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PERIODIC SYSTEMS OF DELAY DIFFERENTIAL EQUATIONS AND
AVIAN INFLUENZA DYNAMICS

X.-S. Wang and J. Wu UDC 517.929

ABSTRACT. Modelling the spread of avian influenza by migratory birds between the winter refuge
ground and the summer breeding site gives rise to a periodic system of delay differential equations ex-
hibiting both the cooperative dynamics (transition between patches) and the predator-prey interaction
(disease transmission within a patch). Such a system has two important basic reproductive ratios, each
of which being the spectral radius of a monodromy operator associated with the linearized subsystem
(at a certain trivial equilibrium): the (ecological) reproduction ratio R§ for the birds to survive in the
competition between birth and natural death, and the (epidemiological) reproduction ratio R} for the
disease to persist. We calculate these two ratios by our recently developed finite-dimensional reduction
and asymptotic techniques, and we show how these two ratios characterize the nonlinear dynamics of
the full system.

1. Introduction

Periodic systems of delay differential equations arise naturally from modelling the spread of zoonotic
diseases such as avian influenza, West Nile virus, and Lyme disease, which are influenced by strong
seasonality in temperate climates. For example, describing the spatiotemporal distributions of migrant
birds requires a meta-population (patchy) model involving population densities in different (breeding,
winter feeding, and stopovers) patches along a particular migration route, where time delays are needed
to account for the flight times between patches and periodic coefficients must be used to reflect the
seasonality of various biological activities such as birth and migration [2] and [5]. A periodic DDE
system was also proposed in [14] for Lyme disease dynamics as a consequence of the interaction of a
spirochete with multiple vertebrate hosts and a vector with a two-year life cycle with strong seasonality,
where the state variables include tick population sizes at all stages and time lags correspond to the
development time of different stages of the vector.

The threshold dynamics of the spatial dynamics model of migrant birds was discussed in [2] and [5].
The threshold is linked to the spectral radius of the monodromy operator associated with the linearized
system (at the trivial equilibrium) via a standard application of the Krein—-Rutman theorem and some
results on discrete monotone dynamical systems. Extensions of this threshold dynamics were also
obtained in [1] for the periodic epidemic model that involves the interaction of migrant birds and do-
mestic poultry and the stratification of the bird population by the disease status (susceptible/infected).
For the sake of applications, it is very important to develop an approach to calculate/estimate the
aforementioned spectral radius when model coefficients are close to step functions with values equal to
zero outside corresponding biological activities (for example, the birth rate is zero outside the breeding
season, and migration rates are zero outside corresponding migration seasons). This motivated the
finite dimension reduction and asymptotic analysis in [11] and [12] for the corresponding bird migra-
tion population model. It remains to see how these techniques are related to the approach developed
in [7] and [8] that transforms the calculation of the spectral radius of the monodromy operator to a
linear ODE boundary value problem.
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The purpose of this paper is to show how these finite dimension reduction and asymptotic analysis
techniques can be pushed further for the corresponding epidemic models. More precisely, we aim to
find an asymptotic formula for the dynamic threshold of a simple two-patch disease model with the
patch connected by bird migration.

2. The Model

To state the model, we let S,, and S, denote the number of susceptible birds at the winter refuge
site and the summer breeding site respectively. Here and in what follows, the subscript w indicates
a variable associated with the winter refuge site, and the subscript b, for the breeding site. Also,
we let I, and [, be the number of infected birds at the winter refuge site and summer breeding site
respectively. We consider the following periodic system of delay differential equations

Su0) = Iy + ]S + Ayt~ m)Su(t = ) — G700V )
n = —[u;,+mwb<t>1fw<t>+azwmbw<t—7bw>fb<t—nw>+ﬁw(j’() “i 2
SHO) = Lt o 01SH(0) + @munt — ) Sult — 1) — ool O g

S0+ 1,0
rosio |1- %0

BoSp(t)In(1)

Sp(t) + Ip(t)’
where p1;, and pj are death rates of the susceptible birds, and pi, and uz are death rates of the infected
birds in the respective winter or breeding site. The function my,, (or myp) is the migration rate from
the breeding (or winter) site to the winter (breeding) site. We use constants 74, and 7,5 to denote
delays due to migration, namely, the durations for the birds to fly from one site (patch) to another.
The coefficients oy, and «,, are survival probabilities of susceptible birds during migrations, while the
constants abw and awb are survival probabilities of the infected birds during migrations. We assume
that only the susceptible birds can reproduce and their offsprings are also susceptible, and we assume
that the reproduction is described by a logistic function with b(¢) being the birth rate and K the
capacity. The constants 3, and 3, are disease transmission rates at the winter and the breeding site,
respectively, and we use the standard incidence function and assume no infected birds can recover
from the infection.

Ill)(t) = _[M%) + mbw(t)]lb(t) + O‘Z}bmwb(t - wa)lw(t - wa) + (21d)

3. Positivity and Boundedness

We assume that all of the parameters in model (2.1) are positive constants or nonnegative and
nontrivial periodic functions with the same period T'. The appropriate initial conditions for this delay
system are

S9@) >0 and I0(0) >0 for any 6 € [—Tysp, 0];

S2(0) >0 and I2(0) >0 for any 6 € [—Tpy,0). (3.1)
The corresponding state space is defined as
Y := C[—Twb, 0] X C[—Twp, 0] X C[—Tpww, 0] X C[—Tpuw, 0] (3.2)
equipped with the usual maximum norm. As in [5], we introduce the subspace
M = {(S9,1°,80. 1)) cY: and S°(0)=1°(0)=52(0) = I{(0) =0, (3.3)
M (0)S2(0) = My (0)I2(0) = 0 for any 6 € [~7Tyup, 0], and .
My (0)SP(0) = i (0)19(9) = 0 for any 6 € [—T, 0]} (3.5)
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Proposition 3.1. The solutions of system (2.1) subject to the initial conditions are nonnegative for
any t > 0. Moreover, if (S9,10,S0, 1)) € Y \ M, then either (Sy(t),Sp(t)) > 0 for all t > t* or

(L (), I(1)) > 0 for all t > t*, where t* := Typ + T + . Specifically, if S3(0) > 0 or SP(0) >

0 or mwb( )S9(0) > 0 for some 0 € [—Tup, 0] or mp,(0)SY(0) > 0 for some 6 € [—Tpy,0], then

( w(t), Sp(t)) > 0 for all t > t*. Similarly, if I3(0) > 0 or I2(0) > 0 or myu,(0)I%(0) > 0 for some
0]

€ [~Tuwb, 0] 0or mpy,(0)I2(0) > 0 for some 0 € [—Tpy, 0], then (I,(t), Ip(t)) > 0 for all t > t*.

Proof. The nonnegativity follows from a standard argument as in [9, Theorem 5.2.1]. The second
statement can be obtained by a similar argument as in [5, Proposition 2.1] or [1, Theorem 3.2]. ||

Using the argument in [5, Proposition 2.2], we can also show the following result.

Proposition 3.2. Let N(t) be the total bird population of the system (2.1) with initial conditions (3.1).

Then
limsup N(t) < B/u,
t—o00
where B := K” max b(t) < oo and p = min{us,, pily, s, i} > 0.

4 0<t<T

4. Assumption for Migration

As in [11], we will assume that the migratory activity is insignificant during the summer breeding
season and the winter refuge time; the population left in the winter refuge site (resp. summer breeding
site) after spring (resp. autumn) migration is comparably negligible; and breeding activity does not
occur during autumn and winter seasons.

Due to seasonality of bird migration, it is natural to assume that all the nonconstant coefficients in
system (2.1) are periodic functions with the period 7" = 365 days. Let ty = nT', for an arbitrarily fixed
n € N. We shift the time so that #( is the starting date when the birds begin to fly to the summer
breeding site in a particular year. Denote by ¢; the time when the birds in the winter patch stop their
spring migration to the summer breeding site. Assume the birds start their autumn migration at the
time to and autumn migration ends at the time t3. Let T} := t; — tg, To 1= to — t1, T35 := t3 — to,
and Ty := tg + T — t3 represent the durations of the aforementioned biological activities; we have
T, + 15+ T3+ Ty = T. It is natural to also assume t1 + 7y < to and t3 + 74, < to + 1. In what
follows, we assume that the migration rates are piecewise constants:

Muyp(t) = My Lig<t<t;  and  mpy(t) = My ey <i<ts, (4.1)

where 1 is an indicator (characteristic) function of a variable that equals one if the variable is satisfied
and zero otherwise. The second assumption we will use is that the migration rates are so large that
almost all the birds leave the winter (resp. summer) patch after spring (resp. autumn) migration.
Mathematically, this means that the quantity

€= e_Mwal + e_MbwT3 (42)

is sufficiently small. Finally, we assume that breeding activity does not take place during autumn and
winter seasons, namely, the birth function is also a piecewise constant as follows:

b(t) = bo * Ligry,<t<ty- (4.3)

In the following sections, we will always assume the three conditions (4.1)—(4.3) are satisfied. Moreover,
we will use O(g) to denote a quantity that vanishes as e — 0. Also, O(1) denotes a bounded quantity.
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5. Basic Reproductive Ratios

We start with the disease-free subsystem

Su() = =lpgy + 1w (0)]Sw(t) + G, M (t = Tow) So(t = Tow) (5.1)
Sy(t) = =[5 + muw ()96 (E) + gpmuwb(t = Twp)Sw (t = Tu)
+b(t)Sp(t) [1 — Sp(t)/ K], (5.2)

which is exactly the same as the one studied in [11]; see also [2]. By [11, Theorem 4.1] we obtain an
asymptotic formula for the (ecological) basic reproductive ratio:

exp[(bo - NZ)(Tl + 15 — wa)] afybals)wabew
explps, (T3 + Ta — Tow)] (Mup + bo + p1, — p) (M + p1y — 13,)

The above subsystem is cooperative and we can apply the well-studied theory on monotone dynamic
systems (cf. [15]) to obtain the following results.

RS (5.3)

Proposition 5.1. If Rj < 1, then the zero equilibrium in system (2.1) is globally asymptotically
stable.

Proof. By [5, Theorem 3.2], if R < 1, then the solutions of the subsystem (5.1) will tend to zero as
t — oo. Since the components (Sy,(t), Sp(t)) of the solutions to the original system (2.1) are bounded
by the solutions of the subsystem (5.1) by the comparison principle [9, Theorem 5.1.1], we obtain the
global asymptotic stability of the trivial equilibrium. | ]

Therefore, if R§ < 1, then (Sy(t),S(t)) — 0 for the original system (2.1) by using a standard
comparison argument, from which we can also conclude that (I, (t), I(t)) — 0 as t — oo.

We now consider the case where R > 1. First of all, we consider the linearized system for the
infected birds at the disease-free nontrivial equilibrium (S} (¢),0, S;(¢),0):

I, (t) = [Buw =ttty — M (£) Lo (8) + 0y (E — Tou) I (t — T ); (5.4a)
I{)(t) = [,Bb — /Lz — mbw(t)]lb(t) + afubmwb(t — wa)Iw (t — wa). (54b)

In the same way as we did in [11, Theorem 4.1], we obtain the (epidemiological) basic reproductive
ratio:

Rb ~ exp[ry(Th + To — Tup) + 1w (T5 + Ty — 7o)
Al Oy Moty M

X b
(Myp — 7w 4+ 75) (Mpyy — 15+ 7T20)

(5.5)

where
Tw = Buw — pty, and 1y = By — pf (5.6)
are infection rates at two patches.

Proposition 5.2. If RS > 1 and RY < 1, then the disease-free nontrivial equilibrium (S;(t),0, S5 (t),0)
in system (2.1) is globally asymptotically stable.

Proof. By [5, Theorem 3.2], if R < 1, then the solutions of the subsystem (5.4) will tend to zero as
t — oo. Since the components (I, (t), [5(t)) of the solutions to the original system (2.1) is bounded
by the solutions of the subsystem (5.4), we conclude that I,(¢) — 0 and I,(f) — 0 as t — oo. Thus,
the system (2.1) is reduced to the subsystem (5.1) (in the sense of being asymptotically periodic),
which possesses a global asymptotic stable periodic equilibrium (57 (¢), S; (t)) by the condition Rf > 1
and [5, Theorem 3.2]. ||
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6. Finite-Dimensional Reduction

Numerical simulation shows that if both R§ and R} are greater than one, then the endemic equilib-
rium is unstable when R} is small compared with R§, and the trivial equilibrium is stable when Rj is
large compared with Rf. This suggests that there should be another threshold value, denoted by R,
that characterizes the asymptotic stability of the trivial equilibrium. In order to find an asymptotic
formula for Rf, we need to apply the method of finite-dimension reduction introduced in [11] to reduce
the DDE system (2.1) to an ODE system.

Recall that the interval of one year [tg, to+ 7] is divided into four seasons separated by t1, t2, and 3.
First, we consider the spring time at the winter patch. For t € [to,?1], we obtain from (2.1) and (4.1)
that

So(t) = —(pg, + Mup)Su(t) — gzi“)’?f,:g (6.1)
() = —(ph, + M) Lu(t) + PuSu()Lu(t) (6.2)

Suw(t) + Lu(t)
Define P, (t) := Sy(t)/[Sw(t) + I, (t)] to be the proportion of susceptible birds in the total population.
A simple calculation gives
Fy(t) _ Su(t) _ Su(t) + I, (t) _
Pult) ~ Sult) ~ Sult) + Lu(t)
where 7, := [, — p1, is the infection rate defined in (5.6). This is a logistic equation, and the solution
is given by

—(rw + p)[L = P (8)],

exp[—(ruw + i) (£ = to)]

Pl = cxpl (s + 5 )0~ 10)] 141/ Pulto)’ (0

Applying this to the equations of Sy, (t) and I, (t) yields
Sw(t) = Sw(tO) exp[—(,ufu + Muyp + ﬁwpw (t))(t - tO)]; (6'4)
Ly(t) = Ly(to) exp[—(uly + My — BuwPu(t))(t — to)], (6.5)

where

Fu(t) = t—to/t:Pw = jto/t:[H(mwi)ti() *

_log[Py(to)e™ (rotui)(t=to) — P, (to) + 1]
(rw + pig,) (£ — to) '
Note that the average P, (t) remains in the interval [0, 1] and equals 0 (resp. 1) if and only if P(to)

equals 0 (resp. 1). Now we investigate the bird population at the birth site during the spring migration.
For t € [ty + Twp, t1 + Tws), where 7, is the time lag, we obtain from (2.1), (4.1), and (4.3) that

St — iSO+ SO0 - Si0/K: (60

) i), (67

The above system is integrable even though a closed form of the solution seems impossible to obtain.
Also note from (4.2) and (6.4)-(6.5) that Sy, (t1) = O(e)Sy(to) and I,,(t1) = O(e)lw(to) as ¢ — 0. It
then follows from (2.1) and (4.1) that

Su(t) = O(2)Sw(te) and Ly(t) = O()Ly(to) (6.8)

for all ¢t € [t1,t2 + Tpw].- As mentioned earlier, O(g) denotes a quantity that vanishes as ¢ defined
n (4.2) tends to zero.

Sllj(t) = O‘fuwawa(t - wa) -

Lt) = gy Mupl(t — Twp) +
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Now, we study the bird population at the birth site during the summer. For ¢ € [t] + Ty, o], it is
readily seen from (2.1) and (4.1) that

/ ﬁbsb(t)lb(t)
S0 = =50 + blo)
BySy(t)Iy(t)

B0 = gy fe ~ 0. (6.10)

The above system is also integrable.
In the next step we consider the dynamics of autumn migration. For ¢ € [ta, t3], we obtain from (2.1),
(4.1), and (4.3) that

— ppS(t) + boSy(t)[1 — Sp(t)/K]; (6.9)

/ B s BuSp(t)In(t) |
Sp(t) = —(up + Myw)Se(t) — Sy(t) + I(t)’ (6.11)
/ B i BuSp(t)Ip(t)
L(t) = —(up+ Mow)Ip(t) + () + I(t)° (6.12)
This is similar to the system (6.1)-(6.2), and we have the following closed form:
Sp(t) = Sp(t2) exp[—(tp + Mow + BoPo(t))(t — t2)]; (6.13)
13(t) = Ty(ta) expl—(u + My — BoB(1))(t — 12)], (6.14)
where
5 N _log[Py(ta)eretHi)(=12) — Py (ty) + 1]
Pb(t) = ‘_ tg ) Pb(S)dS = — (T‘b i /Lz)(t _ tg)
with
Po(t) = Sp(t) expl—(rp + py) (t — t2)] (6.15)

Sp(t) + Ip(t) — exp[—(ry + i) (t — t2)] — 1+ 1/Py(t2)
being the proportion of susceptible birds. It is noted from (4.2) and (6.13)-(6.14) that Sy(t3) =
O(g)Sp(t2) and Iy(t3) = O(e)Ip(t2). Consequently, we obtain from (2.1), (4.1), and (4.3) that

Sp(t) = 0(e)[Sp(to) + Sw(to)] and  Iy(t) = O(e)[Lb(to) + Lu(to)] (6.16)

for any t € [t3,to + T + 7Typ). Recall that O(e) denotes a quantity that vanishes as ¢ defined in (4.2)
tends to zero.
The system for the birds at the winter site also follows from (2.1) and (4.1):

BuSw () L (¢

St (t) = oy My Sp(t — Tow) — S )+ (t; 115,80 (£); (6.17)
I1,(t) = oy Moo I (t — 7o) + ()() E? ey L (t). (6.18)

Finally, we consider the bird population during the winter. On account of (6.16), we only need to
study the equations of birds at the winter site. For ¢ € [t3 + Ty, to + T, it is easily seen from (2.1)
and (4.1) that

Ly s _ BuwSuw(t)Lw(t).
Py BuSw () L (1)
L) = —plw(t) + Sun(t) + Tn(t)’ (6.20)
Similar to (6.4)-(6.5), the explicit solution of above system is given by
Su(t) = Sw(t3 + Tpw) exp[—(,ufU + My + ﬁwpw(t))(t —t3 — Tow)); (6.21)
Ly(t) = Ly(t3 + Tow) exp[_(lu’fj_} + Myp — ﬁwpw(t))(t — 3 — Tohw)]; (6.22)
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where

_ 1 t
P,(t) = P, d
W =, /+ o(5)ds
10g [Py (t3 + Ty )e~ o)t =m00) — P (t5 + 73,,) + 1]

(rw + p3,)(t — 3 — Tow)

and the proportion

exp—(rw + pg) (t —t3 — Tow)]

Poll) = pl v+ )t — t3 — )] — 1+ 1/ Puts + 1)

(6.23)
In conclusion, we have used the method of finite-dimension reduction (cf. [11]) to show that given
nonnegative initial value (Sy,(to), I (to), Sp(t0), Ip(to)) at the beginning of the spring, the DDE sys-
tem (2.1) is reduced to four successive ODE systems (cf. [11]): (6.1)-(6.2) and (6.6)-(6.7) for the
spring migration; (6.9)-(6.10) for the summer breeding; (6.11)-(6.12) and (6.17)-(6.18) for the autumn
migration; and (6.19)-(6.20) for the winter refuge.

7. The Threshold for Disease Persistence

With the aid of the above reduced ODE systems, we are now ready to define and calculate the
dynamic threshold Rf. Due to the nonlinearity of the standard incidence function, it seems impossible
to linearize the ODE system with respect to Sy, Iy, Sp, Ip. However, we could view the system as
equations of Sy, Ly, Sw/Iw, Sp, Iy and Sy /I and linearize it at Sy, (tg) = 0, I, (tg) = 0, Sy (to)/Lw(to) =
0, Sp(to) =0, Iy(to) = 0 and Sy(to)/Ip(to) = 0. For t € [to, t1], we have from (6.1)-(6.2) that

S{u(t) = _(Mfu + Mwb)Sw(t) - ﬁwsw(t); (71)
I,(t) = (i + Mup) (). (7.2)
For t € [to + Twb, t1 + Tws), we have from (6.6)-(6.7) that
Sp(t) =y MupSuw(t — Twp) — BrSp(t) + (Do — 1) Sh(t); (7.3)
Il/)(t) = Othwawa(t - wa) - N%)Ib(t)7 (74)
For t € [t1 + Twp, t2], we have from (6.9)-(6.10) that
Sp(t) = (bo — 15)Su(t) — BoSu(t); (7.5)
I = b, (7.6)
For t € [ta,t3], we have from (6.11)-(6.12) that
Sp(t) = —(p + Maw)Sp(t) — BoSp(t); (7.7)
L(t) = —(up+ Myw)Ip(2). (7.8)
For t € [t3 + Tpw, to + T, we have from (6.17)-(6.18) that
S{u (t) = aZwawa(t - wa) - ﬁwsw(t) - Mfusw(t); (79)
I{u(t) = Oé%)wawa(t - wa) - :uiulw(t)' (7'10)
For t € [t3 + Tpw, to + T, we have from (6.19)-(6.20) that
S;u(t) = _Mi;sw(t) - ﬁwsw(t); (7'11)
1) =~ L) (7.12)



Let F' be the Poincaré map F' of the reduced ODE system, namely,

Sw(tO) Sw(to + T)
Ly (to) Ly(to +T)
.| Sw(to)/Tw(to) Sw(to+T)/Tw(to+T)
P |7 st (7.13)
Iy(to) Iy(to +T)
Sb(to)/fb(to) Sb(to + T)/Ib(to + T)

Denote by DF'(0) the linearized operator DF' value taken at the trivial equilibrium, i.e., DF(0) is a
6 x 6 square matrix obtained by integrating the above linear system. Now we define Rf to be the
spectral radius (principle eigenvalue) of the linear operator (matrix) DF'(0).

Theorem 7.1. The threshold Rf has the following asymptotic formula:

exp[(bo — 5 — By + pp) (T1 + To — Tu)]
exp|(Buw + 1, — 1) (T5 + Ta — o)
% . ai;b(Mwb + /Liu - /L%;)
g, (Mupp +bo + 15, — 11 + Buw — Bp)
o (Myy + p1h — ity

R

X . 7.14
O‘%;w(Mbw +/LZ _Mfu +5b_ﬁw) ( )
Proof. Solving the linear system (7.1)-(7.12), we obtain
Su(t) = Sy(to)e” HutMutBu)(t—to), (7.15)
Io(t) = I,(tg)e WutMun)(i=to) (7.16)
for t € [to,tl], and
Sp(t) = Splto+ wa)e(bo—Hi—ﬁb)(t—to—‘rwb)
i anwawa(tO)
My +bo + Buw — By + 5, — 1
x [elbo= i =Bo)(t=to—Twp) _ o= (i Mup+Bu) (t—to —Tus)] (7.17)
i (—to— wbMuwvlw(to)
L(t) = Iy(to—+ Typ)e Holtto Tup) 4 Ywb , ,
) = Blfo + 7ui) My + iy —
% [e—ui(t—to—fwb) _ e—(MZJ-FMwb)(t—to—wa)] (7.18)
for t € [to + Twb, t1 + Tuwp), and
Sp(t) = Sp(ty + Tup)elboH Bt =Tup). (7.19)
L(t) = Ity + myp)e st Tw) (7.20)
for t € [t1 + T, 2], and
Sy(t) = Sb(t2)e—(ui+Mbw+ﬁb)(t—t2); (7.21)
I(t) = Iy(ty)e”WitMm)i=t) (7.22)
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for ¢ € [ta, 3], and

_ 5 Y (4t Ay My Sy (t2)
Su(t) = Sulty + Tpy)e” Putru)t—te=mw) 4 bw
Q (f2 7+ 7o) M + By — oo + 115 — 13

« {e (Buwtp3,) (t—t2—Tyw) _ 6_(ui+Mbw+Bb)(t_t2—wa):| : (7.23)

o M Iy (t2)

Io(t) = Ity + Tp)e Fult=t2=mw) 4 “bw , :

®) (2 + 7o) My + gy — p,
|: :u'w(t to— wa _e_(“é'i'Mbw)(t_t?_wa)] (724)

for t € [to + Thw, t3 + Thw), and

Sw(t) = Sults + mhw)e Potr)i=ts=me); (7.25)
Iw(t) = Iw(t3+7_bw)e_ui"(t_t3_7bw) (7.26)

for t € [t + Tpw, to + T1.
Similarly to the proof of [11, Theorem 4.1], we obtain from (4.2), (6.8), and (6.16) that Sy(to+71) =
O(e), I(to + T) = O(e), Sp(to + T)/Ly(to + T) = O(e) and

Suw(to+T) = (DF)11(0)Su(to) + O(1)S(to); (7.27)
Lo(to+T) = (DF)2(0)Lu(to) + O()1(to); (7.28)
Sw(to+T) Sw(to)

Ly(to+T) DE)s0) gy TOD: (7.29)

where O(1) denotes a bounded quantity and

exp((bo — pj — Bp)(Th + To — Tu)]
exp[(Bw + p5,) (T3 + Ty — Tow)]
% Wy Mt
Mwb+bo+ufu—ﬂi+/3w—ﬁb
Mbw
Mbw"‘ﬂb Mw‘f‘/@b_ﬁw’

(DF)11(0)

(7.30)

(DF)22(0) ~ exp[—py(T1 + To — Tup) — iy (T3 + Th — Tow)]
(Mup, + iy, — 1) (M + pafy — pi,)’

and
expl(bo — 15 — By + ) (T1 + To — Tup)]
exp[(Buw + 15, — 1) (T3 + Ty — Tow)]
w Al (M + 1y, — 1)
Qo (Mugb + bo + 15, — py + Buw — Bb)
o (Mt —p)
oo (M + 15 — 15, + Bo — Buw)
It follows from the definition of Rfj that

R = max{(DF)11(0), (DF)22(0), (DF)33(0)} = (DF)33(0).

(DF)33(0) ~

(7.32)

This proves the theorem. [
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Remark 7.2. It is readily seen from (5.3), (5.5), and (7.14) that if ry, = 1y, then
1
R~ .
it
The locally asymptotic stability of the trivial equilibrium follows from the definition of Rf and the
fact that system (2.1) is reduced to a finite-dimensional periodic system whose Poincaré map is F.

Theorem 7.3. If R§ > 1, R} > 1, and R§ < 1, then the trivial equilibrium of system (2.1) is locally
asymptotically stable. If R§ > 1, Rb > 1, and R§ > 1, then the trivial equilibrium of system (2.1) is
locally asymptotically unstable.

Proof. It R§ < 1, then by definition, the spectral radius of the linearized Poincaré map at S, (to) = 0,
I,(to) = 0, Sw(to)/Lw(to) =0, Sp(te) = 0, Ip(to) =, and Sp(tg)/Ip(to) = 0 is less than one. Hence, the
trivial equilibrium is locally asymptotically stable. If Rf > 1, then we have to linearize the system
at Sw(to) = 0, Iw(t()) = 0, Iw(to)/sw(to) = 0, Sb(to) = 0, Ib(to) =, and Ib(to)/sb(to) = 0. A similar
approach as in the derivation of the asymptotic formula for Rj shows that the corresponding spectral
radius is equal to max{R§, R, 1/R§}, which is again larger than one. Therefore, the trivial equilibrium
is locally asymptotically unstable. [ ]

Remark 7.4. We use the following simple SIR model with periodic logistic birth to illustrate our idea
of linearizing the standard incidence function.

pS()I(t)

S = WSOl -So/K] - g1~ s
IW) = g~ HT):

The ecological basic reproductive ratio is

_ 1 (T
b= b(t)dt
0

is the average of birth rate during the period T'. The epidemiological basic reproductive ratio is

where

Now we introduce a new function T(t) := S(t)/I(t) and linearize the above system at S(0) = 0,
I1(0) =0, and T'(0) = 0 to obtain

S'(t) [b(t) — B — p]S(t);
I'(ty = —p'I(t);
T = [b(t) — B -t + EIT().
Integrating this linear system during a given period gives the dynamic threshold
RS = max{e(E—B—MS)T7 e—uiT7 e(E—B—usﬂﬁ')T} — =Byt )T _ g%_

We further introduce a function V(t) := I(t)/S(t) and linearize the system at S(0) =0, 1(0) =0, and
V(0) = 0:

S'(t) = [b(t) — p’]S();
I't)y = (B—p)I(t);
T'(t) = —[b(t) B —pu*+u]T(1).
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The spectral radius of the corresponding linearized Poincaré map is the mazimum of Rf, Rf, and
1/R§; see also the proof in the previous theorem.

8. Discussion

In this paper, we have used the method of finite-dimensional reduction and some asymptotic tech-
niques to derive asymptotic formulas for two basic reproductive ratios (R§ and R}) and the threshold
(RG) of a patch disease model for avian influenza transmitted by migratory birds in patches. The
two basic reproductive ratios R§ and Rf characterize the ecological and epidemiological dynamics
respectively, and the competition between R and Rg is determined by a threshold Rf as follows:

R§ < 1: the trivial equilibrium is globally asymptotically stable.

R§ > 1 and R < 1: the disease-free positive periodic solution is globally asymptotically stable.
R§ > 1, R > 1, and R§ < 1: the trivial equilibrium is locally asymptotically stable.

R§ > 1, Rf > 1, and R§ > 1: the trivial equilibrium is locally asymptotically unstable.

It would be interesting to prove that in Case 3, the trivial equilibrium is globally asymptotically stable
and that in Case 4, there exists an endemic periodic solution that is globally asymptotically stable.
The main difficulty arises from the fact that the full model is a coupled system combining a cooperative
system and a predator-prey subsystem, and the theory for monotone dynamic systems ([15]) no longer
applies.

We would also like to mention that our definition of basic reproductive ratios for periodic systems is
the reproductive ratio after one period with a small perturbation of zero equilibrium. Mathematically,
it is defined as the spectral radius of the linearized Poincaré map. This is slightly different with the
definition of the basic reproduction number by using the next generation matrix/operator [3, 4, 6, 10],
and [13].
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