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Uniform asymptotic formulas are obtained for the Stieltjes–Wigert polynomial, the q−1-
Hermite polynomial and the q-Laguerre polynomial as the degree of the polynomial tends
to infinity. In these formulas, the q-Airy polynomial, defined by truncating the q-Airy
function, plays a significant role. While the standard Airy function, used frequently in
the uniform asymptotic formulas for classical orthogonal polynomials, behaves like the
exponential function on one side and the trigonometric functions on the other side of
an extreme zero, the q-Airy polynomial behaves like the q-Airy function on one side and
the q-Theta function on the other side. The last two special functions are involved in the
local asymptotic formulas of the q-orthogonal polynomials. It seems therefore reasonable
to expect that the q-Airy polynomial will play an important role in the asymptotic theory
of the q-orthogonal polynomials.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

For fixed q ∈ (0,1), the q-shifted factorials [1, (1.2.15)] are defined by

(a;q)0 := 1, (a;q)n :=
n∏

k=1

(
1 − aqk−1), n = 1,2, . . . ; (1.1)

this definition remains valid when n is infinite. We shall also make use of the identity

(q;q)n = (q;q)∞
(qn+1;q)∞

. (1.2)

In terms of the notation in (1.1), the Stieltjes–Wigert polynomial [5, (3.27.1)] is given by

Sn(z;q) =
n∑

k=0

qk2

(q;q)k(q;q)n−k
(−z)k. (1.3)

In this paper, we are concerned with the asymptotic behavior of this polynomial as n → ∞. First, let us introduce the new
scale z := q−nt u with u ∈ C, u �= 0 and t ∈ R. In view of the symmetry relation

Sn
(
q−nt u;q

) = (−u)nqn2(1−t) Sn
(
q−n(2−t)u−1), (1.4)
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we may restrict ourselves to the case t � 1; see [6, (5.6)]. The case t = 2 has been studied by Ismail [3, Theorem 2.5], who
gave an asymptotic formula for this polynomial involving the q-Airy function

Aq(z) :=
∞∑

k=0

qk2

(q;q)k
(−z)k; (1.5)

see also [2, Theorem 21.8.7]. For the cases t � 2 and 1 � t < 2, Ismail and Zhang [4, Theorem 2.3] have derived asymptotic
formulas in terms of the q-Airy function and the q-Theta function [7, p. 463]

Θq(z) :=
∞∑

k=−∞
qk2

zk, (1.6)

respectively. The results in [4] have been improved in our earlier paper [6], where simpler formulas and sharper bounds
for the error terms are given. However, none of the formulas obtained thus far holds uniformly in a neighborhood of t = 2,
and our intention here is just to provide such a result. It turns out that, in stead of the q-Airy function given in (1.5), our
formula involves the polynomial

Aq,n(z) :=
n∑

k=0

qk2

(q;q)k
(−z)k. (1.7)

Since this is simply the n-th partial sum of the q-Airy function, we call it the q-Airy polynomial. For convenience, we also
introduce the half q-Theta function:

Θ+
q (z) :=

∞∑
k=0

qk2
zk. (1.8)

Clearly,

Θq(z) + 1 = Θ+
q (z) + Θ+

q (1/z). (1.9)

The following theorem is our main result.

Theorem 1. Let z := q−nt u with t � 1, u ∈ C and |u| � 1/R, where R > 0 is any fixed large number. Given any small δ > 0, we have

Sn(z;q) = (−z)nqn2

(q;q)n

[
Aq,n

(
q−2n/z

) + rn(z)
]

(1.10)

for t > 2(1 − δ), where the remainder satisfies

∣∣rn(z)
∣∣ � qn(1−3δ)

1 − q
Aq,n

(−q−2n/|z|) + q3n2δ2−2nδ R�3nδ�+1

(q;q)∞
Θ+

q

(
q4nδ R

)
. (1.11)

In view of the symmetry relation (1.4), the above result together with the second statement in Corollary 2 of [6] provide the asymptotic
behavior of Sn(z;q) for z in the whole complex plane.

The paper is arranged as follows. In Section 2 we present some asymptotic formulas for the q-Airy function and the
q-Airy polynomial in terms of the q-Theta function. The proof of Theorem 1 is given in Section 3, where comparison of this
result is also made with those in our earlier paper [6]. In Section 4 we state two theorems, corresponding to Theorem 1, for
the q−1-Hermite polynomial and the q-Laguerre polynomial.

2. Properties of the q-Airy function and the q-Airy polynomial

In this section, we have only one result, namely, the following.

Proposition 1. Let z := q−nt u with u �= 0 and t being a fixed real number. When t � 2, we have

Aq,n(z) = (−z)nqn2

(q;q)∞
[
Θ+

q

(−q−2n/z
) + O

(
qn(1−δ)

)]
(2.1)

uniformly for |u| � 1/R, where δ > 0 is any small number and R > 0 is any large real number. When 0 < t < 2, we have

Aq,n(z) = (−z)mqm2 [
Θq

(−q2mz
) + O

(
qm(1−δ)

)]
, (2.2)
(q;q)∞
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where m := �nt
2 � and δ > 0 is any small number; this formula holds uniformly for 1

R � |u| � R, where R > 0 is any large real number.
When t � 0, we have

Aq,n(z) = Aq(z) + O
(
qn2(1−δ)

)
(2.3)

uniformly for |u| � R, where δ > 0 is any small number. Furthermore, as z → ∞, we have

Aq(z) = (−z)mqm2

(q;q)∞
[
Θq

(−q2mz
) + O

(
qm(1−δ)

)]
, (2.4)

where m := � ln |z|
−2 ln q � and δ > 0 is any small number.

Proof. From the definition of q-Airy polynomial (1.7) we have

Aq,n(z) =
n∑

k=0

q(n−k)2

(q;q)n−k
(−z)n−k = (−z)nqn2

(q;q)∞

n∑
k=0

qk2(
qn−k+1;q

)
∞

(−q−2n/z
)k

.

If t � 2, we write

Aq,n(z) = (−z)nqn2

(q;q)∞
[
Θ+

q

(−q−2n/z
) + rn(z)

]
.

Then we have

rn(z) =
n∑

k=0

qk2(
qn−k+1;q

)
∞

(−q−2n/z
)k −

∞∑
k=0

qk2(−q−2n/z
)k = I1 + I2 + I3,

where

I1 := −
�nδ�∑
k=0

qk2(
1 − (

qn−k+1;q
)
∞

)(−q−2n/z
)k

,

I2 :=
n∑

k=�nδ�+1

qk2(
qn−k+1;q

)
∞

(−q−2n/z
)k

,

I3 := −
∞∑

k=�nδ�+1

qk2(−q−2n/z
)k

.

For any 0 � k � �nδ�, it is verifiable that

1 − (
qn−k+1;q

)
∞ <

qn−k+1

1 − q
<

qn(1−δ)

1 − q
.

Since |q−2n/z| = qn(t−2)/|u| � R for t � 2, we have

|I1| � qn(1−δ)

1 − q

∞∑
k=0

qk2
Rk = O

(
qn(1−δ)

)
.

Furthermore, it is readily seen that

max
{|I2|, |I3|

}
�

∞∑
k=�nδ�+1

qk2
Rk =

∞∑
k=0

q(k+�nδ�+1)2
Rk+�nδ�+1

� qn2δ2
Rnδ+1Θ+

q

(
q2nδ R

) = O
(
qn2δ2(1−δ)

)
.

From the above estimates we obtain

Aq,n(z) = (−z)nqn2

(q;q)∞
[
Θ+

q

(−q−2n/z
) + O

(
qn(1−δ)

)]

for any small δ > 0. This proves (2.1).
Now we consider the case 0 < t < 2. Set m := �nt �; then we can rewrite q-Airy polynomial as
2
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Aq,n(z) =
n∑

k=0

q(k−m)2−m2

(q;q)k

(−q2mz
)k = (−z)mqm2

(q;q)∞

n−m∑
k=−m

qk2(
qk+m+1;q

)
∞

(−q2mz
)k

. (2.5)

To estimate the difference between the last sum and the q-Theta function, we let

rn(z) := (q;q)∞
(−z)mqm2 Aq,n(z) − Θq

(−q2mz
)

=
n−m∑

k=−m

qk2(
qk+m+1;q

)
∞

(−q2mz
)k −

∞∑
k=−∞

qk2(−q2mz
)k = I1 + I2 + I3, (2.6)

where

I1 :=
�nδ�∑

k=−�nδ�
qk2((

qk+m+1;q
)
∞ − 1

)(−q2mz
)k

,

I2 :=
n−m∑

k=�nδ�+1

qk2(
qk+m+1;q

)
∞

(−q2mz
)k −

∞∑
k=�nδ�+1

qk2(−q2mz
)k

,

I3 :=
−�nδ�−1∑

k=−m

qk2(
qk+m+1;q

)
∞

(−q2mz
)k −

−�nδ�−1∑
k=−∞

qk2(−q2mz
)k

.

Firstly, since 1/R � |u| � R and −2 � 2m − nt � 0, we have

q2/R �
∣∣q2mz

∣∣ = q2m−nt |u| � R/q2.

Furthermore, for −�nδ� � k � �nδ�,

1 − (
qk+m+1;q

)
∞ <

qm−nδ

1 − q
.

Thus, it follows that

|I1| � 2
qm−nδ

1 − q

∞∑
k=0

qk2(
R/q2)k = O

(
qm−nδ

)
. (2.7)

Secondly,

max
{|I2|, |I3|

}
� 2

∞∑
k=�nδ�+1

qk2(
R/q2)k = 2

∞∑
k=0

q(k+�nδ�+1)2(
R/q2)k+�nδ�+1

= 2q(�nδ�+1)2(
R/q2)�nδ�+1

Θ+
q

(
q2�nδ�R

) = O
(
qn2δ2(1−δ)

)
. (2.8)

Finally, applying the estimates (2.7) and (2.8) to (2.6), we obtain rn(z) = O (qm−nδ). Therefore,

Aq,n(z) = (−z)mqm2

(q;q)∞
[
Θq

(−q2mz
) + O

(
qm−nδ

)]

for any small δ > 0. Replacing δ by tδ
2 , formula (2.2) then follows since m := �nt

2 �.
When t � 0, we have q−nt � 1 and hence |z| = |q−nt u| � R . From (1.5) and (1.7) we obtain

∣∣Aq,n(z) − Aq(z)
∣∣ =

∣∣∣∣∣
∞∑

k=n+1

qk2

(q;q)k
(−z)k

∣∣∣∣∣ �
∞∑

k=n+1

qk2

(q;q)∞
Rk �

∞∑
k=n

qk2

(q;q)∞
Rk.

For convenience, we have added a positive term in the last sum. Since the last sum can be expressed in terms of the half
q-Theta function defined in (1.8), we have

∣∣Aq,n(z) − Aq(z)
∣∣ �

∞∑
l=0

q(l+n)2

(q;q)∞
Rl+n = qn2

Rn

(q;q)∞
Θ+

q

(
q2n R

) = O
(
qn2(1−δ)

)

for any small δ > 0. This ends the proof of (2.3).
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The proof of (2.4) is similar to that of (2.2). Recall that m := � ln |z|
−2 ln q �. When z tends to infinity, so does m. Furthermore,

1 � |q2mz| � q−2. This suggests to change the variable in the q-Airy function from z into q2mz. On account of (1.2),

Aq(z) =
∞∑

k=0

qk2

(q;q)k
(−z)k =

∞∑
k=−m

q(k+m)2

(q;q)k+m
(−z)k+m

= (−z)mqm2

(q;q)∞

∞∑
k=−m

qk2(
qk+m+1;q

)
∞

(−q2mz
)k

.

To prove (2.4) we only need to estimate the remainder

r(z) := (q;q)∞ Aq(z)

(−z)mqm2 − Θq
(−q2mz

) =
∞∑

k=−m

qk2(
qk+m+1;q

)
∞

(−q2mz
)k −

∞∑
k=−∞

qk2(−q2mz
)k

= I1 + I2 + I3, (2.9)

where

I1 :=
�mδ�∑

k=−�mδ�
qk2((

qk+m+1;q
)
∞ − 1

)(−q2mz
)k

,

I2 :=
∞∑

k=�mδ�+1

qk2(
qk+m+1;q

)
∞

(−q2mz
)k −

∞∑
k=�mδ�+1

qk2(−q2mz
)k

,

I3 :=
−�mδ�−1∑

k=−m

qk2(
qk+m+1;q

)
∞

(−q2mz
)k −

−�mδ�−1∑
k=−∞

qk2(−q2mz
)k

.

Again since q2 < 1 � |q2mz| � q−2, similarly to the proof of (2.2) one can show that for any fixed small δ > 0,

|I1| � 2
qm−mδ

1 − q

∞∑
k=0

qk2
q−2k = O

(
qm(1−δ)

)
, (2.10)

and

max
{|I2|, |I3|

}
� 2

∞∑
k=�mδ�+1

qk2
q−2k = 2q�mδ�2−1Θ+

q

(
q2�mδ�) = O

(
qm2δ2(1−δ)

)
. (2.11)

A combination of (2.9), (2.10) and (2.11) gives (2.4). This ends our proof. �
3. Proof of Theorem 1 and comparison with earlier results

From the definition of Stieltjes–Wigert polynomial (1.3), we have

Sn(z;q) =
n∑

k=0

q(n−k)2

(q;q)k(q;q)n−k
(−z)n−k = (−z)nqn2

n∑
k=0

qk2

(q;q)k(q;q)n−k

(−q−2n/z
)k

= (−z)nqn2

(q;q)n

n∑
k=0

qk2
(qn−k+1;q)k

(q;q)k

(−q−2n/z
)k

. (3.1)

Combining (1.10) with the definition of q-Airy polynomial (1.7) gives

rn(z) := (q;q)n

(−z)nqn2 Sn(z;q) − Aq,n
(
q−2n/z

) = −
n∑

k=0

(
1 − (

qn−k+1;q
)

k

) qk2

(q;q)k

(−q−2n/z
)k

.

We need to estimate rn(z) for z = q−nt u with t > 2(1 − δ) and |u| � 1/R . Based on the idea of discrete Laplace’s method [6],
we divide the summation into two parts

∑n
k=0 = ∑�nδ1�

k=0 +∑n
k=�nδ1�+1 and estimate them separately. Here δ1 ∈ (0,1) is a

small number to be determined later. Put

rn(z) = −I1 − I2 (3.2)
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with

I1 :=
�nδ1�∑
k=0

(
1 − (

qn−k+1;q
)

k

) qk2

(q;q)k

(−q−2n/z
)k

,

I2 :=
n∑

k=�nδ1�+1

(
1 − (

qn−k+1;q
)

k

) qk2

(q;q)k

(−q−2n/z
)k

.

In view of the inequality 1 − ab < (1 − a) + (1 − b) for any a,b ∈ (0,1) and by induction, we can show that for any
0 � k � nδ1,

1 − (
qn−k+1;q

)
k <

k∑
i=1

qn−k+i <

∞∑
i=0

qn−k+i = qn−k

1 − q
� qn(1−δ1)

1 − q
.

Thus, from the definition of q-Airy polynomial (1.7) we obtain

|I1| �
�nδ1�∑
k=0

qn(1−δ1)

1 − q

qk2

(q;q)k

∣∣q−2n/z
∣∣k � qn(1−δ1)

1 − q
Aq,n

(−q−2n/|z|). (3.3)

We can estimate I2 by using the inequality 0 < 1 − (qn−k+1;q)k < 1 for any nδ1 � k � n. Hence,

|I2| �
n∑

k=�nδ1�+1

qk2

(q;q)∞
∣∣q−2n/z

∣∣k =
n−�nδ1�−1∑

k=0

q(k+�nδ1�+1)2

(q;q)∞
∣∣q−2n/z

∣∣k+�nδ1�+1

�
∞∑

k=0

q(k+nδ1)2

(q;q)∞
∣∣q−2n/z

∣∣k+�nδ1�+1 = qn2δ2
1 |q−2n/z|�nδ1�+1

(q;q)∞
Θ+

q

(
q2nδ1

∣∣q−2n/z
∣∣).

Since t > 2(1 − δ) and |u| � 1/R , we have |q−2n/z| = q−2n+nt/|u| � q−2nδ R . Therefore,

|I2| � qn2δ2
1 q−2nδ(�nδ1�+1)R�nδ1�+1

(q;q)∞
Θ+

q

(
q2n(δ1−δ)R

)

� qn2δ2
1−2nδ(nδ1+1)R�nδ1�+1

(q;q)∞
Θ+

q

(
q2n(δ1−δ)R

)
. (3.4)

Set δ1 := 3δ. A combination of (3.2), (3.3) and (3.4) gives (1.11) immediately.
Now we compare Theorem 1 with our earlier results in [6, Corollary 2]. Recall z := q−nt u.
1. We first consider the case t � 2 and |u| � 1/R , where R > 0 is a fixed large number. From (1.10) we have

Sn(z;q) = (−z)nqn2

(q;q)n

[
Aq,n

(
q−2n/z

) + rn(z)
]

= (−u)nqn2(1−t)

(q;q)n

[
Aq

(
u−1qn(t−2)

) + Aq,n
(
u−1qn(t−2)

) − Aq
(
u−1qn(t−2)

) + rn(z)
]
. (3.5)

Given any small δ > 0, we wish to show that
∣∣Aq,n

(
u−1qn(t−2)

) − Aq
(
u−1qn(t−2)

) + rn(z)
∣∣ = O

(
qn(1−3δ)

)
.

Firstly, since t � 2 and |u| � 1/R we have |u−1qn(t−2)| � R . From the definition of the q-Airy function (1.5) and the q-Airy
polynomial (1.7) we obtain

∣∣Aq,n
(
u−1qn(t−2)

) − Aq
(
u−1qn(t−2)

)∣∣ =
∣∣∣∣∣

∞∑
k=n+1

qk2

(q;q)k

(−u−1qn(t−2)
)k

∣∣∣∣∣
�

∞∑
k=n

qk2

(q;q)∞
Rk =

∞∑
l=0

q(l+n)2

(q;q)∞
Rl+n = qn2

Rn

(q;q)∞
Θ+

q

(
q2n R

)

= O
(
qn2(1−δ)

)
. (3.6)

Here for the sake of simplicity we have used
∑∞

k=n in stead of
∑∞

k=n+1 on the right of the inequality.
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Secondly, since |z| = q−nt |u| � q−2n/R , we have from (1.11) that

∣∣rn(z)
∣∣ � qn(1−3δ)

1 − q
Aq,n

(−q−2n/|z|) + q3n2δ2−2nδ R�3nδ�+1

(q;q)∞
Θ+

q

(
q4nδ R

)

� qn(1−3δ)

1 − q
Aq(−R) + O

(
q3n2δ2(1−δ)

) = O
(
qn(1−3δ)

)
. (3.7)

Coupling (3.6) and (3.7), we obtain from (3.5)

Sn(z;q) = (−u)nqn2(1−t)

(q;q)n

[
Aq

(
u−1qn(t−2)

) + O
(
qn(1−3δ)

)]
,

which coincides with [6, (5.15)].
2. Now we consider the case 2(1 − δ) < t < 2 and 1/R � |u| � R , where R > 0 and δ ∈ (0,1/4) are fixed. From (1.10) and

(1.11), it follows

Sn(z;q) = (−u)nqn2(1−t)

(q;q)n

[
Aq,n

(
u−1q−n(2−t)) + rn(z)

]
, (3.8)

where

∣∣rn(z)
∣∣ � qn(1−3δ)

1 − q
Aq,n

(−|u|−1q−n(2−t)) + q3n2δ2−2nδ R�3nδ�+1

(q;q)∞
Θ+

q

(
q4nδ R

)
. (3.9)

Set m := �n(2−t)
2 �. Since 1/R � |u| � R and 0 < 2 − t < 2δ < 2, the conditions of (2.2) in Proposition 1 are satisfied with t

replaced by 2 − t . Thus we obtain the asymptotic formulas

Aq,n
(
u−1q−n(2−t)) = (−u−1q−n(2−t))mqm2

(q;q)∞
[
Θq

(−u−1q2m−n(2−t)) + O
(
qm(1−δ)

)]
, (3.10)

Aq,n
(−|u|−1q−n(2−t)) = (|u|−1q−n(2−t))mqm2

(q;q)∞
[
Θq

(|u|−1q2m−n(2−t)) + O
(
qm(1−δ)

)]
. (3.11)

Applying (3.10) to (3.8) gives

Sn(z;q) = (−u)n−mqn2(1−t)−m[n(2−t)−m]

(q;q)n(q;q)∞

[
Θq

(−u−1q2m−n(2−t)) + O
(
qm(1−δ)

) + (q;q)∞rn(z)

(−u−1q−n(2−t))mqm2

]
, (3.12)

and applying (3.11) to (3.9) yields

∣∣∣∣ (q;q)∞rn(z)

(−u−1q−n(2−t))mqm2

∣∣∣∣ � qn(1−3δ)

1 − q

[
Θq

(|u|−1q2m−n(2−t)) + O
(
qm(1−δ)

)] + q3n2δ2−2nδ R�3nδ�+1

(|u|−1q−n(2−t))mqm2 Θ+
q

(
q4nδ R

)

= O
(
qn(1−3δ)

) + O
(
qn(1−3δ)+m(1−δ)

) + O
(
q3n2δ2−2nδ+m2

R3nδ+m) = O
(
qm(1−δ)

)
, (3.13)

where we have used qn(1−3δ) < qm < qm(1−δ) by observing that 2(1 − δ) < t < 2 with δ ∈ (0,1/4) implies m := �n(2−t)
2 � �

�nδ� < n(1 − 3δ). Finally, coupling (3.12) and (3.13), we have

Sn(z;q) = (−u)n−mqn2(1−t)−m[n(2−t)−m]

(q;q)n(q;q)∞
[
Θq

(−u−1q2m−n(2−t)) + O
(
qm(1−δ)

)]
, (3.14)

which agrees with [6, (5.16)].

4. The q−1-Hermite polynomial and the q-Laguerre polynomial

The q−1-Hermite polynomial [2, (21.2.5)] is defined by

hn(sinh ξ |q) :=
n∑

k=0

(qn−k+1;q)k

(q;q)k
qk2−nk(−1)ke(n−2k)ξ . (4.1)

We set z = sinh ξn := 1
2 (q−nt u − qnt u−1) with u ∈ C, u �= 0 and t � 0. In [6, Corollary 1] we have derived asymptotic

formulas for t � 1/2 and 0 � t < 1/2 respectively. Here we will give an asymptotic formula which holds uniformly for t in
a neighborhood of 1/2. Our result involves the q-Airy polynomial defined in (1.7).
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Theorem 2. Let z = sinh ξn := 1
2 (q−nt u − qnt u−1) with u ∈ C and |u| � 1/R, where R > 0 is any fixed large number. Given any small

δ > 0, we have

hn(sinh ξn|q) = unq−n2t[Aq,n
(
u−2qn(2t−1)

) + rn(t, u)
]

(4.2)

for t > 1/2 − δ, where the remainder satisfies

∣∣rn(t, u)
∣∣ � qn(1−3δ)

1 − q
Aq,n

(−|u|−2qn(2t−1)
) + q3n2δ2−2nδ R2(�3nδ�+1)

(q;q)∞
Θ+

q

(
q4nδ R2). (4.3)

Proof. Since eξn = q−nt u, from (4.1), (4.2) and the definition of the q-Airy polynomial in (1.7) it is easy to see that

rn(t, u) =
n∑

k=0

(qn−k+1;q)k − 1

(q;q)k
qk2(−u−2qn(2t−1)

)k = I1 + I2, (4.4)

where

I1 :=
�nδ1�∑
k=0

(qn−k+1;q)k − 1

(q;q)k
qk2(−u−2qn(2t−1)

)k
,

I2 :=
n∑

k=�nδ1�+1

(qn−k+1;q)k − 1

(q;q)k
qk2(−u−2qn(2t−1)

)k
.

Here δ1 ∈ (0,1) is a small number to be determined later. For any 0 � k � �nδ1�,

0 � 1 − (
qn−k+1;q

)
k <

qn−k+1

1 − q
� qn(1−δ1)

1 − q
.

Thus,

|I1| �
n∑

k=0

qn(1−δ1)

1 − q

qk2

(q;q)k

(|u|−2qn(2t−1)
)k = qn(1−δ1)

1 − q
Aq,n

(−|u|−2qn(2t−1)
)
. (4.5)

Furthermore, since 0 � 1 − (qn−k+1;q)k � 1 for any k ∈ [0,n] and |u|−2qn(2t−1) � q−2nδ R2 for t > 1/2 − δ, we obtain

|I2| �
∞∑

k=�nδ1�+1

qk2

(q;q)∞
(
q−2nδ R2)k

= q(�nδ1�+1)2−2nδ(�nδ1�+1)R2(�nδ1�+1)

(q;q)∞
Θ+

q

(
q2(�nδ1�+1)−2nδ R2)

� qn2δ2
1−2nδ(nδ1+1)R2(�nδ1�+1)

(q;q)∞
Θ+

q

(
q2nδ1−2nδ R2). (4.6)

Choose δ1 := 3δ. Then (4.3) follows from (4.4), (4.5) and (4.6). �
The q-Laguerre polynomial [2, (21.8.1)] is defined by

Lα
n (z) :=

n∑
k=0

(qα+k+1;q)n−k

(q;q)k(q;q)n−k
qk2+αk(−z)k. (4.7)

Let z := q−nt u with u ∈ C, u �= 0 and t � 1. In [6, Corollary 3] we gave two asymptotic formulas, one for t � 2 and the other
for 1 � t < 2. Here we will use the q-Airy polynomial defined in (1.7) to derive an asymptotic formula holding uniformly in
a neighborhood of t = 2.

Theorem 3. Assume that α is real and α > −1. Let z := q−nt u with u ∈ C and |u| � 1/R, where R > 0 is any fixed large number.
Given any small δ > 0, we have

Lα
n (z) = (−zqα)nqn2

(q;q)n

[
Aq,n

(
q−2n−α/z

) + rn(z)
]

(4.8)

for t > 2(1 − δ), where the remainder satisfies
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∣∣rn(z)
∣∣ � 2qn(1−2δ)

1 − q
Aq,n

(−q−2n−α/|z|) + q3n2δ2−2nδ(q−α R)�3nδ�+1

(q;q)∞
Θ+

q

(
q4nδ−α R

)
. (4.9)

Proof. From the definition of q-Laguerre polynomial (4.7) we have

Lα
n (z) =

n∑
k=0

(qα+n−k+1;q)k

(q;q)k(q;q)n−k
q(n−k)2+α(n−k)(−z)n−k

= (−zqα)nqn2

(q;q)n

n∑
k=0

(qα+n−k+1;q)k(qn−k+1;q)k

(q;q)k
qk2(−q−2n−α/z

)k
. (4.10)

Thus, it follows from (4.10) and the definition of q-Airy polynomial (1.7) that the remainder in (4.8) can be written as

rn(z) =
n∑

k=0

(qα+n−k+1;q)k(qn−k+1;q)k − 1

(q;q)k
qk2(−q−2n−α/z

)k = I1 + I2, (4.11)

where

I1 :=
�nδ1�∑
k=0

(qα+n−k+1;q)k(qn−k+1;q)k − 1

(q;q)k
qk2(−q−2n−α/z

)k
,

I2 :=
n∑

k=�nδ1�+1

(qα+n−k+1;q)k(qn−k+1;q)k − 1

(q;q)k
qk2(−q−2n−α/z

)k
.

Here δ1 ∈ (0,1) is a small number to be determined later. Since α > −1, for any 0 � k � �nδ1� we have

0 � 1 − (
qα+n−k+1;q

)
k

(
qn−k+1;q

)
k <

qα+n−k+1 + qn−k+1

1 − q
<

2qn(1−δ1)

1 − q
.

Therefore,

|I1| �
n∑

k=0

2qn(1−δ1)

1 − q

qk2

(q;q)k

(
q−2n−α/|z|)k = 2qn(1−δ1)

1 − q
Aq,n

(−q−2n−α/|z|). (4.12)

Also, since 0 � 1 − (qα+n−k+1;q)k(qn−k+1;q)k � 1 for any k ∈ [0,n] and q−2n−α/|z| � q−2nδ−α R for t > 2(1 − δ), we obtain

|I2| �
∞∑

k=�nδ1�+1

qk2

(q;q)∞
(
q−2nδ−α R

)k

= q(�nδ1�+1)2−2nδ(�nδ1�+1)(q−α R)�nδ1�+1

(q;q)∞
Θ+

q

(
q2(�nδ1�+1)−2nδ−α R

)

� qn2δ2
1−2nδ(nδ1+1)(q−α R)�nδ1�+1

(q;q)∞
Θ+

q

(
q2nδ1−2nδ−α R

)
. (4.13)

Set δ1 := 3δ, then (4.9) follows from (4.11), (4.12) and (4.13). �
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