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Within the Askey scheme of hypergeometric orthogonal polynomials, Racah 
polynomials stay on the top of the hierarchy and they generalize all of the discrete 
hypergeometric orthogonal polynomials. In this paper, we investigate asymptotic 
behaviors of Racah polynomials with varying parameters when the polynomial 
degree tends to infinity. Using the difference equation technique developed in our 
earlier papers, we obtain an asymptotic formula in the outer region via ratio 
asymptotics and then derive asymptotic formulas in the oscillatory region via a 
matching method. Our asymptotic formulas are explicitly given in terms of the 
polynomial degree, variable and parameters, using elementary functions such as 
logarithmic, exponential and rational functions. By taking limits, our results also 
yield asymptotic formulas for orthogonal polynomials in the lower hierarchy of the 
Askey scheme such as Hahn polynomials and Krawtchouk polynomials.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The Racah polynomials are named after Racah, because the orthogonal relation is equivalent to that of 
Racah coefficients or 6-j symbols; see [1]. In [11], Wilson defined the Racah polynomials in terms of a 4F3

hypergeometric function. Let λ(x) := x(x + γ + δ + 1) and N be a nonnegative integer. Define

Rn(λ(x);α, β, γ, δ) := 4F3

(
−n, n + α + β + 1, −x, x + γ + δ + 1

α + 1, β + δ + 1, γ + 1

∣∣∣∣1
)
, (1.1)

where n = 0, · · · , N and one of the three equalities is satisfied: α+1 = −N or β+δ+1 = −N or γ+1 = −N . 
Set 
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An := − (n + α + 1)(n + α + β + 1)(n + β + δ + 1)(n + γ + 1)
(2n + α + β + 1)(2n + α + β + 2)

,

Cn := −n(n + α + β − γ)(n + α− δ)(n + β)
(2n + α + β)(2n + α + β + 1) . (1.2)

The Racah polynomials (1.1) satisfy the recurrence relation [7, (9.2.3)]

λ(x)Rn(λ(x)) = −AnRn+1(λ(x)) + (An + Cn)Rn(λ(x)) − CnRn−1(λ(x)).

This recurrence relation can be normalized as

πn+1(z) = (z −An − Cn)πn(z) −An−1Cnπn−1(z), π0(z) = 1, π1(z) = z −A0, (1.3)

where z = λ(x) and

πn(λ(x)) := (α + 1)n(β + δ + 1)n(γ + 1)n
(n + α + β + 1)n

Rn(λ(x)). (1.4)

In addition to the variable x and the degree n, the polynomials in (1.1) involve four free parameters. This 
inevitably makes the problem of deriving their asymptotic formulas much more complicated. The only result 
that we can find on this topic is that given by Chen, Ismail and Simeonov [2]. Their method starts with the 
hypergeometric representation in (1.1). By approximating the ratio of two shifted factorials, they obtain 
several asymptotic formulas in terms of hypergeometric function 3F2 or 2F1, when the parameters are fixed.

In the present paper, we are interested in the large-n behavior of πn(z) with varying parameters α, β, γ, δ. 
More precisely, we set 

α + 1 = Na, β = Nb, γ + 1 = Nc, δ + 1 = Nd, (1.5)

where either a = −1 or b + d = −1 or c = −1. For simplicity, we assume An > 0 and Cn > 0. By Favard’s 
theorem, these conditions guarantee that the zeros of πn(z) are all real and simple; see [3, Sections 1.4 
and 1.5]. Thus, we require some additional conditions:

1. when a = −1, we assume b, c, d > 0 and b > c + 1;
2. when b + d = −1, we assume a, b, c > 0 and a + b + 1 < c;
3. when c = −1, we assume a, b, d > 0 and a + 1 < d.

Let n/N = p be a fixed number in (0, 1). We shall derive asymptotic formulas for πn(N2y) as N → ∞.

2. Main results

Define the ratio wk(z) := πk(z)/πk−1(z) for k = 1, · · · , n. From (1.3), it follows that 

wk+1(z) = z − (Ak + Ck) −
Ak−1Ck

wk(z)
. (2.1)

Recall p = n/N . We obtain from (1.2) and (1.5) that 

lim
N→∞

An

N2 = A(p); lim
N→∞

Cn

N2 = C(p),

where 



X.-S. Wang, R. Wong / J. Math. Anal. Appl. 436 (2016) 1149–1164 1151
A(t) := − (t + a)(t + a + b)(t + b + d)(t + c)
(2t + a + b)2 , 0 < t < p,

C(t) := − t(t + a + b− c)(t + a− d)(t + b)
(2t + a + b)2 , 0 < t < p. (2.2)

Now, we shall introduce the transition points (or turning points) when the characteristic roots of (1.3)
coincide; see [9]. For t ∈ [0, p], we define 

y±(t) := A(t) + C(t) ± 2
√
A(t)C(t); (2.3)

these are the transition points when t = p. From (2.2), it is readily seen that C(0) = 0. Thus, y±(0) = A(0). 
For simplicity, we only consider the case when y+(t) is increasing and y−(t) is decreasing for t ∈ [0, p]. 
The other cases will be studied in forthcoming papers. If z = N2y with y ∈ C \ [y−(p), y+(p)], we apply a 
standard successive approximation technique to (2.1) and obtain

wk(z) = w0
k[1 + w1

k + O(1/n2)] as N → ∞,

uniformly for k = 1, · · · , n; see [10]. Here, the leading term is

w0
k =

z −Ak − Ck +
√

(z −Ak − Ck)2 − 4Ak−1Ck

2 , (2.4)

and the first-order term is

w1
k = 1

2 +
Ak+1 −Ak + Ck+1 − Ck −

√
(z −Ak+1 − Ck+1)2 − 4AkCk+1

2
√

(z −Ak − Ck)2 − 4Ak−1Ck

. (2.5)

We can rewrite (2.5) as 

w1
k =

Ak+1 −Ak + Ck+1 − Ck +
√

(z −Ak − Ck)2 − 4Ak−1Ck −
√

(z −Ak+1 − Ck+1)2 − 4AkCk+1

2
√

(z −Ak − Ck)2 − 4Ak−1Ck

.

Note that z = N2y with y ∈ C \ [y−(p), y+(p)]. From (1.2), it is readily seen that for any k = 1, · · · , n, 
the denominator in the expression of w1

k is of order O(n2), while the numerator is of order O(n). Thus, 
w1

k = O(1/n). Since πn = w1 · · ·wn, we have 

ln πn =
n∑

k=1

lnwk =
n∑

k=1

lnw0
k +

n∑
k=1

ln(1 + w1
k) + O(1/n) =

n∑
k=1

lnw0
k +

n∑
k=1

w1
k + O(1/n). (2.6)

To find an asymptotic formula for πn, we only need to approximate 
∑n

k=1 lnw0
k and 

∑n
k=1 w

1
k. First, we 

note that 
√

[z − (Ak + Ck)]2 − 4Ak−1Ck ∼ N2
√

[y − (A(k/N) + C(k/N))]2 − 4A(k/N)C(k/N), (2.7)

where A(k/N) and C(k/N) are given in (2.2) with t = k/N . Secondly, we have 

Ak+1 −Ak

N
∼ A∗(k/N) := 4A1A2A3A4 − (A1A2A3 + A1A2A4 + A1A3A4 + A2A3A4)D

D3 ,

Ck+1 − Ck

N
∼ C∗(k/N) := 4C1C2C3C4 − (C1C2C3 + C1C2C4 + C1C3C4 + C2C3C4)D

D3 , (2.8)

where 
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A1(t) := t + a, A2(t) := t + a + b, A3(t) := t + b + d, (2.9a)

A4(t) := t + c, C1(t) := t, C2(t) := t + a + b− c, (2.9b)

and 

C3(t) := t + a− d, C4(t) := t + b, D(t) := 2t + a + b. (2.9c)

Using the above notations, we can rewrite 

A(t) = −A1(t)A2(t)A3(t)A4(t)/D(t)2,

and 

C(t) = −C1(t)C2(t)C3(t)C4(t)/D(t)2.

Finally, we approximate 

√
[z − (Ak + Ck)]2 − 4Ak−1Ck −

√
[z − (Ak+1 + Ck+1)]2 − 4AkCk+1

by multiplying and dividing by 

√
[z − (Ak + Ck)]2 − 4Ak−1Ck +

√
[z − (Ak+1 + Ck+1)]2 − 4AkCk+1.

In the resulting expression, we replace the denominator by using the approximant in (2.7), and replace 
Ak+1 −Ak and Ck+1 − Ck by using A∗(k/N) and C∗(k/N) given in (2.8). The final result is 

N{[y −A(k/N) − C(k/N)][A∗(k/N) + C∗(k/N)] + 2[A(k/N)C∗(k/N) + A∗(k/N)C(k/N)]}√
[y − (A(k/N) + C(k/N))]2 − 4A(k/N)C(k/N)

. (2.10)

For convenience, we introduce the notations

S(y; t) :=
√

(y −A(t) − C(t))2 − 4A(t)C(t) =
√

[y − y−(t)][y − y+(t)], (2.11)

T (y; t) := y −A(t) − C(t) + S(y; t) = [
√
y − y−(t) +

√
y − y+(t)]2/2, (2.12)

and 

G(y; t) := T (y; t)[A∗(t) + C∗(t)] + 2[A(t)C∗(t) + A∗(t)C(t)]. (2.13)

Note that S(y; t) is just the denominator in (2.10) with t = k/N .
Substituting the estimates (2.7), (2.8) and (2.10) into (2.5), and using the notations (2.11)–(2.13), we 

obtain 

w1
k = G(y; k/N)

2NS(y; k/N)2 + O(1/N2).

It then follows from the trapezoidal rule (cf. [10]) that

n∑
k=1

w1
k =

p∫
0

G(y; t)
2S(y; t)2 dt + O(1/n). (2.14)
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Next, we approximate 
∑n

k=1 lnw0
k. Note that

Ak

N2 ∼ A(k/N)
(

1 − 1
ND

)
,

Ck

N2 ∼ C(k/N)
(

1 + 1
ND

)
,

and

Ak−1

N2 ∼ A(k/N)
(

1 + 3
ND − 1

NA1
− 1

NA2
− 1

NA3
− 1

NA4

)
,

where A1, · · · , A4 and D are given in (2.9).
Furthermore, we obtain from (2.4) that

2w0
k

N2 =
z −Ak − Ck +

√
(z −Ak − Ck)2 − 4AkCk

N2

+
√

(z −Ak − Ck)2 − 4Ak−1Ck −
√

(z −Ak − Ck)2 − 4AkCk

N2 . (2.15)

The first fraction on the right-hand side of (2.15) can be approximated as

y −A(k/N) + A(k/N)
ND − C(k/N) − C(k/N)

ND

+

√[
y −A(k/N) − C(k/N) + A(k/N) − C(k/N)

ND

]2

−A(k/N)C(k/N)

∼ y −A(k/N) − C(k/N) +
√

[y −A(k/N) − C(k/N)]2 −A(k/N)C(k/N) + A(k/N) − C(k/N)
ND

+ [A(k/N) − C(k/N)][y −A(k/N) − C(k/N)]
ND

√
[y −A(k/N) − C(k/N)]2 −A(k/N)C(k/N)

∼ T (y; k/N) + [A(k/N) − C(k/N)]T (y; k/N)
ND(k/N)S(y; k/N) .

The second fraction on the right-hand side of (2.15) can be approximated as

−4(Ak−1 −Ak)Ck

N2[
√

(z −Ak − Ck)2 − 4Ak−1Ck +
√

(z −Ak − Ck)2 − 4AkCk]

∼ −2A(k/N)C(k/N)
S(y; k/N)

(
4

ND − 1
NA1

− 1
NA2

− 1
NA3

− 1
NA4

)
.

Applying the above two estimates to (2.15) yields

2w0
k

N2 ∼ T (y; k/N) + [A(k/N) − C(k/N)]T (y; k/N)
ND(k/N)S(y; k/N) − 2A(k/N)C(k/N)E(k/N)

NS(y; k/N) ,

where 

E(t) := 4
D(t) − 1

A1(t)
− 1

A2(t)
− 1

A3(t)
− 1

A4(t)
. (2.16)

Thus, we obtain from the trapezoidal rule that
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n∑
k=1

lnw0
k = n ln(N2/2) + N

p∫
0

lnT (y; t)dt + 1
2

ln T (y; p)
T (y; 0)

+
p∫

0

[
A(t) − C(t)
D(t)S(y; t) − 2A(t)C(t)E(t)

S(y; t)T (y; t)

]
dt + O(1/n). (2.17)

Now, we are ready to state our first main result.

Theorem 2.1. Let πn(z) be the monic Racah polynomials satisfying the recurrence relation (1.3). Assume 
n/N = p is fixed in (0, 1). Let A(t), C(t) and y±(t) be defined as in (2.2) and (2.3). Also, let Ω1(y) and 
Ω0(y) denote, respectively, the integrals in (2.14) and (2.17). Assume that y+(t) is increasing and y−(t) is 
decreasing for t ∈ [0, p]. Then, for y ∈ C \ [y−(p), y+(p)], we have 

πn(N2y) =
(
N2

2

)n

eNg(y)+r(y)
[
1 + O

(
1
n

)]
, (2.18)

where the main term g(y) is given by 

g(y) :=
p∫

0

lnT (y; t)dt, (2.19)

and the correction term r(y) is given by 

r(y) := 1
2 ln T (y; p)

T (y; 0) + Ω0(y) + Ω1(y). (2.20)

Proof. Use a combination of (2.6), (2.14) and (2.17). �
Next, we investigate πn(N2y) for y in a small neighborhood of the oscillatory interval (y−(p), y+(p)). For 

y ∈ (y−(p), y+(p)), we use the notation 

F±(y; t) := lim
ε→0+

F (y ± iε; t). (2.21)

Thus,

S±(y) := lim
ε→0+

S(y ± iε), g±(y) := lim
ε→0+

g(y ± iε), · · · , etc. (2.22)

Recall that y±(0) = A(0). We consider two cases: y ∈ (A(0), y+(p)) and y ∈ (y−(p), A(0)), separately.
If A(0) = y+(0) < y < y+(p), we choose ty ∈ (0, p) such that 

y = y+(ty) = A(ty) + C(ty) + 2
√

A(ty)C(ty);

cf. (2.3). In this case, we have

S±(y; t) =

⎧⎨
⎩
√

[y − y−(t)][y − y+(t)], 0 ≤ t ≤ ty,

±i
√

[y − y−(t)][y+(t) − y], ty ≤ t ≤ p.
(2.23a)

If y−(p) < y < y−(0) = A(0), we choose ty ∈ (0, p) such that 
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y = y−(ty) = A(ty) + C(ty) − 2
√
A(ty)C(ty),

in which case we have

S±(y; t) =

⎧⎨
⎩
−
√

[y−(t) − y][y+(t) − y], 0 ≤ t ≤ ty,

±i
√

[y − y−(t)][y+(t) − y], ty ≤ t ≤ p.
(2.23b)

Using the definition of F±(y; t) given in (2.21), it follows from (2.19) and (2.20) that 

g±(y) =
p∫

0

lnT±(y; t)dt, (2.24)

where 

T±(y; t) = y −A(t) − C(t) + S±(y; t); (2.25)

and 

r±(y) = 1
2 ln T±(y; p)

T±(y; 0) + Ω±
0 (y) + Ω±

1 (y), (2.26)

where 

Ω±
0 (y) =

p∫
0

[
A(t) − C(t)
D(t)S±(y; t) − 2A(t)C(t)E(t)

S±(y; t)T±(y; t)

]
dt, (2.27)

and 

Ω±
1 (y) = P.V.

p∫
0

G(y; t)
2S(y; t)2 dt∓ iπ

G(y; ty)
2y′−(ty)[y − y+(ty)]

(2.28a)

if y−(p) < y < y−(0) = A(0), and 

Ω±
1 (y) = P.V.

p∫
0

G(y; t)
2S(y; t)2 dt∓ iπ

G(y; ty)
2[y − y−(ty)]y′+(ty)

(2.28b)

if A(0) = y+(0) < y < y+(p). In (2.28), “P.V.” denotes the Cauchy principal value.
An explanation is needed for the results in (2.28). In view of the second equality in (2.11), the integral 

Ω1(y) in (2.14) (see the statement of Theorem 2.1) has a singularity at t = ty. For this reason, we digress 
briefly to discuss the Stieltjes transform 

F (z) =
b∫

a

f(s)
s− z

ds, z ∈ C \ [a, b].

By using Cauchy’s theorem, one can show that 

F±(x) = P.V.

b∫
f(s)
s− x

dx± iπf(x), a < x < b. (2.29)

a
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We first consider the case A(0) = y+(0) < y < y+(p). The integral Ω1(y) can be written as 

Ω1(y) =
p∫

0

(t− ty)G(y; t)
2S(y; t)2(t− ty)

dt.

From (2.29), it follows that

Ω±
1 (y) = P.V.

p∫
0

G(y; t)
2S(y; t)2 dt± iπ lim

t→ty

t− ty
2S(y; t)2G(y; t)

= P.V.

p∫
0

G(y; t)
2S(y; t)2 dt∓ iπ

G(y; ty)
2[y − y−(ty)]y′+(ty)

.

In the case y−(p) < y < y−(0) = A(0), the result is 

Ω±
1 (y) = P.V.

p∫
0

G(y; t)
2S(y; t)2 dt∓ iπ

G(y; ty)
2y′−(ty)[y − y+(ty)]

.

Our second main theorem is stated below.

Theorem 2.2. Let πn(z) be the monic Racah polynomials satisfying the recurrence relation (1.3). Assume 
n/N = p is fixed in (0, 1). Let A(t), C(t) and y±(t) be defined as in (2.2) and (2.3). We further assume that 
y+(t) is increasing and y−(t) is decreasing for t ∈ [0, p]. Then, we have

πn(N2y) =
(
N2

2

)n {
eNg+(y)+r+(y)

[
1 + O

(
1
n

)]
+ eNg−(y)+r−(y)

[
1 + O

(
1
n

)]}
(2.30)

for y ∈ (y−(p), A(0)) ∪ (A(0), y+(p)).

Proof. First, we note that the functions g±(y) and r±(y) can be analytically continued to a small neighbor-
hood of any compact subset of (y−(p), A(0)) ∪ (A(0), y+(p)) in the complex plane. In such a neighborhood, 
by (2.19) and (2.12), 

g+(y) − g−(y) =
p∫

ty

ln T+(y; t)
T−(y; t)dt

has positive real part if y is in the upper-half plane and negative real part if y is in the lower-half plane. 
Thus, the function eN [g+(y)−g−(y)] is exponentially large on the upper-half plane and exponentially small on 
the lower-half plane, which together with (2.18) implies that the asymptotic formula (2.30) is valid on both 
upper- and lower-half planes. By analytical continuation, this formula is also valid for y ∈ (y−(p), A(0)) ∪
(A(0), y+(p)); see [8,10]. �
Remark 2.3. A standard application of the uniform technique developed by Wang and Wong [9] allows us 
to provide uniform asymptotic formulas of Racah polynomials near the turning points y−(p) and y+(p). For 
the sake of simplicity, we omit the details in this paper.
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3. Limiting cases: Hahn polynomials

The Hahn polynomials are defined by the 3F2 hypergeometric series [7, (9.5.1)]

Qn(x;α, β,N) = 3F2

(
−n, n + α + β + 1, −x

α + 1, −N

∣∣∣∣1
)
, n = 0, · · · , N. (3.1)

They are the limiting cases of Racah polynomials in the following sense [7, (9.2.15)]

lim
δ→∞

Rn(λ(x), α, β,−N − 1, δ) = Qn(x;α, β,N). (3.2)

Here λ(x) = x(x + γ + δ + 1) and γ = −N − 1. Since asymptotic formulas of Racah polynomials hold 
uniformly with respect to the parameter δ, asymptotic formulas of the Hahn polynomials can be deduced 
from the formulas in (2.18) and (2.30). Let

π̄n(x) := (α + 1)n(−N)n
(n + α + β + 1)n

Qn(x;α, β,N) (3.3)

be the monic Hahn polynomials. From (1.4), (3.1), (3.2) and (3.3), it follows that 

π̄n(x) = lim
δ→∞

πn(λ(x))
(β + δ + 1)n

. (3.4)

Recall that 

z = N2y = λ(x), α + 1 = Na, β = Nb, γ + 1 = Nc, δ + 1 = Nd.

With γ = −N −1 in (3.2), we must take c = −1. Since δ → ∞, we also have d → ∞; cf. the equalities in the 
preceding line. Set x = Nȳ and take logarithms on both sides of (3.4). Since (β + δ + 1)n = (Nb + Nd)n ∼
(Nd)n as d → ∞, we obtain 

ln π̄n(Nȳ) = lim
d→∞

[ln πn(N2y) − n lnN − n ln d]. (3.5)

Furthermore, since z = N2y = λ(Nȳ) = Nȳ(Nȳ + Nc + Nd − 1), we have y/d → ȳ as d → ∞. From (2.2), 
it follows that for t ∈ [0, p], 

lim
d→∞

A(t)
d

= (t + a)(t + a + b)(1 − t)
(2t + a + b)2 =: Ā(t),

lim
d→∞

C(t)
d

= t(t + a + b + 1)(t + b)
(2t + a + b)2 =: C̄(t). (3.6)

Note from (2.9) that A3(t)/d → 1 and C3(t)/d → −1 as d → ∞. Thus, we have from (2.8) and (2.9)

Ā∗(t) := lim
d→∞

A∗(t)
d

= 4A1(t)A2(t)A4(t) − (A1(t)A2(t) + A1(t)A4(t) + A2(t)A4(t))D(t)
D3(t) ,

C̄∗(t) := lim
d→∞

C∗(t)
d

= (C1(t)C2(t) + C1(t)C4(t) + C2(t)C4(t))D(t) − 4C1(t)C2(t)C4(t)
D3(t) , (3.7)

where Ai(t), Ci(t) (with i = 1, 2, 4) and D(t) are defined as in (2.9) with c replaced by −1. Finally, by (2.11)
and (2.12), we obtain 
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S̄(ȳ; t) := lim
d→∞

S(y; t)
d

=
√

[ȳ − Ā(t) − C̄(t)]2 − 4Ā(t)C̄(t) (3.8)

and 

T̄ (ȳ; t) := lim
d→∞

T (y; t)
d

= ȳ − Ā(t) − C̄(t) + S̄(ȳ; t). (3.9)

On account of (2.13) and (2.16), we also have 

Ḡ(ȳ; t) := lim
d→∞

G(y; t)
d2 = T̄ (ȳ; t)[Ā∗(t) + C̄∗(t)] + 2[Ā(t)C̄∗(t) + Ā∗(t)C̄(t)] (3.10)

and 

Ē(t) := lim
d→∞

E(t) = 4
D(t) − 1

A1(t)
− 1

A2(t)
− 1

A4(t)
. (3.11)

Combining (2.3) and (3.6) gives

ȳ±(t) := lim
d→∞

y±(t)
d

= Ā(t) + C̄(t) ± 2
√

Ā(t)C̄(t). (3.12)

From (2.18) and (3.5), we have the following result.

Corollary 3.1. Let α = Na and β = Nb with a, b > 0. Assume n/N = p is a fixed number in (0, 1). Let 
ȳ±(t) be defined as in (3.12). Assume ȳ+(t) is increasing and ȳ−(t) is decreasing for t ∈ [0, p]. As n → ∞, 
we have the following asymptotic formula for the monic Hahn polynomials π̄n in (3.3): 

π̄n(Nȳ) =
(
N

2

)n

eNḡ(ȳ)+r̄(ȳ)
[
1 + O

(
1
n

)]
(3.13)

for ȳ ∈ C \ [ȳ−(p), ȳ+(p)]. Here, the main term ḡ(ȳ) is given by 

ḡ(ȳ) := lim
d→∞

[g(y) − p ln d] =
p∫

0

ln T̄ (ȳ; t)dt, (3.14)

and the correction term r̄(ȳ) is given by 

r̄(ȳ) := lim
d→∞

r(y) = 1
2 ln T̄ (ȳ; p)

T̄ (ȳ; 0)
+ Ω̄0(ȳ) + Ω̄1(ȳ), (3.15)

where 

Ω̄0(ȳ) := lim
d→∞

Ω0(y) =
p∫

0

[
Ā(t) − C̄(t)
D(t)S̄(ȳ; t)

− 2Ā(t)C̄(t)Ē(t)
S̄(ȳ; t)T̄ (ȳ; t)

]
dt, (3.16)

and 

Ω̄1(ȳ) := lim
d→∞

Ω1(y) =
p∫

0

Ḡ(ȳ; t)
2S̄(ȳ; t)2

dt. (3.17)
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Equation (3.14) follows from (2.19) and (3.9), and equation (3.15) is obtained from (2.20), (2.17) and 
(2.14); see also (3.8), (3.10) and (3.11).

The asymptotic formula of monic Hahn polynomials π̄n(Nȳ) in the oscillatory interval can be obtained by 
using either the matching method or by taking a limit in the corresponding formula of Racah polynomials.

Corollary 3.2. Let α = Na and β = Nb with a, b > 0. Assume n/N = p is a fixed number in (0, 1). Let 
ȳ±(t) be defined as in (3.12). Assume ȳ+(t) is increasing and ȳ−(t) is decreasing for t ∈ [0, p]. Let S̄±(ȳ; t)
and T̄±(ȳ; t) be defined similarly as in (2.23) and (2.25). As n → ∞, we have

π̄n(Nȳ) =
(
N

2

)n {
eNḡ+(ȳ)+r̄+(ȳ)

[
1 + O

(
1
n

)]
+ eNḡ−(ȳ)+r̄−(ȳ)

[
1 + O

(
1
n

)]}
(3.18)

for ȳ ∈ (ȳ−(p), Ā(0)) ∪ (Ā(0), ȳ+(p)). Here, 

ḡ±(ȳ) =
p∫

0

ln T̄±(ȳ; t)dt, (3.19)

and 

r̄±(ȳ) = 1
2 ln T̄±(ȳ; p)

T̄±(ȳ; 0)
+ Ω̄±

0 (ȳ) + Ω̄±
1 (ȳ), (3.20)

where 

Ω̄±
0 (ȳ) =

p∫
0

[
Ā(t) − C̄(t)
D(t)S̄±(ȳ; t)

− 2Ā(t)C̄(t)Ē(t)
S̄±(ȳ; t)T̄±(ȳ; t)

]
dt, (3.21)

and 

Ω̄±
1 (ȳ) = P.V.

p∫
0

Ḡ(ȳ; t)
2S̄(ȳ; t)2

dt∓ iπ
Ḡ(ȳ; tȳ)

2ȳ′−(tȳ)[ȳ − ȳ+(tȳ)]
(3.22a)

if ȳ−(p) < ȳ < ȳ−(0) = Ā(0) with ȳ = ȳ−(tȳ) for some tȳ ∈ (0, p), and 

Ω̄±
1 (ȳ) = P.V.

p∫
0

Ḡ(ȳ; t)
2S̄(ȳ; t)2

dt∓ iπ
Ḡ(ȳ; tȳ)

2[ȳ − ȳ−(tȳ)]ȳ′+(tȳ)
(3.22b)

if Ā(0) = ȳ+(0) < ȳ < ȳ+(p) with ȳ = ȳ+(tȳ) for some tȳ ∈ (0, p).

4. Limiting cases: Krawtchouk polynomials

The Krawtchouk polynomials are defined by the 2F1 hypergeometric series [7, (9.11.1)]

Kn(x; q,N) = 2F1

(
−n, −x

−N

∣∣∣∣1q
)
, n = 0, · · · , N. (4.1)

These polynomials are limiting cases of Hahn polynomials in the following sense. Fix q ∈ (0, 1), and let 
α/β = q/(1 − q) and β → ∞. We have [7, (9.5.16)]
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lim
β→∞

Qn(x;βq/(1 − q), β,N) = Kn(x; q,N). (4.2)

The monic Krawtchouk polynomials are given by 

π̃n(x) := (−N)nqnKn(x; q,N). (4.3)

Recall that α+ 1 = Na and β = Nb. We choose a = mq and b = m(1 − q), and then let m → ∞. In view of 
(3.3), (4.1), (4.2) and (4.3), we have the following limiting relation between monic Hahn polynomials and 
monic Krawtchouk polynomials. 

lim
m→∞

π̄n(x) = π̃n(x). (4.4)

Furthermore, from (3.6), (3.7) and (2.9) with a = mq and b = m(1 − q), we obtain for t ∈ [0, p], 

lim
m→∞

Ā(t) = q(1 − t) =: Ã(t),

lim
m→∞

C̄(t) = t(1 − q) =: C̃(t), (4.5)

and 

lim
m→∞

Ā∗(t) = −q,

lim
m→∞

C̄∗(t) = 1 − q. (4.6)

Recall that in the previous section, we have chosen c = −1 to obtain Hahn polynomials from Racah 
polynomials. In view of (2.9), we have as m → ∞

1/D(t) → 0, 1/A1(t) → 0, 1/A2(t) → 0, 1/A4(t) = 1/(t− 1). (4.7)

Let ỹ = ȳ. From (3.8), (3.9) and (4.5), it follows that 

S̃(ỹ; t) := lim
m→∞

S̄(ȳ; t) =
√

[ỹ − Ã(t) − C̃(t)]2 − 4Ã(t)C̃(t), (4.8)

and 

T̃ (ỹ; t) := lim
m→∞

T̄ (ȳ; t) = ỹ − Ã(t) − C̃(t) + S̃(ỹ; t). (4.9)

Similarly, from (3.10), (4.6) and (4.5), we obtain 

G̃(ỹ; t) := lim
m→∞

Ḡ(ȳ; t) = T̃ (ỹ; t)(1 − 2q) + 2q(1 − q)(1 − 2t). (4.10)

Furthermore, in view of (3.11) and (4.7), we also have 

Ẽ(t) := lim
m→∞

Ē(t) = − 1
t− 1 . (4.11)

Coupling (3.12) and (4.5) gives

ỹ±(t) := lim
m→∞

ȳ±(t) = Ã(t) + C̃(t) ± 2
√
Ã(t)C̃(t), (4.12)
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and from (3.14) and (4.9) it follows

g̃(ỹ) := lim
m→∞

ḡ(ȳ) =
p∫

0

ln T̃ (ỹ; t)dt. (4.13)

A combination of (3.15)–(3.17), (4.5), (4.7), (4.9) and (4.11) yields

r̃(ỹ) := lim
m→∞

r̄(ȳ)

= 1
2 ln ỹ − Ã(p) − C̃(p) + S̃(ỹ; p)

ỹ − Ã(0) − C̃(0) + S̃(ỹ; 0)
+

p∫
0

G̃(ỹ; t)
2S̃(ỹ; t)2

dt−
p∫

0

2tq(1 − q)
S̃(ỹ; t)T̃ (ỹ; t)

dt. (4.14)

The last two integrals can be evaluated explicitly. Indeed, on account of (4.5), (4.8) and (4.9), they are equal 
to

p∫
0

ỹ − 2ỹq + q − t

2[t2 − 2(ỹ − 2ỹq + q)t + (ỹ − q)2]dt +
p∫

0

1 − 2q
2
√

[t− (ỹ − 2ỹq + q)]2 + 4q(1 − q)ỹ(ỹ − 1)
dt

=−1
4 ln p2 − 2(ỹ − 2ỹq + q)p + (ỹ − q)2

(ỹ − q)2

+ 1 − 2q
2 ln

p− (ỹ − 2ỹq + q) +
√

[p− (ỹ − 2ỹq + q)]2 + 4q(1 − q)ỹ(ỹ − 1)
2q(ỹ − 1)

and

p∫
0

ỹ − q − t(1 − 2q) −
√

[t− (ỹ − 2ỹq + q)]2 + 4q(1 − q)ỹ(ỹ − 1)
2(1 − t)

√
[t− (ỹ − 2ỹq + q)]2 + 4q(1 − q)ỹ(ỹ − 1)

dt

= 1
2 ln

ỹ2 + q2 − ỹ − q − (ỹ − 2ỹq + q − 1)p + (ỹ + q − 1)
√

[p− (ỹ − 2ỹq + q)]2 + 4q(1 − q)ỹ(ỹ − 1)
2ỹ(ỹ − 1)

+ 1 − 2q
2 ln

p− (ỹ − 2ỹq + q) +
√

[p− (ỹ − 2ỹq + q)]2 + 4q(1 − q)ỹ(ỹ − 1)
2q(ỹ − 1)

respectively, where we have also made use of the following integral formulas [5]
∫ 1√

u2 + a
du = ln(u +

√
u2 + a),

∫ 1
(b− u)

√
u2 + a

du = 1√
a + b2

ln
2[a + bu +

√
(a + b2)(a + u2)]
b− u

.

Finally, we substitute the above explicit formulas for the two integrals into (4.14). Upon simplification, we 
obtain

r̃(ỹ) = 1
2 ln

ỹ − q − (2ỹ − 1)p +
√

[p− (ỹ − 2ỹq + q)]2 + 4q(1 − q)ỹ(ỹ − 1)
2(1 − p)

√
[p− (ỹ − 2ỹq + q)]2 + 4q(1 − q)ỹ(ỹ − 1)

. (4.15)

In view of (3.13) and (4.4), we have the following results.



1162 X.-S. Wang, R. Wong / J. Math. Anal. Appl. 436 (2016) 1149–1164
Corollary 4.1. Let π̃n(x) be the monic Krawtchouk polynomials as defined in (4.3). Assume that n/N = p is 
a fixed number in (0, 1). Let ỹ± be defined as in (4.12). Assume ỹ+(t) is increasing and ỹ−(t) is decreasing 
for t ∈ [0, p]. As n → ∞, we have 

π̃n(Nỹ) =
(
N

2

)n

eNg̃(ỹ)+r̃(ỹ)
[
1 + O

(
1
n

)]
(4.16)

for ỹ ∈ C \ [ỹ−(p), ỹ+(p)]. Here, g̃(ỹ) and r̃(ỹ) are given by (4.13) and (4.15), respectively.

The asymptotic formula of monic Krawtchouk polynomials π̃n(Nỹ) in the oscillatory interval can again be 
obtained by either the matching method or taking limit in the corresponding formula of Hahn polynomials.

Corollary 4.2. Assume that n/N = p is a fixed number in (0, 1). Let ỹ±(t) be defined as in (4.12). Assume 
ỹ+(t) is increasing and ỹ−(t) is decreasing for t ∈ [0, p]. Let S̃±(ỹ; t) and T̃±(ỹ; t) be defined similarly as in
(2.23) and (2.25). As n → ∞, we have

π̃n(Nỹ) =
(
N

2

)n {
eNg̃+(ỹ)+r̃+(ỹ)

[
1 + O

(
1
n

)]
+ eNg̃−(ỹ)+r̃−(ỹ)

[
1 + O

(
1
n

)]}
(4.17)

for ỹ ∈ (ỹ−(p), Ã(0)) ∪ (Ã(0), ỹ+(p)). Here, 

g̃±(ỹ) =
p∫

0

ln T̃±(ỹ; t)dt, (4.18)

and 

r̃±(ỹ) = 1
2 ln ỹ − q − (2ỹ − 1)p + S̃±(ỹ; p)

2(1 − p)S̃±(ỹ; p)
. (4.19)

Remark 4.3. Our assumption that ỹ+(t) is increasing and ỹ−(t) is decreasing for t ∈ [0, p] corresponds to 
the void-band-void (VBV) case considered in [4]. We have verified that the results in this section agree with 
those in [4] and [6], although the work is very involved.

5. Racah polynomials with fixed variable

In this section, we shall provide a simple formula for the Racah polynomials with fixed variable z. For 
simplicity, we assume A(t) > C(t) for all t ∈ [0, p]. From (2.3), we have 

√
y±(t) =

√
A(t) ±

√
C(t).

Since 0 < y−(t) < y+(t), we obtain from (2.11) and the above equation 

S(0; t) = −
√

y−(t)
√

y+(t) = −[A(t) − C(t)] < 0.

Here, we remark that the square roots 
√
y − y−(t) and 

√
y − y+(t) in (2.11) are taking their principal 

values; thus S(y; t) < 0 for all real y < y−(t) < y+(t). Consequently, we have

S(z/N2; t) = S(0; t) + O(1/N2) = C(t) −A(t) + O(1/N2). (5.1)

Coupling the above equation with (2.12) gives
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T (z/N2; t) = −2A(t) + O(1/N2). (5.2)

In view of n = Np, we substitute (5.2) into (2.19) to obtain

exp[Ng(z/N2)] = (−2)n exp

⎡
⎣N

p∫
0

lnA(t)dt

⎤
⎦ [1 + O(1/N)] . (5.3)

Next, we intend to estimate the correction function r(z/N2). Recall from (2.20) that

r(z/N2) = 1
2 ln T (z/N2; p)

T (z/N2; 0) + Ω0(z/N2) + Ω1(z/N2), (5.4)

where Ω0 and Ω1 are the two integrals defined in (2.17) and (2.14), respectively; namely,

Ω0(z/N2) =
p∫

0

[
A(t) − C(t)

D(t)S(z/N2; t) − 2A(t)C(t)E(t)
S(z/N2; t)T (z/N2; t)

]
dt, (5.5)

Ω1(z/N2) =
p∫

0

G(z/N2; t)
2S(z/N2; t)2 dt. (5.6)

Substituting (5.1) and (5.2) into (5.5) yields

Ω0(z/N2) =
p∫

0

[
−1
D(t) + C(t)E(t)

C(t) −A(t)

]
dt + O(1/N2), (5.7)

and substituting (5.2) into (2.13) gives

G(z/N2; t) = −2A(t)[A∗(t) + C∗(t)] + 2[A(t)C∗(t) + A∗(t)C(t)] + O(1/N2)

= 2A∗(t)[C(t) −A(t)] + O(1/N2). (5.8)

From (5.1), (5.6) and (5.8), it then follows that

Ω1(z/N2) =
p∫

0

A∗(t)
C(t) −A(t)dt + O(1/N2) =

p∫
0

−A(t)E(t)
C(t) −A(t)dt + O(1/N2), (5.9)

where we have used the identity A∗(t) = −A(t)E(t), which can be obtained via (2.2), (2.8), (2.9) and (2.16). 
Coupling (5.7) and (5.9), we obtain

Ω0(z/N2) + Ω1(z/N2)

=
p∫

0

[
−1
D(t) + E(t)

]
dt + O(1/N2)

=
p∫

0

[
3

2t + a + b
− 1

t + a
− 1

t + a + b
− 1

t + b + d
− 1

t + c

]
dt + O(1/N2)

= 3
2 ln 2p + a + b

a + b
+ ln ac(a + b)(b + d)

(p + a)(p + c)(p + a + b)(p + b + d) + O(1/N2). (5.10)
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Here, we have made use of the definitions of D(t) and E(t) given in (2.9) and (2.16), respectively. On the 
other hand, we have from (2.2) and (5.2)

ln T (z/N2; p)
T (z/N2; 0)

= ln (p + a)(p + c)(p + a + b)(p + b + d)(a + b)
ac(b + d)(2p + a + b)2 + O(1/N2). (5.11)

Applying (5.10) and (5.11) to (5.4) yields

r(z/N2) = 1
2 ln ac(b + d)(2p + a + b)

(p + a)(p + c)(p + b + d)(p + a + b) + O(1/N2). (5.12)

By substituting (5.3) and (5.12) into (2.18), we obtain the following result.

Corollary 5.1. Let πn(z) be the monic Racah polynomials satisfying the recurrence relation (1.3). Assume 
n/N = p is fixed in (0, 1). Let A(t), C(t) and y±(t) be defined as in (2.2) and (2.3). We further assume 
that A(t) > C(t), y+(t) is increasing and y−(t) is decreasing for t ∈ [0, p]. Then as n → ∞, we have for 
any fixed z,

πn(z) = (−N2)n exp

⎡
⎣N

p∫
0

lnA(t)dt

⎤
⎦
√

ac(b + d)(2p + a + b)
(p + a)(p + c)(p + b + d)(p + a + b)

× [1 + O(1/N)] . (5.13)
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