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In this paper, we develop a general theory of quasi-orthogonal polynomials. We 
first derive three-term recurrence relation and second-order differential equations 
for quasi-orthogonal polynomials. We also give an expression for their discriminants 
in terms of the recursion coefficients of the corresponding orthogonal polynomials. In 
addition, we investigate an electrostatic equilibrium problem where the equilibrium 
position of movable charges is attained at the zeros of the quasi-orthogonal 
polynomials. The examples of the Freud weight w(x) = e−x4+2tx2 and the Jacobi 
weight w(x) = (1 − x)α(1 + x)β are discussed in some detail. Finally, we consider 
the nonlinear orthogonality preserving transformation and related matrix problem.
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1. Introduction

Let {pn(x) = γnx
n + · · · } be the orthonormal polynomials with respect to the weight w(x) = e−v(x)

on an interval [a, b]. Throughout this paper, we assume that v is real and differentiable in (a, b), and all 
moments of the weight exist. By orthogonality, we have the three-term recurrence relation:

xpn(x) = an+1pn+1(x) + αnpn(x) + anpn−1(x), n ≥ 1, (1.1)

with initial conditions: p0(x) = γ0 and p1(x) = γ1(x − α0), where

an =
b∫

a

xpn(x)pn−1(x)w(x)dx = γn−1

γn
, n ≥ 1,
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αn =
b∫

a

xp2
n(x)w(x)dx, n ≥ 0.

It is noted that the zeros of orthogonal polynomials are real and simple [38, Theorem 3.3.1], and the zeros 
of pn and pn+1 interlace [38, Theorem 3.3.2]. Recall that the associated polynomials p(n)

k (x) corresponding 

to the recursion (1.1) are generated by p(n)
0 (x) = 1, p(n)

1 (x) = (x − αn)/an, and

xp
(n)
k (x) = an+k+1p

(n)
k+1(x) + αn+kp

(n)
k (x) + an+kp

(n)
k−1(x), k ≥ 1. (1.2)

Chen and Ismail [10] derived the lowering relation

p′n(x) = −Bn(x)pn(x) + An(x)pn−1(x), (1.3)

where

An(x)
an

= w(y)p2
n(y)

y − x

∣∣∣∣
b

a

+
b∫

a

v′(x) − v′(y)
x− y

p2
n(y)w(y)dy,

Bn(x)
an

= w(y)pn(y)pn−1(y)
y − x

∣∣∣∣
b

a

+
b∫

a

v′(x) − v′(y)
x− y

pn(y)pn−1(y)w(y)dy.

For convenience, we define a linear operator

L(f)(x) := w(y)f(y)
y − x

∣∣∣∣
b

a

+
b∫

a

v′(x) − v′(y)
x− y

f(y)w(y)dy. (1.4)

It is readily seen that An(x) = L(anp2
n)(x) and Bn(x) = L(anpnpn−1)(x).

Stieltjes [36,37] found an electrostatic interpretation of the zeros of Jacobi polynomial P (α,β)
n (x) with 

α > −1 and β > −1. Place n unit movable charges randomly in the interval (−1, 1), and two fixed charges 
(1 +α)/2 and (1 +β)/2 at the end points 1 and −1, respectively. Assume the interaction force between charges 
e1 and e2 with a distance r apart is 2e1e2/r. Then the equilibrium for the n movable charges is achieved 
at the zeros of P (α,β)

n (x). To evaluate the energy at equilibrium one needs to compute the discriminant 
of P (α,β)

n (x), which Stieltjes did in [37] and Hilbert later gave another proof in [24]. For an exposition of 
these results we refer the interested reader to [38, §6.7] or [26, Chapter 3]. A more general model for all 
polynomials orthogonal with respect to a weight of the form w(x) = e−v(x) was formulated by Ismail [25], 
which used the author’s earlier evaluation of discriminants of these types of orthogonal polynomials. The 
key relations used in this approach are the lowering relation (1.3) and its adjoint (the raising relation). The 
details are available in [26, Chapter 3].

More recently, Dillcher and Stolarsky [13] used algebraic methods to evaluate the resultant of two linear 
combinations of Chebyshev polynomials of the second kind. Gishe and Ismail [20] gave an alternative method 
of computing the same resultant and resultants of more general combinations of Chebyshev polynomials 
of the first and second kinds. This work was generalized recently in [32] to quasi-Jacobi polynomials. The 
concept of quasi-orthogonal polynomials was introduced by Chihara in [11]. Starting with a sequence of 
orthonormal polynomials we generate quasi-orthogonal polynomials recursively by

qn(x) = pn(x) + cnpn−1(x), (1.5)
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where cn is any given constant which may depend on n, and q0(x) = p0(x). Dickinson [12] proved that there 
exists a sequence Tk such that

Tnpn(x) = T0q0(x) + · · · + Tnqn(x) for all n ≥ 0. (1.6)

By [38, Theorem 3.3.4], qn(x) has n distinct real roots. Some properties of the zeros for quasi-orthogonal 
polynomials with respect to classical weights have been studied in [8,14–18,29]. A sample of an applied 
problem using quasi-orthogonal polynomials is in [42]. We refer to [21,39–41] and references therein for 
applications of quasi-orthogonal polynomials in quadrature and interpolation. Some studies on orthogonality 
of quasi-orthogonal polynomials when the sum in (1.6) has fixed length are given in [2,7].

In the present paper we provide a detailed study on quasi-orthogonal polynomials regarding their differ-
ential equations, discriminants and electrostatics. In Section 2 we derive a three-term recurrence relation 
for the quasi-orthogonal polynomials {qn(x)}. We also find an inverse to (1.5) where we express pn(x) in 
terms of qn(x) and qn−1(x) and identify a lowering operator for the qn’s and use it to find a differential 
equation satisfied by the quasi-orthogonal polynomials. In Section 3 we evaluate the discriminant of quasi-
orthogonal polynomials in terms of the recursion coefficients of the pn’s. Section 4 contains an electrostatic 
equilibrium model of n unit charges allowed to move on a straight line that are subjected to an external 
field. The equilibrium position is at the zeros of qn(x). Section 5 contains two important examples of the 
quasi-orthogonal polynomials associated with Freud and Jacobi weights.

The problem of characterizing orthogonal polynomials of a certain type has attracted the attention of 
many mathematicians. Al-Salam’s interesting article [4] surveys the literature on the subject at the time of 
its writing. In Section 6, we give a necessary and sufficient condition, on cn, for qn to become orthogonal 
polynomials. Determining the sequence cn which makes qn orthogonal on R turned out to be related to 
the moment problems of the associated orthogonal polynomials of positive integer order of the polynomials 
{pn}. The standard references to the moment problems are [1], [34]. The recent book [33] incorporates some 
of the recent results. Simon’s article [35] explored the moment problem as a problem in spectral theory of 
operators. We also reformulate our results as a nonlinear problem in functional analysis. In other words 
we rephrase the problem of finding all the pn’s which make the qn’s orthogonal in terms of an equivalent 
spectral problem.

It must be noted that Section 6 provides an orthogonality preserving nonlinear transformation. It is 
expected to have applications within integrable systems.

2. Difference and differential equations

It follows from (1.1) and (1.5) that

qn−1(x) = pn−1(x) + cn−1pn−2(x) = pn−1(x) + cn−1

an−1
[−anpn(x) + (x− αn−1)pn−1(x)],

which, together with (1.5), implies the inverse relation

(
pn(x)

pn−1(x)

)
=

(
an−1+cn−1x−cn−1αn−1

an−1+cn−1x−cn−1αn−1+cn−1cnan

−cnan−1
an−1+cn−1x−cn−1αn−1+cn−1cnan

cn−1an

an−1+cn−1x−cn−1αn−1+cn−1cnan

an−1
an−1+cn−1x−cn−1αn−1+cn−1cnan

)(
qn(x)

qn−1(x)

)
.

The above equation can be used to express the recurrence relation

an+1qn+1(x) = an+1pn+1(x) + cn+1an+1pn(x) = (x− αn + cn+1an+1)pn(x) − anpn−1(x)

in terms of the qn’s. The result is
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an+1qn+1(x) =(x− αn + cn+1an+1)
(an−1 + cn−1x− cn−1αn−1)qn(x) − cnan−1qn−1(x)

an−1 + cn−1x− cn−1αn−1 + cn−1cnan

− an
cn−1anqn(x) + an−1qn−1(x)

an−1 + cn−1x− cn−1αn−1 + cn−1cnan
.

A further simplification yields the more compact form

an+1ln−1(x)qn+1(x) = [rn(x)ln−1(x) − cn−1anln(x)]qn(x) − an−1ln(x)qn−1(x), (2.1)

where rn(x) = x − αn + cn+1an+1 and ln(x) = cnrn(x) + an.
On account of (1.3), we express q′n(x) in terms of pn(x) and pn−1(x),

q′n(x) = p′n(x) + cnp
′
n−1(x)

= −Bn(x)pn(x) + An(x)pn−1(x) − cnBn−1(x)pn−1(x) + cnAn−1(x)pn−2(x)

= −an−1Bn(x) + cnanAn−1(x)
an−1

pn(x)

+ an−1An(x) − cnan−1Bn−1(x) + cnxAn−1(x) − cnαn−1An−1(x)
an−1

pn−1(x).

Next, we shall express q′n(x) in terms of qn(x) and pn−1(x):

q′n(x) = −an−1Bn(x) + cnanAn−1(x)
an−1

qn(x)

+ an−1[An(x) + cnBn(x) − cnBn−1(x)] + (c2nan + cnx− cnαn−1)An−1(x)
an−1

pn−1(x). (2.2)

Note that

an−1Bn(x) + cnanAn−1(x)
an−1

= L(anpnpn−1 + cnanp
2
n−1)(x) = L(anqnpn−1)(x),

and

an−1[An(x) + cnBn(x) − cnBn−1(x)] + (c2nan + cnx− cnαn−1)An−1(x)
an−1

=L(anp2
n + cnanpnpn−1 − cnan−1pn−1pn−2 + c2nanp

2
n−1 + cn(x− αn−1)p2

n−1)(x)

=L(anp2
n + cnanpnpn−1 + c2nanp

2
n−1 + cnanpnpn−1 + cn(x− ·)p2

n−1)(x)

=L(anq2
n)(x) + cnv

′(x).

We can rewrite (2.2) as

q′n = −L(anqnpn−1)qn + [L(anq2
n) + cnv

′]pn−1 = −B̄nqn + (Ān + cnv
′)pn−1, (2.3)

where Ān = L(anq2
n) and B̄n = L(anqnpn−1). For the special case cn = 0, we have Ān = An and B̄n = Bn. 

Actually, we have following relations:

B̄n

an
= L(qnpn−1) = L(pnpn−1) + cnL(p2

n−1) = Bn

an
+ cnAn−1

an−1
, (2.4)

Ān

an
= L(q2

n) = L(p2
n) + cnL(pnpn−1) + cnL(qnpn−1) = An

an
+ cnBn

an
+ cnB̄n

an
. (2.5)
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Now, we take a further differentiation on (2.3) to obtain

q′′n = − B̄′
nqn + (Ā′

n + cnv
′′)pn−1 − B̄n[−B̄nqn + (Ān + cnv

′)pn−1]

+ (Ān + cnv
′)[−Bn−1pn−1 + An−1

an−1
(−an(qn − cnpn−1) + (x− αn−1)pn−1)]

=[−B̄′
n + B̄2

n − (Ān + cnv
′)An−1

an
an−1

]qn

+ [Ā′
n + cnv

′′ + (Ān + cnv
′)(−B̄n −Bn−1 + An−1

an−1
(cnan + x− αn−1))]pn−1.

Note that

− B̄n −Bn−1 + An−1

an−1
(cnan + x− αn−1)

=L(−anqnpn−1 − an−1pn−1pn−2 + p2
n−1(cnan + x− αn−1))

=L(−anqnpn−1 + cnanp
2
n−1 + (x− ·)p2

n−1 + anpnpn−1) = v′.

We obtain

q′′n = [−B̄′
n + B̄2

n − (Ān + cnv
′)An−1

an
an−1

]qn + [Ā′
n + cnv

′′ + (Ān + cnv
′)v′]pn−1. (2.6)

We rewrite (2.3) and (2.6) in matrix form,
(
q′n
q′′n

)
=

(
−B̄n Ān + cnv

′

−B̄′
n + B̄2

n − (Ān + cnv
′)An−1an/an−1 Ā′

n + cnv
′′ + (Ān + cnv

′)v′
)(

qn
pn−1

)
.

We may solve qn and pn−1 in terms of q′n and q′′n by taking inverse of the coefficient matrix in the above 
equation. Especially, we obtain the second-order differential equation

(Ān + cnv
′)q′′n − [Ā′

n + cnv
′′ + (Ān + cnv

′)v′]q′n + Δqn = 0,

where

Δ = −B̄n[Ā′
n + cnv

′′ + (Ān + cnv
′)v′] − (Ān + cnv

′)[−B̄′
n + B̄2

n − (Ān + cnv
′)An−1

an
an−1

].

A further simplification gives

q′′n − ( Ā
′
n + cnv

′′

Ān + cnv′
+ v′)q′n + [B̄′

n − B̄2
n − B̄n( Ā

′
n + cnv

′′

Ān + cnv′
+ v′) + (Ān + cnv

′)An−1
an

an−1
]qn = 0. (2.7)

Especially, when cn = 0, we have

p′′n − (A
′
n

An
+ v′)p′n + [B′

n −B2
n −Bn(A

′
n

An
+ v′) + AnAn−1

an
an−1

]pn = 0,

which agrees with [26, (3.2.12)–(3.2.14)]. Now, we denote Vn(x) = v(x) + ln Ān(x)+cnv(x)
an

. By variation of 
parameters, we note that a general solution of the differential equation (2.7) should be a linear combination 
of qn(x) and f(x)qn(x), where f ′(x) = eVn(x)[qn(x)]−2. Actually, if w(x) vanishes at the end points a and b
and it can be analytically continued to the complex plane, we follow the idea in [26, §3.6] to introduce the 
function of the second kind:
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Qn(x) = 1
w(x)

b∫
a

qn(y)w(y)
x− y

dy, x /∈ [a, b]. (2.8)

Theorem 2.1. Assume that w(x) vanishes at the end points a and b and it can be analytically continued to 
the complex plane. The function of the second kind Qn(x) defined in (2.8) satisfies the differential equation 
(2.7) for x not in [a, b]. Moreover, the sequence of functions Qn(x) satisfies the recurrence relation (2.1) for 
n ≥ 2.

Proof. Let h be any polynomial of degree no more than m. We have by orthogonality

b∫
a

[h(x) − h(y)]pm(y)w(y)
x− y

dy = 0. (2.9)

We will make frequent uses of the above identity in this proof. An integration by parts gives

[w(x)Qn(x)]′ = −
b∫

a

qn(y)w(y)
(x− y)2 dy =

b∫
a

q′n(y)w(y) + qn(y)w′(y)
x− y

dy.

Since w′(x) = −v′(x)w(x), we have

w(x)[Q′
n(x)qn(x) −Qn(x)q′n(x)] = [w(x)Qn(x)]′qn(x) − w(x)Qn(x)[q′n(x) − qn(x)v′(x)]

=
b∫

a

qn(x)[q′n(y) − qn(y)v′(y)]w(y)
x− y

dy −
b∫

a

qn(y)[q′n(x) − qn(x)v′(x)]w(y)
x− y

dy

=
b∫

a

q′n(y)[qn(x) − qn(y)]w(y)
x− y

dy +
b∫

a

qn(x)qn(y)[v′(x) − v′(y)]w(y)
x− y

dy,

where, in the last step, we have made use of (2.9) with h(x) = q′n(x) and m = n, n −1 respectively. We make 
another integration by parts, and use the fact that qn(y) is orthogonal with the derivative of the polynomial 
[qn(x) − qn(y)]/(x − y) when x is treated as a parameter, to obtain

w(x)[Q′
n(x)qn(x) −Qn(x)q′n(x)]

=
b∫

a

qn(y)[qn(x) − qn(y)]v′(y)w(y)
x− y

dy +
b∫

a

qn(x)qn(y)[v′(x) − v′(y)]w(y)
x− y

dy

=
b∫

a

q2
n(y)[v′(x) − v′(y)]w(y)

x− y
dy +

b∫
a

[qn(x) − qn(y)]qn(y)v′(x)w(y)
x− y

dy

The first integral in the last expression is Ān/an. Since [qn(x) −qn(y)]/(x −y) is a polynomial of degree n −1
with leading coefficient γn, we obtain from orthogonality that the second integral in the last expression is 
cnv

′(x)γn/γn−1 = cnv
′(x)/an. Thus, we have

w(x)[Q′
n(x)qn(x) −Qn(x)q′n(x)] = Ān + cnv

′(x)
,

an
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which, by a simple calculation, implies that

d

dx

[
Qn(x)
qn(x)

]
= eVn(x)

q2
n(x) .

Thus, Qn(x) is a solution to the differential equation (2.7).
To show that Qn(x) also satisfies the recurrence relation (2.1), we note from (2.9) that

xkQn(x) = xk

w(x)

b∫
a

qn(y)w(y)
x− y

dy = 1
w(x)

b∫
a

ykqn(y)w(y)
x− y

dy

for any n > k. It is readily seen that

an+1ln−1(x)Qn+1(x) = 1
w(x)

b∫
a

an+1ln−1(y)qn+1(y)
x− y

w(y)dy

= 1
w(x)

b∫
a

[rn(y)ln−1(y) − cn−1anln(y)]qn(y) − an−1ln(y)qn−1(y)
x− y

w(y)dy

=[rn(x)ln−1(x) − cn−1anln(x)]Qn(x) − an−1ln(x)Qn−1(x)

for all n ≥ 3. When n = 2, we subtract the left-hand side from the right-hand side of (2.1) and make use of 
(2.9) to express the difference as:

1
w(x)

b∫
a

[r2(x)l1(x) − r2(y)l1(y)]c2p1(y) − a1[l2(x) − l2(y)]c1p0(y)
x− y

w(y)dy.

Recall that rn(x) = x − αn + cn+1an+1 and ln(x) = cnrn(x) + an. This quantity equals

1
w(x)

b∫
a

[c1(x + y)c2p1(y) − a1c2c1p0(y)]w(y)dy = c1c2/γ1 − a1c2c1/γ0

w(x) = 0

because a1 = γ0/γ1. Hence, Qn(x) also satisfies (2.1) for n = 2. This completes the proof. �
3. Discriminants

By [38, Theorem 3.3.4], qn(x) has n distinct real roots, denoted by x1, · · · , xn. The discriminant of qn(x)
is defined as [26, (3.1.8)]

D(qn) = γ2n−2
n

∏
1≤j<k≤n

(xj − xk)2 = (−1)n(n−1)/2γn−2
n

n∏
j=1

q′n(xj).

In view of qn(xj) = 0, we substitute (2.2) into the above equation to obtain

D(qn) = (−1)n(n−1)/2γn−2
n

n∏
pn−1(xj)
j=1
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×
n∏

j=1

an−1[An(xj) + cnBn(xj) − cnBn−1(xj)] + (c2nan + cnxj − cnαn−1)An−1(xj)
an−1

.

Now, we let πn(x) = pn(x)/γn be the monic orthogonal polynomials and write qn(x) in terms of πn−1(x)
and πn−2(x):

qn(x) = pn(x) + cnpn−1(x) = (x− αn−1)pn−1(x) − an−1pn−2(x)
an

+ cnpn−1(x)

= x− αn−1 + cnan
an

γn−1πn−1(x) − an−1

an
γn−2πn−2(x).

Recall that an = γn−1/γn. We rewrite the recurrence relation (1.1) as

πm(x) = (x− αm−1)πm−1 − a2
m−1πm−2(x)

for all m ≥ 2, with initial conditions π1(x) = x − α0 and π0(x) = 1. Schur’s formula [38, (6.71.2)] gives

(−1)n(n−1)/2
n∏

j=1
pn−1(xj) = γn

n−1(
γn−1

an
)1−n(an−1γn−2

an
)n−1

n−1∏
j=2

a2j−2
j−1

= γn−1(an−1γn−2)n−1
n−2∏
j=1

a2j
j .

It then follows that

D(qn) = γn−1
n an/an−1γ

n−1
n−2

n−2∏
j=1

a2j
j

×
n∏

j=1
{an−1[An(xj) + cnBn(xj) − cnBn−1(xj)] + (c2nan + cnxj − cnαn−1)An−1(xj)}.

A further calculation shows that

D(qn) = 1
γ2
n

n−1∏
j=0

γ2
j ×

n∏
j=1

[An(xj)
an

+ cnBn(xj)
an

− cnBn−1(xj)
an

+ (c2n + cnxj

an
− cnαn−1

an
)An−1(xj)

an−1
].

We use the operator in (1.4) to rewrite

An(x)
an

+ cnBn(x)
an

− cnBn−1(x)
an

+ (c2n + cnx

an
− cnαn−1

an
)An−1(x)

an−1

=L

(
p2
n + cnpnpn−1 −

cnan−1pn−1pn−2

an
+ c2np

2
n−1 +

cnxp
2
n−1

an
− cnαn−1p

2
n−1

an

)
(x).

Since −an−1pn−2(y) + ypn−1(y) − αn−1pn−1(y) = anpn(y). We rewrite the right-hand side of the above 
formula as

L(p2
n + cnpnpn−1 + cnpn−1pn + c2np

2
n−1 + cn(x− ·)p2

n−1/an)(x) = L(q2
n)(x) + cnv

′(x)
an

= Ān(x) + cnv
′(x)

an
,
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where we have made use of the identity

L((x− ·)p2
n−1)(x) = −w(y)p2

n−1(y)
∣∣∣∣
b

a

+
b∫

a

[v′(x) − v′(y)]p2
n−1(y)w(y)dy = v′(x).

Thus, we reach at the following formula for the discriminant

D(qn) = γ−2
n

⎛
⎝n−1∏

j=0
γ2
j

⎞
⎠

⎡
⎣ n∏
j=1

Ān(xj) + cnv
′(xj)

an

⎤
⎦

= γ2n−2
0

⎛
⎝ n∏

j=1
a2+2j−2n
j

⎞
⎠

⎡
⎣ n∏
j=1

Ān(xj) + cnv
′(xj)

an

⎤
⎦ . (3.1)

Especially, let q̄n(x) = qn(x)/γn be the monic quasi-orthogonal polynomial. We have from γn =
γ0/(a1 · · · an) that

D(q̄n) = γ2−2n
n D(qn) =

⎛
⎝ n∏

j=1
a2j
j

⎞
⎠

⎡
⎣ n∏
j=1

Ān(xj) + cnv
′(xj)

an

⎤
⎦ .

4. Electrostatics

We consider the model of n movable unit charged particles {x1, · · · , xn} in an external field Vn(x). The 
particles are restricted to a linear segment (a, b), where [a, b] is the smallest interval containing the support 
of e−Vn(x). Here, we use Vn instead of V , to indicate the possible dependence of external field on the number 
of particles. The energy is given as En = − lnTn(x1, · · · , xn) where

Tn(x1, · · · , xn) =

⎡
⎣ n∏
j=1

e−Vn(xj)

⎤
⎦ ∏

1≤j<k≤n

(xj − xk)2.

The equations describing the equilibrium positions are

∂ lnTn(x1, · · · , xn)
∂xj

= 0, j = 1, · · · , n.

Equivalently, we have

V ′
n(xj) =

n∑
k=1,k �=j

2
xj − xk

= q′′n(xj)
q′n(xj)

,

where qn(x) = γn(x − x1) · · · (x − xn). By (2.7), we obtain

V ′
n(xj) = Ā′

n(xj) + cnv
′′(xj)

Ān(xj) + cnv′(xj)
+ v′(xj). (4.1)

We obtain an analogue result as in [25].
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Theorem 4.1. If the external field

Vn(x) = v(x) + ln Ān(x) + cnv
′(x)

an

is a convex function (i.e., V ′′
n (x) ≥ 0) in (a, b), then the equilibrium position of n movable unit charges 

in (a, b) in the presence of this external field is uniquely attained at the zeros of qn(x), provided that the 
particle interaction obeys a logarithmic potential and that Tn(y1, · · · , yn) → 0 as (y1, · · · , yn)T tends to any 
boundary point of [a, b]n, where

Tn(y1, · · · , yn) = exp

⎡
⎣− n∑

j=1
Vn(yj)

⎤
⎦ ∏

1≤j<k≤n

(yj − yk)2.

The maximum value of Tn and the equilibrium energy are given by

Tn(x1, · · · , xn) = exp

⎡
⎣− n∑

j=1
vn(xj)

⎤
⎦
⎛
⎝ n∏

j=1
a2j
j

⎞
⎠ ,

and

En =
n∑

j=1
[vn(xj) − 2j ln aj ],

respectively, where x1, · · · , xn are the zeros of qn(x).

The motion of unit particles in the external field Vn(x) is governed by the following dynamical system:

x′′
j (t) = −V ′

n(xj(t))
2 +

n∑
k=1,k �=j

1
xj(t) − xk(t)

, j = 1, · · · , n,

where V ′
n is given in (4.1). Clearly, the zeros of qn(x) correspond to an electrostatic equilibrium. However, 

the dynamics of above system is usually oscillating. To calculate the numerical values of the zeros of qn(x)
for an arbitrary external field, we impose an artificial damping coefficient δ > 0 and solve the following 
friction system numerically:

x′′
j (t) = −V ′

n(xj(t))
2 +

n∑
k=1,k �=j

1
xj(t) − xk(t)

− δx′
j(t), j = 1, · · · , n.

The value of δ can be chosen by trial and error method. In general, a larger δ could better help to damp 
the oscillation, but may require more time to converge to the equilibrium.

5. Examples

5.1. Freud weight

We consider the Freud weight w(x) = e−v(x) with v(x) = x4−2tx2. It can be calculated that [26, page 57]

An = 4(x2 − t + a2
n + a2

n+1),
Bn = 4xan.
an an
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Consequently, we obtain

B̄n

an
= Bn

an
+ cn

An−1

an−1
= 4(xan + cnx

2 − cnt + cna
2
n + cna

2
n−1),

Ān

an
= An

an
+ cn

Bn

an
+ cn

B̄n

an
= 4(x2 − t + a2

n + a2
n+1 + 2cnxan + c2nx

2 − c2nt + c2na
2
n + c2na

2
n−1)

= 4[(1 + c2n)x2 + 2cnanx + (1 + c2n)(a2
n − t) + a2

n+1 + c2na
2
n−1].

The above formulas are valid for all n ≥ 1, and when n = 1, we need the compatibility condition a0 = 0. 
Note that L(q2

n) = Ān/an. The discriminant (3.1) is given as

D(qn) = γ2n−2
0

⎛
⎝ n∏

j=1
a2+2j−2n
j

⎞
⎠

×
n∏

j=1
4[(1 + c2n)x2

j + 2cnanxj + (1 + c2n)(a2
n − t) + a2

n+1 + c2na
2
n−1 +

cnx
3
j − cntxj

an
].

The differential equation is q′′n(x) − V ′
n(x)q′n(x) + Sn(x)qn(x) = 0, where

V ′
n(x) = 2(1 + c2n)x + 2cnan + cn(3x2 − t)/an

(1 + c2n)x2 + 2cnanx + (1 + c2n)(a2
n − t) + a2

n+1 + c2na
2
n−1 + cn(x3 − tx)/an

+ 4x3 − 4tx

is the derivative of external field for electrostatic equilibrium problem, and

Sn(x) = a2
n

[
4(an + 2cnx)

an
− 16(xan + cnx

2 − cnt + cna
2
n + cna

2
n−1)2

− 4(xan + cnx
2 − cnt + cna

2
n + cna

2
n−1)

an
V ′
n(x) + 16(x2 − t + a2

n + a2
n−1)((1 + c2n)x2

+ 2cnanx + (1 + c2n)(a2
n − t) + a2

n+1 + c2na
2
n−1 + cn(x3 − tx)

an
)
]
.

It is noted that V ′′
n (x) may not be non-negative if cn �= 0. Moreover, when cn �= 0, one can observe that 

V ′
n(x) has at least one simple pole, which corresponds to a real zero of the cubic polynomial Ān + cnv

′. 
Numerical computation suggests that electrostatic equilibrium may not be unique even in the simple case 
of n = 1, t = 0 and cn �= 0.

Let pn(x) = γnx
n + βnx

n−1 + λnx
n−2 + μnx

n−3 + · · · . Recall the lower relation q′n = −B̄nqn + (Ān +
cnv

′)pn−1 in (2.3). By matching the coefficients of xn+2, xn+1, xn, xn−1 on both sides, we obtain

0 = − 4cnanγn + 4cnγn−1,

0 = − 4a2
nγn − 4cnan(βn + cnγn−1) + 4(1 + c2n)anγn−1 + 4cnβn−1,

0 = − 4cnan(λn + cnβn−1) − 4a2
n(βn + cnγn−1) − 4cn(a2

n + a2
n−1 − t)anγn

+ 4cnλn−1 + 4(1 + c2n)anβn−1 + 4(2cna2
n − cnt)γn−1,

nγn = − 4cnan(μn + cnλn−1) − 4a2
n(λn + cnβn−1) − 4cn(a2

n + a2
n−1 − t)an(βn + cnγn−1)

+ 4cnμn−1 + 4(1 + c2n)anλn−1 + 4(2cna2
n − cnt)βn−1

+ 4[(1 + c2n)(a2
n − t) + a2

n+1 + c2na
2
n−1]anγn−1.
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By symmetry, we have βn = μn = αn = 0, where αn is the coefficient in three-term recurrence relation 
(1.1). The first three equations above are trivial if combined with the following relations which are obtained 
by comparing the coefficients of xn, xn−1, xn−2, xn−3 in the recurrence relation xpn−1(x) = anpn(x) +
an−1pn−2(x):

γn−1 = anγn, βn−1 = anβn, λn−1 = anλn + an−1γn−2, μn−1 = anμn + an−1βn−2.

The fourth equation gives a nonlinear relation between the recurrence coefficients:

n = 4a2
n(a2

n−1 + a2
n + a2

n+1 − t),

which agrees with [26, (3.2.20)].

5.2. Jacobi weight

For the Jacobi weight w(x) = (1 −x)α(1 +x)β with α, β > −1, we have v(x) = −α ln(1 −x) −β ln(1 +x)
and v′(x) = α

1−x − β
1+x = α(1+x)−β(1−x)

1−x2 . It follows from [26, (3.3.13)–(3.3.15)] that

An

an
= α + β + 1 + 2n

1 − x2 ,

Bn

an
= n(α + β + 1 + 2n)

2(1 − x2)
β − α + x(2n + α + β)

(n + α)(n + β)

√
hn

hn−1
,

where

an = 2
α + β + 2n

√
n(α + n)(β + n)(α + β + n)

(α + β − 1 + 2n)(α + β + 1 + 2n) ,

hn = (α + β + 1)(α + 1)n(β + 1)n
(2n + α + β + 1)n!(α + β + 1)n

.

By (2.4) and (2.5), we have

B̄n

an
= −n(α + β + 1 + 2n)

2(1 − x2)
β − α + x(2n + α + β)

(n + α)(n + β)

√
hn

hn−1
+ cn(α + β − 1 + 2n)

1 − x2 ,

Ān

an
= (α + β + 1 + 2n) + c2n(α + β − 1 + 2n)

1 − x2

− cnn(α + β + 1 + 2n)
1 − x2

β − α + x(2n + α + β)
(n + α)(n + β)

√
hn

hn−1
.

The discriminant (3.1) is given by

D(qn) = γ2n−2
0

⎛
⎝ n∏

j=1
a2+2j−2n
j

⎞
⎠

⎡
⎣ n∏
j=1

Ān + cnv
′(xj)

an

⎤
⎦ ,

where

γn = (n + α + β + 1)n
2nn!

√
(2n + α + β + 1)Γ(n + α + β + 1)n!
2α+β+1Γ(n + α + 1)Γ(n + β + 1) .
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It can be calculated that

(1 − x2) Ān + cnv
′(x)

an
= cn(2n + α + β)

an
(x + σn),

where

σn = (α + β + 1 + 2n) + c2n(α + β − 1 + 2n)
cn(2n + α + β) an − β2 − α2

(2n + α + β)2 .

Consequently,

n∏
j=1

Ān + cnv
′(xj)

an
= cnn(2n + α + β)nγnqn(−σn)

annqn(1)qn(−1) .

We then have the following formula for the discriminant

D(qn) = γ2n−2
0

⎛
⎝ n∏

j=1
a2+2j−2n
j

⎞
⎠ cnn(2n + α + β)nγnqn(−σn)

annqn(1)qn(−1) .

Moreover, the derivative of external field is given by

V ′
n(x) = α + 1

1 − x
− β + 1

1 + x
+ 1

x + σn
.

Theorem 5.1. If V ′′
n (x) > 0, then there exists a unique electrostatic equilibrium. If −V ′

n(x) is a decreasing 
function of α, so are the zeros of qn(x). If −V ′

n(x) is an increasing function of β, so are the zeros of qn(x).

Remark 5.2. Consider the simple case when n = 1. It is easily seen that the zero of q1(x) is

x1 =
β − α− 2cn

√
(α + 1)(β + 1)/(α + β + 3)
β + α + 2 .

Obviously, if cn = 0 or |cn| is sufficiently small, then x1 is decreasing in α and increasing in β. However, if 
|cn| is large, then one may not expect monotonicity property of the zero x1 in α or β.

Consider another case when n is large. Assume cn → c as n → ∞. We note that an ∼ 1/2 and σn ∼
(1 + c2n)/(2cn). It follows that

V ′
n(x) ∼ α + 1

1 − x
− β + 1

1 + x
+ 1

x + 1+c2

2c
,

and

V ′′
n (x) ∼ α + 1

(x− 1)2 + β + 1
(x + 1)2 − 1

(x + 1+c2

2c )2
.

We conclude that the zeros of qn(x) are decreasing in α and increasing in β. If further, α ≥ 0 and β ≥ 0, 
we have V ′′

n (x) > 0 and the electrostatic equilibrium is unique.

6. An orthogonality preserving transformation

Before we describe our results we just mention that the operator theoretic transformation will be men-
tioned at the end of this section.
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6.1. Orthogonality of quasi-orthogonal polynomials

Our first task is to determine when the quasi-orthogonal polynomials are also orthogonal. To do this we 
note that (2.1) gives a recurrence relation for three successive terms qn+1(x), qn(x) and qn−1(x) with linear, 
quadratic, and linear coefficients in x, respectively; see [11]. By choosing appropriate cn, we may reduce the 
degree of the coefficients by one and obtain the following three-term recurrence relation

an+1qn+1(x) = (x− βn)qn(x) − bnqn−1(x), (6.1)

where bn and βn are determined by the equations

bn(an−1 + cn−1x− cn−1αn−1 + cn−1cnan) = cnan−1(x− αn + cn+1an+1) + an−1an,

(x− βn)(an−1 + cn−1x− cn−1αn−1 + cn−1cnan)

= (x− αn + cn+1an+1)(an−1 + cn−1x− cn−1αn−1) − cn−1a
2
n.

By treating x as a variable and matching the coefficients of linear and constant terms in the above two 
equations, we obtain four equations

bncn−1 = cnan−1,

bn(an−1 − cn−1αn−1 + cn−1cnan) = cnan−1(−αn + cn+1an+1) + an−1an,

−βncn−1 + an−1 − cn−1αn−1 + cn−1cnan = cn−1(−αn + cn+1an+1) + an−1 − cn−1αn−1,

−βn(an−1 − cn−1αn−1 + cn−1cnan) = (−αn + cn+1an+1)(an−1 − cn−1αn−1) − cn−1a
2
n.

If the qn’s are orthogonal, it follows from the first and third equations that

bn = cnan−1/cn−1, βn = αn + cnan − cn+1an+1. (6.2)

Now, we substitute the values from (6.2) into the second and the fourth equations respectively to find the 
same nonlinear three-term recurrence relation for cn:

an+1cn+1 = ancn + an−1

cn−1
− an

cn
+ αn − αn−1 (6.3)

for n > 1. The case n = 1 requires a special treatment. We first define q0(x) = p0(x) and observe that

a2q2(x) = a2p2(x) + a2c2p1(x) = (x− α1 + a2c2)p1(x) − a1p0(x)

= (x− α1 + a2c2)(q1(x) − c1q0(x)) − a1q0(x)

= (x− α1 + a2c2)q1(x) − c1q0(x)(x− α1 + a2c2) − a1q0(x).

Since (x − α0)q0(x) = (x − α0)p0(x) = a1p1(x) = a1q1(x) − a1c1q0(x), we obtain from the above equation

a2q2(x) = (x− α1 + a2c2)q1(x) − a1c1q1(x) + a1c
2
1q0(x)

− c1q0(x)(α0 − α1 + a2c2) − a1q0(x)

= (x− α1 − a1c1 + a2c2)q1(x) − [a1 + c1(α0 − α1 − a1c1 + a2c2)]q0(x).

When n > 1, it follows from (6.3) that
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bn = cnan−1

cn−1
= an + cn(αn−1 − αn − ancn + an+1cn+1).

Thus, we arrive at the following result.

Theorem 6.1. Let cn be a sequence satisfying (6.3) for n ≥ 2. The quasi-orthogonal polynomials qn(x) =
pn(x) + cnpn−1(x) satisfy the following three-term recurrence relation

an+1qn+1(x) =(x− αn − ancn + an+1cn+1)qn(x)

− [an + cn(αn−1 − αn − ancn + an+1cn+1)]qn−1(x) (6.4)

for n ≥ 1. If, in addition, an + cn(αn−1 −αn−ancn +an+1cn+1) > 0 for all n ≥ 1, then qn(x) is a sequence 
of orthogonal polynomials.

Proof. If an−1 + cn−1x − cn−1αn−1 + cn−1cnan �= 0, then (6.4) follows from (2.1) and the arguments before 
the statement of the theorem. Since both sides of (6.4) are polynomials in x, this recurrence relation holds 
for all x. Let q̄n(x) = qn(x)/γn be the monic quasi-orthogonal polynomial. On account of an = γn−1/γn, 
we can rewrite (6.4) as

q̄n+1(x) =(x− αn − ancn + an+1cn+1)q̄n(x)

− an[an + cn(αn−1 − αn − ancn + an+1cn+1)]q̄n−1(x).

The orthogonality of qn follows from the spectral theorem for orthogonal polynomials [26]. �
Consider a special case when pn(x) are orthonormal Jacobi polynomials and the coefficient cn ≡ c is 

independent of n. If qn(x) = pn(x) + cpn−1(x) are also orthogonal polynomials, it then follows from (6.3)
that can+1 + an/c − αn is independent of n. A simple calculation shows that αn = 0 and an = 1/2; or 
equivalently, the Jacobi polynomials are reduced to the Chebyshev polynomials of the first, second, third, 
or fourth kind. This coincides with result in [7, Theorem 3.1] for the special case when k = 1 in [7, (3.1)]. 
Actually, it was proved in [7] that the four Chebyshev sequences are the only classical orthogonal polynomials 
whose linear combinations with finite length and constant coefficients are also orthogonal polynomials.

Our next task is to identify the choices of cn. Let un = ancn. It follows from (6.3) that

un+1 − un + a2
n

un
− a2

n−1
un−1

= αn − αn−1.

Adding these equations for consecutive values of n we find that

un+1 + a2
n

un
= αn + C,

where C = a2c2 + a1/c1 − α1 is a constant. In other words

un = a2
n

αn + C − un+1
,

which leads to the continued fraction

un =
a2
n

αn + C −
a2
n+1

αn+1 + C −
a2
n+2

. (6.5)
αn+2 + C − . . .
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For any fixed n, the above continued fraction is associated with the recurrence

π
(n)
k+1(x) = (x + αn+k)π(n)

k (x) − a2
n+kπ

(n)
k−1(x), k ≥ 1, (6.6)

with initial conditions π(n)
0 (x) = 1 and π(n)

1 (x) = x + αn. It is clear from (6.6) that the monic polynomials 
of (1.2) are (−1)kπ(n)

k (−x).
To avoid technical difficulties we shall assume that the moment problem of the polynomials pn is de-

terminate, that is, it has a unique solution [1,34,33]. In this case, the moment problems of the associated 
polynomials π(n)

k (x) are determinate for every n = 1, 2, · · · . By the spectral theorem of orthogonal polyno-
mials, π(n)

k (x) are orthogonal with respect to a unique probability measure ψ(n)(x). The continued fraction 
in (6.5) can be expressed as the Stieltjes transform of this measure:

un

a2
n

= X(n)(C) :=
∫
R

dψ(n)(y)
C − y

.

It then follows that cn = un/an = anX
(n)(C). Thus, we choose C outside the supports of ψ(n)(x) for all 

n, n = 1, 2, · · · .
It must be noted the measure ψ(n) is complicated for many classical polynomials but what is needed is the 

Stieltjes function 
∫
R
dψ(n)(x)/(z − x). The known techniques of finding ψ(n) actually compute the Stieltjes 

transform first. This technique was pioneered by Pollaczek and further modified by Askey and Ismail [5]. 
The Stieltjes functions 

∫
R
dψ(n)(x)/(z−x) have been computed for all classical orthogonal polynomials. The 

Askey–Wilson case is in [28]. For a sample of other cases we refer the reader to [22], [23], and the references 
cited in these works.

In [31], Maroni considered the polynomials which are orthogonal with respect to the perturbed measure 
μ defined as

μ(f) :=
b∫

a

f(x)dμ(x) =
b∫

a

[f(x0) + λ
f(x) − f(x0)

x− x0
]w(x)dx, (6.7)

where x0 and λ are two constants. The transform from w(x)dx to dμ(x) is also called Geronimus transform 
in the literature; see [3,43]. By choosing x0 = −C = α1−a1/c1−a2c2 and λ = α0−a1c1−x0, we find that μ
defined above is the orthogonal measure for qn in Theorem 6.1. Actually, by the choice of x0, we can prove by 
induction that μ(an+1qn+1) = −μ(anqn). On the other hand, it follows from the choice of λ that μ(q1) = 0. 
Thus, μ(qn) = 0 for all n ≥ 1. For any k < n, we then have μ(xkqn) = μ((xk−xk

0)(pn+cnpn−1)) +xk
0μ(qn) =

0, which implies that qn are the orthogonal polynomials with respect to the measure μ.

6.2. Polynomials arising from birth and death process

A birth and death process with birth and death rates λn, and μn, respectively, gives rise to two families 
of orthogonal polynomials, [26]. The first is the family of birth and death process polynomials generated by 
Q0(x) = 1, Q1(x) = (λ0 + μ0 − x)/λ0, and

−xQn(x) = λnQn+1(x) + μnQn−1(x) − (λn + μn)Qn(x). (6.8)

The second is the family of random walk polynomials

xRn(x) = λn
Rn+1(x) + μn

Rn−1(x),

λn + μn λn + μn
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with R0(x) = 1, R1(x) = x(λ0 + μ0)/l0. It is assumed that λn > 0, μn+1 > 0 for all n ≥ 0 while μ0 ≥ 0. 
Under this assumption, it is known that the zeros of Qn are in (0, ∞) for all n, while the zeros of Rn lie in 
(−1, 1), for all n.

The orthonormal birth and death process polynomials are

pn(x) = (−1)nQn(x)

√√√√ n∏
k=1

μk

λk−1
.

The two equations (6.6) and (6.8) are related by αn = λn + μn, an+1 =
√

λnμn+1. Therefore, for any 

fixed n, the zeros of π(n)
k (x) lie in (−∞, 0) for all k, which implies that the support of ψ(n)(x) is also in 

(−∞, 0]. Thus, C can be chosen as any positive real number. In the special case of the Laguerre polyno-
mials λn = n + 1, μn = α + n, the measure ψ(n) are the orthogonality measures of the associated Laguerre 
polynomials and were found by Askey and Wimp in [6]. A second model for associated Laguerre polynomi-
als is in [27]. The latter work also has the case of Meixner polynomials where λn = c(n + β), μn = n. 
It must be noted that in both cases of the associated Laguerre and associated Meixner polynomials 
the measure ψ(n) is complicated but as we already said earlier what is needed is the Stieltjes function ∫
R
dψ(n)(x)/(z − x).
For example, in the case of Laguerre polynomials, we have

∞∫
0

dψ(n)(x)
x + z

= Ψ(n + 1, 1 − α; z)
Ψ(n, 1 − α; z) ,

where Ψ is the Tricomi ψ function, [19, Chapter 6]. On the other hand, the Meixner polynomials give rise 
to

∞∫
0

dψ(n)(x)
x + z

= (n + z)2F1(n + 1, 1 + z − β;n + 1 + z; c)
2F1(n, 1 + z − β;n + z; c) ,

see (4.6) in [27].
The orthonormal random walk polynomials are

pn(x) = Rn(x)

√√√√ n∏
k=1

μk

λk−1

√
λ0 + μ0

λn + μn
,

and in this case

αn = 0, an =

√
λnμn+1

(λn + μn)(λn+1 + μn+1)
.

When λn = n + 1, μn = n + 2ν, the random walk polynomials become ultraspherical polynomials and the 
ψ(n) is the orthogonality measure of the associated ultraspherical polynomials of order n, These measures 
as well as the orthogonality measures of their q-analogues were identified by Bustoz and Ismail in [9]. We 
mention the example of the q-ultraspherical polynomials Cn(x; β|q). In this case

∫
dψ(n)(t)
z − t

= 2(1 − βqn)2φ1(β, βB/A; qB/A; q, an+1)
(1 − qn)A2φ1(β, βB/A; qB/A; q, an) , (6.9)
R
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for z /∈ [−1, 1]. Here

A,B = x±
√
x2 − 1, and |A| ≥ |B|. (6.10)

6.3. A matrix problem

It is known, see for example [30, §31], that a polynomial

f(z) = zn + a1z
n−1 + · · · + an

is the characteristic polynomial of the matrix
⎛
⎜⎜⎜⎝

0 1 0 . . . 0 0
0 0 1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1

−an −an−1 −an−2 . . . −a2 −a1

⎞
⎟⎟⎟⎠

There is no such construction known to write f as a characteristic polynomial of a Hermitian matrix.
We now rephrase the results of §6.1 in terms of tridiagonal matrices. Start with an infinite tridiagonal 

matrix A∞,

H∞ =

⎛
⎝α0 a1 0 . . .

a1 α1 a2 . . .
...

...
...

...

⎞
⎠

and define Hn to be the n × n matrix formed by truncating H∞ after n rows and n columns. We further 
assume that ak+1 > 0, αk ∈ R, for k ≥ 0. Let p̄n(x) be the characteristic polynomial of Hn. It is known that 
the orthonormal polynomials pn in (1.1) are related to p̄n via

γ0p̄n(x) = a1a2 · · · anpn(x),

where γ0 = p0(x) is a constant. We also note that when H∞ has a unique self-adjoint extension to 2 then 
the measure of orthogonality of the pn’s is the spectral measure of H∞. The polynomial qn in this case is 
γnq̄n, where γn = γ0/(a1 · · · an) is the leading coefficient of qn, and

q̄n(x) = p̄n(x) + ancnp̄n−1(x).

We now determine the sequence cn such that there is an infinite tridiagonal matrix whose truncations have 
the characteristic polynomials {q̄n(x) : n = 1, 2, · · · }. The solution given in §6.1 uses ψ(n), which is the 
spectral measure of the Jacobi operator

H(n)
∞ =

⎛
⎝−αn an+1 0 . . .
an+1 −αn+1 an+2 . . .

...
...

...
...

⎞
⎠ .

If cn = anX
(n)(C) with X(n) being the Stieltjes transform of the spectral measure ψ(n) and C being a 

constant outside the supports of ψ(n)(x) for all n = 1, 2, · · · , and if an+cn(αn−1−αn−ancn+an+1cn+1) > 0
for all n = 1, 2, · · · , then by Theorem 6.1, q̄n are the characteristic polynomials of the following infinite 
tridiagonal matrix truncated after n rows and n columns:
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J∞ =

⎛
⎝β0 b1 0 . . .

b1 β1 b2 . . .
...

...
...

...

⎞
⎠ ,

where βn = αn + ancn − an+1cn+1 and b2n = an[an + cn(αn−1 − αn − ancn + an+1cn+1)]. Note that 
q̄n(x) = πn(x) + unπn−1(x), where un = ancn satisfies the recurrence relation un+1 = αn − a2

n/un + C and 
πn(x) are the given monic orthogonal polynomials. We have the following relation between Jacobi matrices 
for q̄n(x) and πn(x).

⎛
⎝ 1 0 . . .
u1 1 . . .
...

...
...

⎞
⎠

⎛
⎜⎝
α0 1 0 . . .
a2
1 α1 1 . . .
...

...
...

...

⎞
⎟⎠ =

⎛
⎜⎝
β0 1 0 . . .
b21 β1 1 . . .
...

...
...

...

⎞
⎟⎠

⎛
⎝ 1 0 . . .
u1 1 . . .
...

...
...

⎞
⎠ . (6.11)

In the special case of C = 0, we set vn = αn − un+1 to simplify a2
n = unvn, αn = un+1 + vn, b2n = unvn−1

and βn = un + vn, which imply the following factorizations [3]:

⎛
⎜⎝
α0 1 0 . . .
a2
1 α1 1 . . .
...

...
...

...

⎞
⎟⎠ =

⎛
⎝v0 1 . . .

0 v1 . . .
...

...
...

⎞
⎠

⎛
⎝ 1 0 . . .
u1 1 . . .
...

...
...

⎞
⎠ ,

⎛
⎜⎝
β0 1 0 . . .
b21 β1 1 . . .
...

...
...

...

⎞
⎟⎠ =

⎛
⎝ 1 0 . . .
u1 1 . . .
...

...
...

⎞
⎠

⎛
⎝v0 1 . . .

0 v1 . . .
...

...
...

⎞
⎠ .
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