þaÞ�1=a
þð1þaÞ�1=a

¼ 1:

Firstly, it can be easily shown that

W�1
m ½ð1þaÞlnð1�ð1þaÞ�1=a

Þ� ¼W�1
p ½lnð1�ð1þaÞ

�1=a
Þ�:

The left-hand side is

ð1þaÞlnð1�ð1þaÞ�1=a
Þ � ð1�ð1þaÞ�1=a

Þ
1þa

and the right-hand side is

ð1�ð1þaÞ�1=a
Þlnð1�ð1þaÞ�1=a

Þ:

Hence, we obtain

ð1þaÞð1�ð1þaÞ�1=a
Þ
a
¼ 1,
which yields

1�ð1þaÞ�1=a
¼ ð1þaÞ�1=a:

This ends our proof of (23).
Appendix B. Statistical test and sensitivity analysis

We use the first stage (4/12-5/4) of Canada 2009 H1N1 out-
break data to conduct some statistical test. Assuming the daily
infected case follows a Poisson distribution with mean being the
same as the reported number, we generate 5000 samples and fit
each data set by applying formulas derived from the SIR model
and the Richards model, respectively. As before, we fix the
recovery rate to be g¼ 0:3. The SIR model estimates that the final
size has mean 320.4 with standard deviation 22.4, and the turning
point has mean 16.57 with standard deviation 0.57. The Richards
model with the same constraint g¼ 0:3 estimates that the mean
final size is 323.4 (std 21.4) and the mean turning point is 16.24
(std 0.59). It is also noted that the Richards model without
constraint gives mean final size 465.5 (std 91.5) and mean turning
point 16.84 (1.35); see Table B1. Therefore, we conclude that the
Richards model with four parameters may induce over fitting
problem and this problem can be solved by introducing one
constraint (fixing recovery rate).

The serial interval of seasonal influenza has 95% CI [2.9, 4.3]
(cf. Cowling et al., 2009), which implies that the recovery rate has
95% CI [0.23 0.34]. We increase the recovery rate g from 0.23 to
0.34 and conduct numerical simulation for each g. It is shown that
the final size ranges from 317.8 to 323.0, the turning point lies in
the interval [16.52, 16.58], and the basic reproduction number
varies from 1.80 to 2.20. Thus, the parameters are insensitive to
the choice of recovery rate.
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