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In this paper, we derive some properties of a Ramanujan type entire function. A mild 
generalization of the Garret-Ismail-Stanton m-version of the Rogers-Ramanujan 
identities is obtained. Moreover, we investigate the zeros of the Ramanujan type 
entire function, and our results generalize those for the zeros of the Ramanujan 
function. Finally, an integral equation related to the Ramanujan type entire function 
is also derived.
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1. Introduction

In his lost notebook [18, p. 57], Ramanujan wrote

Aq(z) :=
∞∑

n=0

qn
2

(q; q)n
(−z)n =

∞∏
n=1

[
1 − zq2n−1

1 −
∑∞

j=1 yjq
jn

]
, (1.1)

and gave explicit values for yj for 1 ≤ j ≤ 4. Andrews [1] interpreted (1.1) as a Weierstrass factor product 
representation and that the n-th zero has the asymptotic series q1−2n[1 −

∑∞
j=1 yjq

jn]. This agrees with 

Hayman’s results about asymptotic expansion for the zeros of entire functions of the form 
∑∞

n=0 anq
n2
zn

with an bounded for all n; see [7]. Andrews proved the result only in the special case 0 < q < 1/2. Al-Salam 
and Ismail proved that the zeros of Aq(z) are real and simple and interlace with the zeros of Aq(qz); see 
[12] for references. Ismail and C. Zhang [15] proved that if zn, n = 1, 2, · · · , denote the zeros of Aq(z) in 
ascending order, then q2n−1zn is analytic in qn; namely, the asymptotic series 1 −

∑∞
j=1 yjq

jn is actually 
convergent, where q is allowed to be in the interval (0, 1). They also investigated the structure of the 
coefficients and showed that the coefficients are in a polynomial ring with three generators involving two 

* Corresponding author.
E-mail addresses: dandai@cityu.edu.hk (D. Dai), mourad.eh.ismail@gmail.com (M.E.H. Ismail), xswang@louisiana.edu

(X.-S. Wang).
https://doi.org/10.1016/j.jmaa.2020.123856
0022-247X/© 2020 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jmaa.2020.123856
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jmaa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmaa.2020.123856&domain=pdf
mailto:dandai@cityu.edu.hk
mailto:mourad.eh.ismail@gmail.com
mailto:xswang@louisiana.edu
https://doi.org/10.1016/j.jmaa.2020.123856


2 D. Dai et al. / J. Math. Anal. Appl. 485 (2020) 123856
transcendental functions in q, and the coefficients in the polynomial are rational functions of q. The function 
Aq(z) also appeared in the Rogers–Ramanujan identities, which actually give infinite product representations 
for Aq(−1) and Aq(−q). The Garrett–Ismail–Stanton generalization of the Rogers–Ramanujan identities 
expresses Aq(−qm) as a linear combination of Aq(−1) and Aq(−q) with coefficients being rational functions 
of q; see [5].

Ismail [11] pointed out that the Plancherel-Rotach asymptotics of the q−1-Hermite polynomials, the 
Stieltjes–Wigert polynomials and the q-Laguerre polynomials involve the function Aq(z) and the asymptotics 
of the k-th largest zero of any of these polynomials involve the k-th zero of Aq(z). In other words, Aq(z)
plays the role like the Airy function in the asymptotics of the Hermite and Laguerre polynomials; see [12]
and [19]. Recently, the Plancherel–Rotach asymptotics of the Al-Salam–Chihara polynomials were studied 
in [13], which led to a two-parameter function

F (w,A,B; q) =
∞∑

n=0

n∑
k=0

(−w)nq(
n
2)AkBn−k

(q; q)k(q; q)n−k
. (1.2)

The same function appeared again in our work [3] where we established Plancherel–Rotach asymptotics for 
a class of orthogonal polynomials satisfying recurrence relations whose coefficients are polynomials in q−n. 
This two-parameter function turned out to be similar in nature to a scaled form of the q-exponential function 
introduced by Ismail and R. Zhang [16].

The rest of the paper is arranged as follows. In Section 2, we study some elementary properties of the new 
function F (w, A, B; q). In Section 3, we prove a mild generalization of the Garrett-Ismail-Stanton m-version 
of the Rogers-Ramanujan identities obtained in [5]. In our result, the Schur polynomials are also polynomials 
in q but their definition involves a double sum. Garrett [4] studied the very interesting combinatorics of the 
Garrett-Ismail-Stanton formula in terms of partitions. We expect our results will lead to a more elaborate 
combinatorial theory. Section 4 is devoted to a study of the zeros of F (w, A, B; q) when B/A = q1/2+k

with k = 0, ±1, ±2, · · · . It turns out that the n-th zero is an analytic function of qn, which generalizes the 
results for the zeros of Aq(z) given in [15]. On the other hand, our generalization involves a positive integer 
parameter m and the structure of the j-th Taylor coefficient of the expansion of the n-th zero depends on 
the residue of j modulo m. In other words, there is certain sieving process involved. Finally, an integral 
equation for F (−w, e−iθ, eiθ; q) is given in Section 5.

2. Elementary properties of F (w, A, B; q)

We first introduce the polynomials of two variables A and B:

un(A,B; q) =
n∑

k=0

[
n

k

]
q

AkBn−k = (AB)n/2Hn(cos θ | q), (2.1)

where e2iθ = B/A and

Hn(cos θ | q) =
n∑

k=0

[
n

k

]
q

ei(n−2k)θ (2.2)

are the Rogers-Szegő polynomials or the q-Hermite polynomials; see [12]. Here,

[
n

k

]
:= (q; q)n

(q; q) (q; q) , k = 0, 1, 2, · · · , n

q k n−k
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is the q-binomial coefficient; see the notations and terminology about q-series and relate functions in Andrews 
et al. [2], Gasper and Rahman [6]. It is readily seen from (1.2) and (2.1) that F (w, A, B; q) is a generating 
function of un(A, B; q):

F (w,A,B; q) =
∞∑

n=0

q(
n
2)(−w)n

(q; q)n
un(A,B; q). (2.3)

Actually, we have another generating function (see [17, (1.14.1)])

∞∑
n=0

un(A,B; q) tn

(q; q)n
= 1

(At,Bt; q)∞
, |At| < 1, |Bt| < 1, (2.4)

from which we observe that un(A, B; q) has a single-term closed form if and only if B = −A, or B = Aq±1/2. 
In the former case the generating function becomes 1/(A2t2; q2)∞, and in the case B = Aq1/2 the generating 
function turns out to be 1/(At; q1/2)∞. Therefore, we have

u2n+1(A,−A; q) = 0, u2n(A,−A; q) = (q; q)2n
(q2; q2)n

A2n,

un(A,Aq1/2; q) = (q; q)n
(q1/2; q1/2)n

An = un(Aq1/2, A; q). (2.5)

The above formulas are known because they are essentially the evaluations of the q-Hermite polynomial 
Hn(x | q) at x = 0 and x = (q1/2 + q−1/2)/2, respectively. From (2.3) and the above formulas, one can see 
that F (w, A, −A; q) and F (w, A, Aq1/2; q) are indeed the q-Airy functions:

F (w,A,−A; q) = Aq2

(
−A2w2

q

)
, F (w,A,Aq1/2; q) = Aq1/2

(
Aw

q1/2

)
. (2.6)

When B = Aq−k+1/2 for k ∈ N0, we have the following representation.

Theorem 2.1. With un(A, B; q) defined in (2.1), we have, for k ∈ N0,

un(A,Aq−k+1/2; q) = (q; q)nAnq−kn

min{k,n}∑
j=0

[
k

j

]
q

(−1)jq(
j
2)

(q1/2; q1/2)n−j
. (2.7)

Proof. From (2.4), it is clear that, for any |t| < |qk/A|,

∞∑
n=0

un(A,Aq−k+1/2; q) tn

(q; q)n
= 1

(At,Atq−k+1/2; q)∞
= (Atq−k; q)k

(Atq−k, Atq−k+1/2; q)∞

= (Atq−k; q)k
(Atq−k; q1/2)∞

.

Recalling formulas (1.9.8) and (1.14.1) in [17], we get

(Atq−k; q)k =
k∑

j=0

[
k

j

]
q

q(
j
2)−jk(−At)j and 1

(Atq−k; q1/2)∞
=

∞∑
m=0

(At)mq−mk

(q1/2; q1/2)m
.

Then, the above two formulas give us the desired result. �
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In the following proposition, we give a recurrence relation satisfied by un(A, B; q).

Proposition 2.2. With un(A, B; q) defined in (2.1), we have

(A + B)un(A,B; q) = un+1(A,B; q) + AB(1 − qn)un−1(A,B; q). (2.8)

Proof. From the definition of un(A, B; q) in (2.1), we get

Bun(A,B; q) − un+1(A,B; q) =
n∑

k=0

[
n

k

]
q

AkBn+1−k −
n+1∑
k=0

[
n + 1
k

]
q

AkBn+1−k

=
n+1∑
k=0

(
1 − qn+1−k

1 − qn+1 − 1
)[

n + 1
k

]
q

AkBn+1−k.

As the coefficient vanishes when k = 0, we change the index from k to k + 1 and obtain

Bun(A,B; q) − un+1(A,B; q) = −
n∑

k=0

qn−k

[
n

k

]
q

Ak+1Bn−k.

This gives us

(A + B)un(A,B; q) − un+1(A,B; q) =
n∑

k=0

(1 − qn−k)
[
n

k

]
q

Ak+1Bn−k.

Since the term vanishes when k = n, we extract the factor AB(1 − qn) out of the above summation and 
obtain (2.8). �

From the above proposition, we get a functional relation among F (w, A, B; q), F (qw, A, B; q) and 
F (q2w, A, B; q).

Proposition 2.3. We have[
1 − (A + B)w

]
F (qw,A,B; q) = F (w,A,B; q) + ABqw2F (q2w,A,B; q). (2.9)

Proof. The equation (2.3) can be considered as a Taylor expansion of F (w, A, B; q) near w = 0. Let us 

consider the coefficients of wn for the function 
[
1 − (A +B)w

]
F (qw, A, B; q) −F (w, A, B; q), which can be 

simplified as

q(
n+1

2 )(−1)n+1

(q; q)n

[
(A + B)un(A,B; q) − un+1(A,B; q)

]
.

Moreover, the coefficients of wn for the last term ABqw2F (q2w, A, B; q) in (2.9) is given by

ABq
q(

n−1
2 )(−1)n−1

(q; q)n−1
q2(n−1)un−1(A,B; q) = q(

n+1
2 )(−1)n+1

(q; q)n
AB(1 − qn)un−1(A,B; q).

Using the recurrence relation of un(A, B; q) in (2.8), the above two formulas are indeed the same. This 
proves (2.9). �
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It is more convenient to write (2.9) in the following form[
1 − (A + B)w

q

]
F (w,A,B; q) = F (w/q,A,B; q) + AB

q
w2F (qw,A,B; q). (2.10)

Now, we interchange the summations in the definition (1.2) and make use of the Euler’s theorem [12, 
Theorem 12.2.6] to obtain

F (w,A,B; q) = (Aw; q)∞
∞∑

n=0

(−Bw)nq(
n
2)

(Aw, q; q)n
. (2.11)

This implies that F (w, A, B; q) is essentially a q-Bessel function of the type J (3)
ν , where ν depends on the 

variable w: qν+1 = Aw. This situation is similar to the functions arising from the spectral analysis of 
orthogonal polynomials generalizing the Lommel and the q-Lommel polynomials [10].

Ismail and R. Zhang [16] introduced the q-exponential function

Eq(cos θ; t) :=
(
t2; q2)

∞
(qt2; q2)∞

∞∑
n=0

(
−ieiθq(1−n)/2,−ie−iθq(1−n)/2; q

)
n

(−it)n

(q; q)n
qn

2/4. (2.12)

It was later proved that

(qt2; q2)∞Eq(x; t) =
∞∑

n=0

qn
2/4tn

(q; q)n
Hn(x | q); (2.13)

see [12]. Note that the left-hand side of (2.13) is an entire function of t for fixed x and is an entire function of 
x for fixed t. Moreover, the t-pole singularities of Eq(x; t) are all canceled by the infinite product (qt2; q2)∞. 
The major difference between the series in (2.3) and (2.13) lies in the powers of q: one is q(

n
2) and the other 

one is qn2/4.

3. Rogers-Ramanujan type identities

Garrett, Ismail and Stanton [5] proved the following generalization—which is usually referred to as the 
m-version—of the Rogers-Ramanujan identities

Aq(−qm) =
∞∑

n=0

qn
2+mn

(q; q)n
= (−1)mq−(m2 )am(q)

(q, q4; q5)∞
+ (−1)m+1q−(m2 )bm(q)

(q2, q3; q5)∞
, (3.1)

where

am(q) =
∑

0≤2j≤m−2
qj

2+j

[
m− j − 2

j

]
q

, bm(q) =
∑

0≤2j≤m−1
qj

2
[
m− j − 1

j

]
q

, (3.2)

for m > 1, and

a0(q) = b1(q) = 1, a1(q) = b0(q) = 0. (3.3)

The polynomials am(q) and bm(q) were considered by Schur in conjunction with his proof of the Rogers–
Ramanujan identities. They are solutions to the discrete system
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yn+2 = yn+1 + qnyn, (3.4)

with the initial conditions in (3.3).
We may also derive a similar Rogers-Ramanujan type identity for F (−qm+1, q2k, q; q2). To see this, by 

replacing A by Aqk in (2.7), we find that

un(Aqk, Aq1/2; q) = (q; q)nAn

min{k,n}∑
j=0

[
k

j

]
q

(−1)jq(
j
2)

(q1/2; q1/2)n−j
. (3.5)

Substituting this into (2.3) leads to

F (w/A,Aqk, Aq1/2; q) =
∞∑

n=0
q(

n
2)(−w)n

min{k,n}∑
j=0

[
k

j

]
q

(−1)jq(
j
2)

(q1/2; q1/2)n−j
.

We interchange the summations on the right-hand side of the above formula, and then shift the index 
n − j = m to obtain

F (w/A,Aqk, Aq1/2; q) =
k∑

j=0

[
k

j

]
q

wjqj(j−1)A√
q(wqj−1/2), (3.6)

where A is a constant, but A√
q is the Ramanujan function defined in (1.1). Note that the right-hand side in 

the above equation is independent of A. Without loss of generality, we may take A = 1. With w = −q(m+1)/2, 
we find that

F (−q(m+1)/2, qk, q1/2; q) =
k∑

j=0

[
k

j

]
q

(−1)jqj(j−1)+j(m+1)/2A√
q(−qj+m/2). (3.7)

Coupling this with the formula obtained by Garrett–Ismail–Stanton (3.1) gives us

F (−qm+1, q2k, q; q2) = ām(q)
(q, q4; q5)∞

+ b̄m(q)
(q2, q3; q5)∞

, (3.8)

where ām(q) and b̄m(q) are rational functions of q.
We next consider the function F (−q(m+1)/2, A, B; q). When m = −2s, s ∈ N, is even, we set

F (−q−s+1/2, A,B; q) = Xs q
−(s2). (3.9)

Then, (2.10) becomes [
qs + A + B

√
q

]
Xs = Xs+1 + AB

q
Xs−1. (3.10)

We solve this recursion using the generating function

G(z) :=
∞∑
s=0

Xsz
s. (3.11)

It is easy to see that (3.10) implies
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G(z) = zG(qz)
(1 − zA/

√
q)(1 − zB/

√
q) +

X0 + X1z − [1 + (A + B)/√q]zX0

(1 − zA/
√
q)(1 − zB/

√
q) .

Note that (3.10) also indicates that

X1 − [1 + (A + B)/√q]X0 = −ABq−1X−1. (3.12)

By iterating the q-difference equation for G, we conclude that

G(z) = X0

∞∑
n=0

q(
n
2)zn

(Azq−1/2, Bzq−1/2; q)n+1

− AB

q
X−1

∞∑
n=0

q(
n+1

2 )zn+1

(Azq−1/2, Bzq−1/2; q)n+1
. (3.13)

Using the q-binomial theorem

1
(z; q)m

=
∞∑

n=0

(qm; q)n
(q; q)n

zn, (3.14)

we expand the generating function (3.13) and establish the explicit form

q−(s2)Xs = X0
∑

u,v≥0,u+v≤s

[
s− v

u

]
q

[
s− u

v

]
q

q−s(u+v)+(u+v)2/2AuBv

− AB

q
X−1

∑
u,v≥0,u+v≤s−1

[
s− v − 1

u

]
q

[
s− u− 1

v

]
q

q−s(u+v)+(u+v)2/2AuBv (3.15)

for s = 0, 1, 2 · · · , where the empty sum equals 0. It is easy to see that, when s = 1, the above formula is 
the same as (3.12). From (3.9), we find the initial values

X0 = F (−q1/2, A,B; q) =
∞∑

n=0

qn
2/2

(q; q)n
un(A,B; q), (3.16)

X−1 = q F (−q3/2, A,B; q) =
∞∑

n=0

qn
2/2+n+1

(q; q)n
un(A,B; q). (3.17)

When B = Aq1/2, it follows from (1.1) and (2.5) that

X0 =
∞∑

n=0

qn
2/2

(q1/2; q1/2)n
An = A√

q(−A), X−1 =
∞∑

n=0

qn
2/2+n+1

(q1/2; q1/2)n
An = q A√

q(−qA).

There is another representation for Xs which may be of interest. We go back to the generating function 
(3.13) and expand it using the q-binomial theorem to see that

Xs = X0

s∑
n=0

q(
n
2)+(n−s)/2

s−n∑
u=0

[
n + u

u

]
q

[
s− u

n

]
q

AuBs−n−u

−AB

q
X−1

s−1∑
q(

n+1
2 )+(n+1−s)/2

s−n−1∑ [
n + u

u

] [
s− u− 1

n

]
AuBs−n−u−1. (3.18)
n=0 u=0 q q
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We now come to the case m = −2s + 1, s ∈ N, is odd. Let

F (−q1−s, A,B) = Ys q
−(s2). (3.19)

The functional equation (2.10) yields

(qs + A + B)Ys = Ys+1 + ABYs−1. (3.20)

This is exactly the recurrence relation (3.10) with (A, B) → (√q A, 
√
q B). Therefore (3.18) implies

Ys = Y0

s∑
n=0

q(
n
2)

s−n∑
u=0

[
n + u

u

]
q

[
s− u

n

]
q

AuBs−n−u

−AB Y−1

s−1∑
n=0

q(
n+1

2 )
s−n−1∑
u=0

[
n + u

u

]
q

[
s− u− 1

n

]
q

AuBs−n−u−1. (3.21)

In the case B = Aq1/2, we conclude from (3.6) that

Y0 = A√
q(−A

√
q), Y−1 = q A√

q(−Aq3/2). (3.22)

It must be noted that the recursions (3.10) and (3.20) have appeared earlier in the work [14] by Ismail 
and Mulla in the form of orthogonal polynomials generated by

p0(x) = 1, p1(x) = 2x− a, pn+1(x) = [2x− aqn]pn(x) − pn−1(x). (3.23)

The authors of [14] referred to these polynomials as the generalized Chebyshev polynomials.
Next, applying Darboux’s method, we obtain the asymptotics of Xs and Ys as s → ∞.

Theorem 3.1. Let Xs and Ys be given in (3.18) and (3.21), respectively. When |A| > |B|, we have the 
following asymptotics for Xs and Ys as s → ∞:

Xs ∼ Asq−s/2
(
X0

∞∑
n=0

qn
2/2A−n

(B/A; q)n+1(q; q)n

−AB

q
X−1

∞∑
n=0

q(n+1)2/2A−n−1

(B/A; q)n+1(q; q)n

)
, (3.24)

Ys ∼ As

(
Y0

∞∑
n=0

q(
n
2)A−n

(B/A; q)n+1(q; q)n

−AB Y−1

∞∑
n=0

q(
n+1

2 )A−n−1

(B/A; q)n+1(q; q)n

)
. (3.25)

Proof. Recall the explicit expression of the generating function for Xs in (3.13). It is clear that G(z) has 
simple poles at

z = q−j+1/2

A
and z = q−j+1/2

B
for j = 0, 1, · · · . (3.26)

When |A| > |B|, the pole closest to the origin is q1/2/A. Then, the comparison function is
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(1 −Azq−1/2)−1
(
X0

∞∑
n=0

qn
2/2A−n

(B/A; q)n+1(q; q)n
− AB

q
X−1

∞∑
n=0

q(n+1)2/2A−n−1

(B/A; q)n+1(q; q)n

)
. (3.27)

By expanding the above formula near z = 0 and comparing with (3.11), we obtain (3.24). Changing (A, B) →
(√q A, 

√
q B) gives the formula (3.25). �

We may also consider the recurrence relations (3.10) and (3.20) for Xs and Ys when s < 0. For this 
purpose, let

Xs =
(
AB

q

)s

X̃s and Ys = (AB)s Ỹs. (3.28)

Substituting the above formula into (3.10) and (3.20) gives us[(
1
q

)−s

+ A + B
√
q

]
X̃s = X̃s−1 + AB

q
X̃s+1,[(

1
q

)−s

+ A + B

]
Ỹs = Ỹs−1 + ABỸs+1.

Replacing s by −s, we have [(
1
q

)s

+ A + B
√
q

]
X̃−s = X̃−(s+1) + AB

q
X̃−(s−1), (3.29)[(

1
q

)s

+ A + B

]
Ỹ−s = Ỹ−(s+1) + ABỸ−(s−1). (3.30)

Comparing (3.29) with (3.10), they agree with each other through the relation (A, B) → (A/q, B/q). This, 
together with (3.18), gives us

X̃−s = X̃0

s∑
n=0

q−(n2)+(n−s)/2
s−n∑
u=0

[
n + u

u

]
1/q

[
s− u

n

]
1/q

AuBs−n−u

− AB

q
X̃1

s−1∑
n=0

q−(n+1
2 )+(n+1−s)/2

s−n−1∑
u=0

[
n + u

u

]
1/q

[
s− u− 1

n

]
1/q

AuBs−n−u−1. (3.31)

Recalling (3.28) and the relation [
n

k

]
1/q

= q−k(n−k)
[
n

k

]
q

,

we obtain

X−s = X0

s∑
n=0

q−(n2)+(n−s)(n+ 1
2 )−s

s−n∑
u=0

[
n + u

u

]
q

[
s− u

n

]
q

As+uB2s−n−u

−X1

s−1∑
n=0

q−(n+1
2 )+(n+1−s)(n+ 1

2 )−s
s−n−1∑
u=0

[
n + u

u

]
q

[
s− u− 1

n

]
q

As+uB2s−n−u−1. (3.32)

Similarly, we also have
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Y−s = Y0

s∑
n=0

q−(n2)+n(n−s)
s−n∑
u=0

[
n + u

u

]
q

[
s− u

n

]
q

As+uB2s−n−u

− Y1

s−1∑
n=0

q−(n+1
2 )+n(n+1−s)

s−n−1∑
u=0

[
n + u

u

]
q

[
s− u− 1

n

]
q

As+uB2s−n−u−1. (3.33)

4. Zeros

Using the Jacobi triple product identity we write

(−1)nq(
n
2) = 1

2πi

∮
C

(q, z, q/z; q)∞
zn+1 dz,

where C is a positively oriented circular contour centered at z = 0 and containing the points A and B in its 
interior. Substituting this in the form (1.2) yields

F (w,A,B; q) = 1
2πi

∮
C

(q, z, q/z; q)∞
(Aw/z,Bw/z; q)∞

dz

z
, (4.1)

where we have made use of the Euler’s theorem [12, Theorem 12.2.6]. The above integral gives us another 
expression of F (w, A, B; q) in the following theorem.

Theorem 4.1. The function F (w, A, B; q) has the representation

F (w,A,B; q) =
(Aw, q

Aw ; q)∞
(B/A; q)∞

∞∑
n=0

(−1)nq(
n+1

2 )

(q, qA/B; q)n

( q

Bw

)n
+

(Bw, q
Bw ; q)∞

(A/B; q)∞

∞∑
n=0

(−1)nq(
n+1

2 )

(q, qB/A; q)n

( q

Aw

)n
. (4.2)

Note that (4.2) can be written in the hypergeometric notation

F (w,A,B; q) =
(Aw, q

Aw ; q)∞
(B/A; q)∞ 1φ1(0; qA/B; q; q2

Bw
)

+
(Bw, q

Bw ; q)∞
(A/B; q)∞ 1φ1(0; qB/A; q; q2

Aw
). (4.3)

Proof of Theorem 4.1. The following standard identity will be used repeatedly in the proof:

(cq−k; q)k = (−1)kckq−(k+1
2 )(q/c; q)k. (4.4)

Let Cn be a contour centered at z = 0 and lies in the interior of C with radius cqn. Moreover we assume 
that neither c/A nor c/B is of the form qm for any integer m. Let f(z) denote the integrand in (4.1). On 
the integration contour Cn, we have

|f(z)| ≤
∣∣∣∣ (q; q)∞(z, qn+1/z; q)∞
2π(qnAw/z, qnBw/z; q)∞

∣∣∣∣ · ∣∣∣∣ (q/z; q)n
(Aw/z,Bw/z; q)n

∣∣∣∣ .
The first factor is clearly bounded and we now show that the second factor tends to zero as n → ∞. Indeed, 
with |z| = cqn, the second factor is at most
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∣∣∣∣ (−q1−n/c; q)n
(q−nAw/c, q−nBw/c; q)n

∣∣∣∣ = ∣∣∣∣ (−c; q)n
( qc
Aw , qc

Bw ; q)n

∣∣∣∣ · q(n+1
2 ) ·

∣∣∣ qc

ABw2

∣∣∣n .
This shows that 

∮
Cn

f(z)dz → 0 as n → ∞. Therefore, the integral in (4.1) is the sum of the residues at 
z = Awqn and Bwqn, n = 0, 1, · · · . A residue calculation then establishes (4.2). �

Recall the definitions of the four theta functions [20, §21.3],

ϑ1(z, q) = 2q1/4 sin z
(
q2, q2e2iz, q2e−2iz; q2)

∞ , (4.5)

ϑ2(z, q) = 2q1/4 cos z
(
q2,−q2e2iz,−q2e−2iz; q2)

∞ , (4.6)

ϑ3(z, q) =
(
q2,−qe2iz,−qe−2iz; q2)

∞ , (4.7)

ϑ4(z, q) =
(
q2, qe2iz, qe−2iz; q2)

∞ . (4.8)

Moreover with the notations [20, §21.61]

k = ϑ2
2(0, q)/ϑ2

3(0, q), k′ = ϑ2
4(0, q)/ϑ2

3(0, q), (4.9)

the Jacobian elliptic functions sn, dn are [20, §22.11-12]:

sn(uϑ2
3(0, q), k) : = ϑ3(0, q)

ϑ2(0, q)
ϑ1(u, q)
ϑ4(u, q)

, (4.10)

dn(uϑ2
3(0, q), k) : = ϑ4(0, q)

ϑ3(0, q)
ϑ3(u, q)
ϑ4(u, q)

. (4.11)

Furthermore, we have [20, §21.11-12]

u =
y∫

0

dt√
(1 − t2)(1 − k2t2)

, if y = sn(u, k); (4.12)

u =
1∫

y

dt√
(1 − t2)(t2 − k′2)

, if y = dn(u, k). (4.13)

Let us consider the zeros of F (w, A, B; q2). From (4.3), we have

(A/B,Aw, q2

Aw ; q2)∞
(B/A,Bw, q2

Bw ; q2)∞
= − 1φ1(0; q2B/A; q2; q4

Aw )

1φ1(0; q2A/B; q2; q4

Bw )
. (4.14)

Let

B/A = qm, with m an odd integer, (4.15)

then we have

(q−m, Aw, q2

Aw ; q2)∞
(qm, qmAw, q−m+2

Aw ; q2)∞
= − 1φ1(0; qm+2; q2; q4

Aw )

1φ1(0; q−m+2; q2; q−m+4

Aw )
. (4.16)

Note that
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cm(q) := (q−m; q2)∞
(qm; q2)∞

=
{

1
(qm;q2)−m

if m < 0,
(q−m; q2)m if m > 0.

(4.17)

Furthermore, we put

Aw = q−2n+2e2iz and ξn = e2iz, (4.18)

then the left-hand side of (4.16) becomes

cm(q) · (q−2n+2e2iz, q2ne−2iz; q2)∞
(q−2n+m+2e2iz, q2n−me−2iz; q2)∞

= cm(q)(−1)
−m−3

2 q(n−m+1
2 )2−n(n−1) 1 − e2iz

ei(−m+1)z · (q2e2iz, q2e−2iz; q2)∞
(qe2iz, qe−2iz; q2)∞

. (4.19)

From (4.10), the last term in the above formula yields

(q2e2iz, q2e−2iz; q2)∞
(qe2iz, qe−2iz; q2)∞

= 1
2q1/4 sin z

ϑ1(z, q)
ϑ4(z, q)

= 1
2q1/4 sin z

ϑ2(0, q)
ϑ3(0, q)

sn(z ϑ2
3(0, q), k). (4.20)

Combining (4.16), (4.19) and the above formula, we have

sn(z ϑ2
3(0, q), k) = (−1)

−m−1
2

iq1/4e−imz

cm(q)q(n−m+1
2 )2−n(n−1)

ϑ3(0, q)
ϑ2(0, q)

1φ1(0; qm+2; q2; q4

Aw )

1φ1(0; q−m+2; q2; q−m+4

Aw )

= (−1)
−m−1

2
iqmn−m(2+m)/4e−imz

cm(q)
ϑ3(0, q)
ϑ2(0, q)

1φ1(0; qm+2; q2; q4

Aw )

1φ1(0; q−m+2; q2; q−m+4

Aw )
. (4.21)

Typically, when m = 1, we have c1(q) = 1 − q−1. Then, the above formula reduces to

sn(z ϑ2
3(0, q), k) = iqn+1/4e−iz

1 − q

ϑ3(0, q)
ϑ2(0, q)

1φ1(0; q3; q2; q4

Aw )

1φ1(0; q; q2; q3

Aw )
, (4.22)

which is similar to [15, eq. (3.8)]. The next theorem follows immediately from (4.12) and (4.21).

Theorem 4.2. Let ξn be given in (4.18), which are the (scaled) zeros of F (w, A, Aqm; q2) for odd m. Then, 
ξn satisfies the following integral equation

ln ξn = −2
qmn−m(2+m)/4φ(ξn)∫

0

dt√
(1 + a2t2)(1 + b2t2)

(4.23)

with

a = ϑ2
3(0, q), b = ϑ2

2(0, q), (4.24)

φ(ξn) = (−1)
−m−1

2
ξ
−m/2
n 1φ1(0; qm+2; q2; q2n+2/ξn)

−m+2 2 2n−m+2 . (4.25)

cm(q)ϑ2(0, q)ϑ3(0, q) 1φ1(0; q ; q ; q /ξn)
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Denote

ξn = η−2, Z = 1/
√
ab, and L = a/b + b/a. (4.26)

We then have

ln η =
α∫

0

Zdt√
1 + Lt2 + t4

,

where

α = (−1)(m+1)/2qnm−m(m+2)/4
1φ1(0; qm+2; q2; q2+2n/ξn)√

ξmn cm(q)1φ1(0; q2−m; q2; q2−m+2n/ξn)
=

∞∑
j=0

αj(qnη)2j+m. (4.27)

The coefficients αj are rational functions in q. Now, we set

exp

⎡⎣ α∫
0

Zdt√
1 + Lt2 + t4

⎤⎦ =
∞∑
k=0

hkα
k, (4.28)

where hk are polynomials in Z and L. It follows that

η =
∞∑
k=0

hk

⎡⎣ ∞∑
j=0

αj(qnη)2j+m

⎤⎦k

.

We further let

η =
∞∑
l=0

ηlq
nl,

( ∞∑
l=0

ηlq
nl

)2j+mk

=
∞∑
l=0

η
(2j+mk)
l qnl,

and ⎛⎝ ∞∑
j=0

αjz
j

⎞⎠k

=
∞∑
j=0

α
(k)
j zj ,

where the coefficients α(k)
j are rational functions in q. We then have

η = 1 +
∞∑
k=1

∞∑
j=0

hkα
(k)
j (qnη)2j+mk = 1 +

∞∑
k=1

∞∑
j=0

∞∑
l=0

hkα
(k)
j η

(2j+mk)
l qn(2j+mk+l).

This implies η0 = 1 and

ηs =
∑

k≥1,j≥0,l≥0
2j+mk+l=s

hkα
(k)
j η

(2j+mk)
l . (4.29)

By induction, we learn that ηs are polynomials in Z and L with coefficients being rational functions in q. 
Consequently, we have
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ξn =
( ∞∑

l=0

ηlq
nl

)−2

=
∞∑
l=0

η
(−2)
l qnl,

where η(−2)
l are also polynomials in Z and L with coefficients being rational functions in q. It can be easily 

calculated from (4.27), (4.28) and (4.29) that

α0 = (−1)(m+1)/2q−m(m+2)/4

cm(q) , α1 = α0

[
q2

(1 − qm+2)(1 − q2) − q2−m

(1 − q2−m)(1 − q2)

]
, · · ·

h0 = 1, h1 = Z, h2 = Z2/2, h3 = Z(Z2 − L)/6, h4 = Z2(Z2 − 4L)/24, · · · ;

η0 = 1, η1 = · · · = ηm−1 = 0, ηm = h1α0, ηm+2k−1 = 0, ηm+2k = h1αl, 0 < k < m/2.

Similar to Theorem 3.4 and Theorem 4.1 in Ismail and C. Zhang [15], we have the following theorem.

Theorem 4.3. Let m > 0 be an odd integer, then ξn is an analytic function of qn and has the Taylor series 
expansion

ξn = 1 +
∞∑
j=1

djq
jn, (4.30)

where dj = η
(−2)
j are polynomials in Z and L with coefficients being rational functions in q.

It is easily seen from the above two theorems that d1 = · · · = dm−1 = 0 and

dm = 2(−1)
−m+1

2
q−m(2+m)/4

(q−m; q2)m
1

ϑ2(0, q)ϑ3(0, q)
. (4.31)

When m = 1, this agrees with [15, eq. (3.14)]. We may also compute the following a few coefficients:

dm+1 = 0,

dm+2 = 2(−1)
−m−1

2
q−m(2+m)/4

(1 − q2) (q−m; q2)m
1

ϑ2(0, q)ϑ3(0, q)

(
1

1 − qm−2 + q2

1 − qm+2

)
,

dm+3 = 0,

dm+4 = 2(−1)
−m+1

2
q−m(2+m)/4

(1 − q2)2 (q−m; q2)m
1

ϑ2(0, q)ϑ3(0, q)(
1

(1 − qm−2)2 − 1
(1 + q2)(1 − qm−2)(1 − qm−4)

+ q2

(1 − qm−2)(1 − qm+2) + q6

(1 + q2)(1 − qm+2)(1 − qm+4)

)
,

d2m = 1 −m

2 d2
m.

Remark 4.4. Note that the coefficients dj satisfy similar structure as that in [15, Thm 4.1], namely they 
are polynomials in terms of Z and L given in (4.26) with coefficients rational in q. It is worthwhile to point 
out that combinatorial interpretations of the coefficients in [15, Thm 4.1] have been found by Huber [8] and 
Huber and Yee [9]. We expect some elaborate combinatorial interpretation for the coefficients dj may also 
be possible. Moreover, from the above calculation, the formula of dj depends on the residue of j modulo m, 
which indicates that certain sieving process may be involved.
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5. An integral equation

Let

K(w, x) = F (−w, e−iθ, eiθ; q) =
∞∑

n=0

wnq(
n
2)

(q; q)n
Hn(x|q) (5.1)

with x = cos θ. We have the following integral equation for K(w, x).

Theorem 5.1. The function K(w, x) defined above satisfies the integral equation

K(st, cos θ) = (t2; q)∞(q; q)∞
2π

π∫
0

K(s, cosφ)(e2iφ, e−2iφ; q)∞ dφ

(tei(θ+φ), tei(θ−φ), te−i(θ+φ), te−i(θ−φ); q)∞
. (5.2)

Proof. We recall the Poisson kernel of the q-Hermite polynomials [12, (13.1.24)]

∞∑
n=0

Hn(cos θ | q)Hn(cosφ | q)
(q; q)n

tn

= (t2; q)∞
(tei(θ+φ), tei(θ−φ), te−i(θ+φ), te−i(θ−φ); q)∞

(5.3)

and their orthogonality relation

1∫
−1

Hm(x | q)Hn(x | q)w(x | q) dx = 2π(q; q)n
(q; q)∞

δm,n, (5.4)

where

w(x | q) = (e2iφ, e−2iφ; q)∞√
1 − x2

, x = cosφ, 0 ≤ φ ≤ π. (5.5)

Note that, for fixed θ ∈ (0, π), both K(s, cos θ) and the Poisson kernel are in the space L2[w(x | q); [−1, 1]]
with x = cosφ. As the q-Hermite polynomials are complete in L2[w(x | q); [−1, 1]], we have (5.2) from the 
Parseval’s theorem. �
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