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Abstract

We formulate and analyze a general reaction-diffusion equation with delay, inspired by age-structured 
spruce budworm population dynamics with spatial diffusion by matured individuals. The model has its 
particular feature for bistability due to the incorporation of a nonlinear birth function (Ricker’s function) 
and a Holling type function of predation by birds. Here we establish some results about the global dynamics, 
in particular, the stability of and global Hopf bifurcation from the spatially homogeneous steady state when 
the maturation delay is taken as a bifurcation parameter. We also use a degree theoretical argument to 
identify intervals for the diffusion rate when the model system has a spatially heterogeneous steady state. 
Numerical experiments presented show interesting spatialtemporal patterns.
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1. Introduction

The spruce budworm is an insect commonly observed in North American forests [7,4,14,15,
29,34]. Even though many efforts have been made (including insecticides) to control the spruce 
budworm population, the outbreak of the spruce budworm occurs every 30-60 years and lasts 5-
15 years, causing massive tree mortality and tremendous economic loss to forest industry [4,13,
20,21,23,24,29]. It is thus important to understand the complex dynamics of the spruce budworm 
population via mathematical models [5,9,11,12,27,28,32,33].

In this paper, we propose to study a spruce budworm model with age structure and spatial 
diffusion. Assume that the spruce budworms live in a bounded spatial habitat � ⊂ Rn with a 
smooth boundary ∂�. Denote by u(x, t, a) the density of budworm population at location x ∈ �, 
time t ∈ R, and age a ≥ 0. Let τ > 0 be the maturation age. For the immatured budworms, we 
consider the standard equation with age structure [26]:

∂tu(x, t, a) + ∂au(x, t, a) = −δu(x, t, a), a ∈ (0, τ ).

For the matured budworms, we incorporate spatial diffusion and predation into the age structure 
model:

∂tu(x, t, a) + ∂au(x, t, a) = d�u(x, t, a) − γ u(x, t, a) − g(w)

w
u(x, t, a), a ≥ τ.

Here, δ and γ are the death rates of immatured and matured budworms, d > 0 is the diffusion 
rate of matured budworms,

w(x, t) =
∞∫

τ

u(x, t, a)da

is the total population of matured budworms, and g(w) is the predation rate. Note that in our 
model assumptions, the immatured budworms do not diffuse and the predators (birds) only con-
sume the matured budworms. The birth rate is assumed to be a nonlinear function of the matured 
budworm population u(x, t, 0) = f (w(x, t)) which satisfies the following conditions.

(H1) f (w) ∈ C1, f (0) = lim
w→∞f (w) = 0; f (w) > 0 for w > 0; there exists c̄ > 0 such that 

f ′(c̄) = 0 and (w − c̄)f ′(w) < 0 for w > 0 and w 	= c̄; f ′′(w) < 0 for w ∈ [0, c̄].

We also assume that u(x, t, ∞) = 0. It is easily seen from the above equations that u(x, t, τ) =
u(x, t − τ, 0)e−δτ = e−δτ f (w(x, t − τ)), and hence,

∂w(x, t)

∂t
=

∞∫
τ

(d�u − γ u − g(w)

w
u − ∂au)da

=d�w(x, t) − γw(x, t) − g(w(x, t)) + e−δτ f (w(x, t − τ)).

Since the dynamics of the budworm population is much faster than the dynamics of the predators 
(birds), we assume the bird population is constant, which implies that the predation rate saturates 
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when the budworm population is large. In mathematical formula, we have g(∞) = β > 0. On 
the other hand, when the budworm population increases from a low population, the birds start to 
learn how to search for budworms, and the predation rate increases faster than a linear function. 
This means that g(w)/w → 0 as w → 0+. A nature selection of such a predation rate is the 
Holling type II functional response [12]:

g(w) = βw2

α2 + w2 ,

where β = g(∞) > 0 is the saturated predation rate, and α > 0 is the budworm population size 
at which the birds consume at half of the saturate rates: g(α) = β/2. To reduce the number of 
parameters, we may assume without loss of generality that α = β = 1 upon a rescaling on the 
state variable w and the time variable t . Hence, we have the following model

∂w(x, t)

∂t
= d�w(x, t) − γw(x, t) − w2(x, t)

1 + w2(x, t)
+ e−δτ f (w(x, t − τ)) (1.1)

for x ∈ � and t > 0. For biological applications, it is nature to impose non-negative initial con-
dition

w(x, θ) = w0(x, θ) ≥ 0, x ∈ �, θ ∈ [−τ,0],

and no-flux boundary condition

∂νw(x, t) = 0, x ∈ ∂�, t > 0.

Our model generalizes those considered in [9,28,32].
The spruce budworm equation is well-known for its bi-stability behaviors. However, when 

time delay is present and when the survival rate during the immaturation period depends on the 
maturation time, the intermediate equilibrium may lose its stability, leading to the initiation of 
a local branch of Hopf bifurcation of spatially homogeneous periodic solutions. How this local 
branch continues when the maturation delay moves away from the critical bifurcation value is a 
very difficult yet important task to understand the global dynamics. This issue will be addressed 
in Section 4 below, where we use the global Hopf bifurcation theory to characterize the global 
continuation of such a local branch. Due to the random movement of the matured individuals, a 
spatially heterogeneous equilibrium may exit, and in Section 5 below, we use a degree-theoretical 
argument to find the union of non-overlap intervals for the diffusion rate when such a spatially 
heterogeneous steady state can be ensured.

The rest of this paper is organized as follows. In Section 2, we present some preliminary re-
sults and basic dynamics of our model system. In Section 3, we choose the birth function f (w)

to be Ricker’s function and investigate the complex dynamics of the model. In Section 4, we con-
duct local and global bifurcation analysis of the model. In Section 5, we establish the existence 
theory of positive heterogeneous steady state for a general elliptic equation. In Section 6, we use 
numerical simulations to illustrate our theoretical results. In Section 7, we conclude our paper 
with a summary.
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2. Preliminaries and basic dynamics

Denote by X = C(�̄) the Banach space of continuous functions with the supremum norm. 
Let C := C([−τ, 0], X) be the Banach space of continuous map from [−τ, 0] to X with the 
supremum norm, and C+ the nonnegative cone of C. Given a continuous function w(x, t) on 
� × [−τ, ∞), we define wt ∈ C as wt(θ) = w(·, t + θ) for θ ∈ [−τ, 0]. As a preliminary result, 
we shall establish the existence, uniqueness and boundedness of the solution to (1.1).

Proposition 2.1. For any continuous, nonnegative, and nontrivial initial condition w0(x, θ) ≥
0(	≡ 0), system (1.1) admits a unique solution w(x, t). Moreover, w(x, t) > 0 for all (x, t) ∈
�̄ × (0, ∞) and

lim sup
t→∞

w(x, t) ≤ M < e−δτ f (c̄)/γ,

where M > 0 is uniquely determined by the nonlinear equation e−δτf (c̄) = γM +M2/(1 +M2).

Proof. Denote q(u) = γ u + u2/(1 + u2). Clearly, q(0) = 0, q(∞) = +∞ and q ′(u) > 0 for 
u ≥ 0. Then there exists an unique positive M such that q(u) = e−δτ f (c̄) > 0. Let w1(t) be the 
unique solution to

w′
1(t) = e−δτ f (c̄) − γw1(t) − w2

1(t)

1 + w2
1(t)

, w1(0) = sup
�×[−τ,0]

w0(x, θ).

It is readily seen that lim sup
t→∞

w1(t) ≤ M < e−δτ f (c̄)/γ . Since w(x, t) = w1(t) and w(x, t) = 0

are a pair of upper-solution and lower-solution to (1.1), we obtain from [18, Theorem 3.1] that 
(1.1) admits a unique global solution w(x, t) satisfying 0 ≤ w(x, t) ≤ w1(t) for all (x, t) ∈ �̄ ×
[0, ∞). Hence, lim sup

t→∞
w(x, t) ≤ lim sup

t→∞
w1(t) ≤ M . The strong maximum principle implies that 

w(x, t) > 0 for all (x, t) ∈ �̄ × (0, ∞). This ends the proof. �
Clearly, system (1.1) always has a trivial steady state 0. Based on the linearized model about 

the trivial steady state, we define the basic reproduction ratio as

R0 = f ′(0)e−δτ

γ
. (2.1)

A positive spatially homogeneous steady state is a solution to the nonlinear algebraic equation 
γ + w/(1 + w2) = e−δτ f (w)/w. Note that γ + w

1+w2 is increasing in [0,1] and decreasing in 
[1, ∞) with lim

w→∞γ + w
1+w2 = γ . Moreover, it follows from (H1) that f (w)/w is decreasing 

in [0, ∞) with lim
w→0

f (w)/w = f ′(0). Thus, 0 is the unique nonnegative spatially homogeneous 

steady state if and only if R0 ≤ 1, and the model (1.1) admits at least one positive spatially 
homogeneous steady state if R0 > 1.

Linearizing (1.1) at a spatially homogeneous steady state ŵ, we obtain

∂w(x, t) = d�w(x, t) −
(

γ + 2ŵ

2 2

)
w(x, t) + e−δτ f ′(ŵ)w(x, t − τ). (2.2)
∂t (1 + ŵ )
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The corresponding characteristic equation is given by

λ + dμn + γ + 2ŵ

(1 + ŵ2)2 − e−δτ f ′(ŵ)e−λτ = 0, n = 0,1,2 · · · , (2.3)

where

0 = μ0 < μ1 ≤ · · · ≤ μn ≤ μn+1 ≤ · · · and lim
n→∞μn = ∞ (2.4)

are the eigenvalues of −� in � with Neumann boundary condition. When ŵ = 0, the character-
istic equation becomes λ + dμn + γ − f ′(0)e−δτ e−λτ = 0. It follows from [25, Lemma 6] that 
all eigenvalues have negative real parts if R0 < 1, and there exists at least one positive eigenvalue 
if R0 > 1. Thus, 0 is locally asymptotically stable if R0 < 1, and unstable if R0 > 1.

For the critical case when R0 = 1, 0 is the only real eigenvalue for the characteristic equation 
with n = 0, and all other eigenvalues have negative real parts. We investigate the stability of 0 by 
using the normal forms for partial functional differential equations [3]. Let

 = {λ ∈C, λ is an eigenvalue of (2.3) with Reλ = 0}. (2.5)

Clearly,  = {0} if R0 = 1, and (1.1) satisfies the nonresonance condition relative to . We write 
(1.1) as an abstract equation ẇt = A0wt + F0(wt ) on C, where A0 is a linear operator defined as 
(A0φ)(θ) = φ′(θ) for θ ∈ [−τ, 0) and (A0φ)(0) = d�φ(0) − γφ(0) + e−δτ f ′(0)φ(−τ), and F0
is a nonlinear operator defined as (F0(φ))(θ) = 0 for θ ∈ [−τ, 0) and

(F0(φ))(0) = e−δτ f (φ(−τ)) − e−δτ f ′(0)φ(−τ) − φ2(0)

1 + φ2(0)
.

For ψ ∈ C([0, τ ], X) and φ ∈ C, we introduce a bilinear form

〈ψ,φ〉 =
∫
�

⎡⎣ψ(0)φ(0) + e−δτ f ′(0)

0∫
−τ

ψ(θ + τ)φ(θ)dθ

⎤⎦dx.

We then choose ψ = 1 and φ = 1 to be the left and right eigenfunctions of A0 with respect to the 
eigenvalue 0, respectively. By using the decomposition wt = zφ + y with 〈ψ, y〉 = 0, we obtain 
from A0φ = 0 and 〈ψ, A0y〉 = 0 that ż〈ψ, φ〉 = 〈ψ, F0(zφ + y)〉. Thus, we have

ż

∫
�

(1 + e−δτ f ′(0)τ )dx =
∫
�

(F0(zφ + y))(0)dx.

If the initial value is a small perturbation of 0, then z is also small with positive initial value z(0)

and y = O(z2). By Taylor expansion, we obtain (F0(zφ+y))(0) = e−δτ f ′′(0)z2/2 −z2 +O(z3). 
Thus, the solution semiflow projected on the center manifold is given by

ż = −1 − 1
2e−δτ f ′′(0)

z2 + O(z3).

1 + γ τ
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Note that f ′′(0) < 0, thus the zero solution of the above equation with positive initial value is 
locally asymptotically stable. This proves the local asymptotic stability of 0 if R0 = 1.

We next show that 0 is globally attractive in C+ if R0 ≤ 1. Define a Lyapunov functional 
L1 : C+ →R as

L1(φ) =
∫
�

φ(0)dx + e−δτ

∫
�

0∫
−τ

f (φ(θ))dθdx for φ ∈ C+.

Calculating dL1/dt along solutions of (1.1), we obtain from f (w) ≤ f ′(0)w for w ≥ 0 that

dL1

dt
≤ (f ′(0)e−δτ − γ )

∫
�

w(x, t)dx ≤ 0 if R0 ≤ 1.

The maximal invariant subset of dL1/dt = 0 is the singleton {0}. By LaSalle-Lyapunov invari-
ance principle [6], 0 is globally attractive in C+. We thus obtain the global asymptotic stability 
of 0. To summarize, we have the following results on stability of the trivial steady state.

Theorem 2.2. If R0 ≤ 1, then the trivial steady state 0 of the (1.1) is globally asymptotically 
stable in C+; whereas if R0 > 1, then 0 is unstable, and the model (1.1) admits at least one 
positive spatially homogeneous steady state.

To ensure the uniqueness of positive spatially homogeneous steady state, we make the as-
sumption:

(H2) (1 + w2)f (w)/w is nonincreasing on [0, ∞).

Remark 2.3. If f (w) is chosen as Ricker’s function [22]: f (w) = bwe−aw , or the Beverton-Holt 
function [2]: f (w) = bw

1+aw2 , where a, b > 0, then (H2) holds if and only if a ≥ 1.

Denote

τmax := 1

δ
ln

f ′(0)

γ
, τ̂ := max{1

δ
ln

f (c̄)

γ c̄ + c̄2/(1 + c̄2)
,0}. (2.6)

Obviously, R0 > 1 if and only if f ′(0) > γ and τ ∈ [0, τmax). It also follows from f (c̄)/c̄ <

f ′(0) that ̂τ < τmax . Let w∗ be a positive spatially homogeneous steady state of (1.1). Then we 
have

f (w∗)[1 + (w∗)2]
w∗ · 1

γ [1 + (w∗)2] + w∗ = eδτ .

In view of (H2), w∗ is a decreasing function of τ and w∗ → 0 as τ → τmax . If ̂τ = 0, then

f (c̄)(1 + c̄2) · 1
2 ≤ 0,
c̄ γ (1 + c̄ ) + c̄
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which implies that w∗ ≤ c̄ for all τ ≥ 0. If ̂τ > 0, then w∗ → c̄ as τ → τ̂ . Thus,

τ̂ ≤ τ < τmax is equivalent to 0 < w∗ ≤ c̄. (2.7)

Theorem 2.4. Assume that R0 > 1 and (H2) hold. Then (1.1) admits a unique positive spatially 
homogeneous steady state w∗. Moreover, all solutions of (1.1) with nontrivial and nonnegative 
initial conditions converge to w∗ for τ ∈ [̂τ , τmax), where ̂τ and τmax are defined in (2.6).

Proof. A positive spatially homogeneous steady state w∗ exists if and only if h(w∗) = 0, where 
h(w) = γ (1 + w2) + w − e−δτ (1 + w2)f (w)/w. Since R0 > 1, we obtain from (H2) that 
h(0) = γ − f ′(0)e−δτ < 0, lim

w→∞h(w) = ∞, and h′(w) > 0 on (0, ∞). Thus, there exists a 

unique positive spatially homogeneous steady state w∗ to (1.1). It follows from (2.2) that the 
characteristic equation at w∗ is

λ + an − bne
−λτ = 0, n = 0,1,2 · · · , (2.8)

where

an = dμn + γ + 2w∗

(1 + w∗2)2 > 0, bn = e−δτ f ′(w∗). (2.9)

For τ ∈ [̂τ , τmax), (2.7) implies that w∗ ∈ (0, c̄]. Hence, bn ≥ 0. Denote

h0(w) = h1(w) − e−δτ f (w) and h1(w) = γw + w2

1 + w2 . (2.10)

Clearly, h0(w
∗) = 0 and h0(∞) = ∞. By (H2), we obtain h′

0(w
∗) > 0. Thus, we have an −bn =

dμn + h′
0(w

∗) > 0 for all n ≥ 0. This, together with bn ≥ 0 and Lemma 6 in [25], implies 
that all eigenvalues of (2.8) have negative real parts. Therefore, the unique positive spatially 
homogeneous steady state w∗ is locally asymptotically stable.

We next show that w∗ is globally attractive in C+ \{0}. Since w∗ ∈ (0, c̄] is the unique positive 
zero of h0(w) and h0(∞) = ∞, we have h0(c̄) ≥ 0 and h1(c̄) ≥ e−δτ f (c̄) = h1(M), where M
is defined in Proposition 2.1. Thus, we obtain M ≤ c̄. It then follows from Proposition 2.1 that 
lim sup
t→∞

w(x, t) ≤ M ≤ c̄. Hence, �0 = {φ ∈ C+ : φ 	≡ 0, ‖φ‖ ≤ c̄} is positively invariant and 

attracts all solutions of (1.1) with nontrivial initial conditions. We then consider the solution map 
restricted on �0 and show that w∗ attracts all initial profiles in �0. Define a Lyapunov functional 
L2 : �0 →R as

L2(φ) =
∫
�

(
φ(0) − w∗ lnφ(0)

)
dx + e−δτ

∫
�

0∫
−τ

f (φ(θ)) − f (w∗) lnf (φ(θ))dθdx

for φ ∈ C+. Calculating dL2/dt along the positive solutions of model (1.1), we obtain
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dL2

dt
= − dw∗

∫
�

|∇w(x, t)|2
w2(x, t)

dx

+
∫
�

(
e−δτ f (w(x, t)) + h1(w(x, t))(

w∗

w(x, t)
− 1)

−e−δτ f (w(x, t − τ))
w∗

w(x, t)
+ e−δτ f (w∗) ln

f (w(x, t − τ))

f (w(x, t))

)
dx,

where h1 is defined in (2.10). Using h1(w
∗) = e−δτ f (w∗) and denote L(u) = u − 1 − lnu for 

u > 0, we obtain

dL2

dt
= − dw∗

∫
�

|∇w(x, t)|2
w2(x, t)

dx

− h1(w
∗)

∫
�

(
L

(
f (w∗)w(x, t)

f (w(x, t))w∗

)
+ L

(
w∗f (w(x, t − τ))

w(x, t)f (w∗)

))
dx

+
∫
�

h1(w(x, t))

(
f (w(x, t))

f (w∗)
− 1

)(
h1(w

∗)
h1(w(x, t))

− f (w∗)
f (w(x, t))

)
dx

+
∫
�

h1(w
∗)

(
f (w∗))

f (w(x, t))
− w∗

w(x, t)

)(
w(x, t)

w∗ − h1(w(x, t))

h1(w∗)

)
dx.

(H2) implies that f ′(w) ≤ (1 − w2)f (w)/(w(1 + w2)) for w > 0. This, together with f ′(c̄) =
0, leads to 0 < c̄ ≤ 1. Thus, h1(w)/w is strictly increasing on [0, c̄]. Since f (w) is strictly 
increasing on [0, c̄] and f (w)/w is strictly decreasing on [0, ∞), we obtain

(
f (w(x, t))

f (w∗)
− 1

)(
h1(w

∗)
h1(w(x, t))

− f (w∗)
f (w(x, t))

)
≤ 0,(

f (w∗))
f (w(x, t))

− w∗

w(x, t)

)(
w(x, t)

w∗ − h1(w(x, t))

h1(w∗)

)
≤ 0,

for all 0 < w(x, t) ≤ c̄, and the equalities hold only if w(x, t) ≡ w∗. Note that L(u) ≥ 0 for u > 0
and L(u) = 0 if and only if u = 1. Hence, dL2/dt ≤ 0 for all wt ∈ �0, and the maximal invariant 
subset of dL2/dt = 0 is the singleton {w∗}. By LaSalle-Lyapunov invariance principle [6], we 
conclude that w∗ is globally asymptotically stable in C+ \ {0} for τ ∈ [̂τ , τmax). �
3. Spatially homogeneous equilibria and bistability

Throughout this section, we choose the birth function as Ricker’s function:

f (w) = bwe−aw,
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where b > 0 is the maximum possible per capita egg production rate, and 1/a > 0 is the popula-
tion size at which the birth rate achieves its maximum. If w is a positive spatially homogeneous 
steady state of (1.1), then u = aw is a positive root of the nonlinear function

p(u) = 1

R0
+ ru

a2 + u2 − e−u, where r = aeδτ

b
and R0 = be−δτ

γ
. (3.1)

If R0 ≤ 1, then p(u) ≥ 1 − e−u > 0 for all u > 0. If R0 > 1, then p(0) = 1/R0 − 1 < 0 and 
p(u) → 1/R0 > 0 as u → ∞. Hence, the model (1.1) possesses at least one positive equilibrium 
if and only if R0 > 1. Assume R0 > 1 and u > 0 is a positive solution to the equation p(u) = 0. 
We have

p′(u) = rp1(u)

(a2 + u2)2 + 1

R0
, where p1(u) = u3 − u2 + a2u + a2. (3.2)

Note that p′
1(u) = 3u2 −2u +a2. If a2 ≥ 1/3, then p′

1(u) ≥ 0 and hence p1(u) ≥ p1(0) = a2 > 0
for all u ≥ 0. This implies that p′(u) > 0 for u > 0. The model (1.1) possesses exactly one 
positive equilibrium if R0 > 1 and a2 ≥ 1/3.

Now, we assume that R0 > 1 and a2 < 1/3. p′
1(u) = 0 has two positive roots a± = (1 ±√

1 − 3a2)/3. Since p1(0) = a2 > 0 and the leading coefficient of the cubic function p1(u) is 
positive, we find that p1(u) ≥ 0 for all u ≥ 0 if and only if

0 ≤ p1(a+) = a3+ − a2+ − (a+ + 1)(3a2+ − 2a+) = −2a+(a2+ + a+ − 1),

if and only if a+ ≤ (
√

5 − 1)/2, if and only if a2 ≥ (5
√

5 − 11)/2 ≈ 0.09. Thus, the model (1.1)
possesses exactly one positive equilibrium if R0 > 1 and a2 ≥ (5

√
5 − 11)/2.

In the next step, we assume that R0 > 1 and a2 < (5
√

5 − 11)/2. The cubic function p1(u)

has exactly two positive roots, denoted by a1 < a2. Since p1(a) = 2a3 > 0, p1(1) = 2a2 > 0, 
p1(a+) < 0, and a < a+ < 1, we have a < a1 < a+ < a2 < 1. Note that p1(u) > 0 for 
u ∈ (0, a1) ∪ (a2, ∞). We obtain from (3.2) that p(u) is strictly increasing for u in each of the in-
tervals (0, a1) and (a2, ∞). Recall that p(0) < 0 and p(∞) > 0. To count the number of positive 
equilibria, we shall investigate the zeros of p(u) in [a1, a2]. If p(u) = 0 for some u ∈ [a1, a2], 
we can eliminate r in (3.2) and rewrite

p′(u) = u2 − a2

u(a2 + u2)

[
1

R0
+ e−up1(u)

u2 − a2

]
. (3.3)

Recall the definition of p1(u) in (3.2). A simple calculation gives[
e−up1(u)

u2 − a2

]′
= −ue−up2(u)

(u2 − a2)2 , where p2(u) = u4 − 2u3 + 6a2u − a4. (3.4)

For u ∈ [a1, a2], we have p1(u) = u3 − u2 + a2u + a2 < 0 and hence p′
2(u) = 4u3 − 6u2 +

6a2 < −2(u2 − a2) − 4a2u < 0. This implies that p2(u) is strictly decreasing in [a1, a2]. On 
the other hand, since p1(u) < 0 for all u ∈ (a1, a2) and p1(a1) = p1(a2) = 0, we have p2(a1) >
0 > p2(a2). Hence, the equation p2(u) = 0 has a unique solution, denoted by a3, in [a1, a2]. 
The minimum of the function e−up1(u)/(u2 − a2) in the interval [a1, a2] is achieved at a3. If 
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R0 ≤ (a2 −a2
3)ea3/p1(a3), then p′(u) ≥ 0 for any u ∈ [a1, a2] such that p(u) = 0. Consequently, 

the model (1.1) possesses exactly one positive equilibrium if R0 > 1, a2 < (5
√

5 − 11)/2, and 
R0 ≤ (a2 − a2

3)ea3/p1(a3).
Finally, we assume that R0 > 1, a2 < (5

√
5 − 11)/2, and R0 > (a2 − a2

3)ea3/p1(a3). Recall 
from the previous step that p2(u) > 0 for u ∈ (a1, a3) and p2(u) < 0 for u ∈ (a3, a2). The func-
tion e−up1(u)/(u2 − a2) + 1/R0 is decreasing in (a1, a3) and increasing in (a3, a2). Moreover, 
the minimum of this function at a3 is negative. Hence, it has exactly two roots, denoted by c1
and c2 respectively in the two intervals (a1, a3) and (a3, a2). In other words, the function p′(u)

has exactly two roots c1 and c2 in the interval [a1, a2]. Moreover, p′(u) < 0 for u ∈ (c1, c2) and 
p′(u) > 0 for u ∈ [0, c1) ∪ (c2, ∞). Depending on the signs of p(c1) and p(c2), we have the 
following results. If p(c1) > 0 > p(c2); namely,

(e−c1 − 1/R0)(a
2 + c2

1)

c1
< r <

(e−c2 − 1/R0)(a
2 + c2

2)

c2
, (3.5)

then the model (1.1) possesses exactly three positive equilibria in the intervals (0, c1), (c1, c2), 
and (c2, ∞), respectively. If p(c1) = 0; namely,

r = (e−c1 − 1/R0)(a
2 + c2

1)

c1
, (3.6)

then the model (1.1) possesses exactly two positive equilibria: one is c1, and the other lies in 
(c2, ∞). If p(c2) = 0; namely,

r = (e−c2 − 1/R0)(a
2 + c2

2)

c2
, (3.7)

then the model (1.1) possesses exactly two positive equilibria: one is c2, and the other lies in 
(0, c1). If p(c1) < 0; namely,

r <
(e−c1 − 1/R0)(a

2 + c2
1)

c1
, (3.8)

then the model (1.1) possesses exactly one positive equilibrium which lies in (c2, ∞). If p(c2) >
0; namely,

r >
(e−c2 − 1/R0)(a

2 + c2
2)

c2
, (3.9)

then the model (1.1) possesses exactly one positive equilibrium which lies in (0, c1). We sum-
marize our results in the following theorem.

Theorem 3.1. Consider the model (1.1) with f (w) = bwe−aw . R0 is defined in (2.1).

(i) If R0 ≤ 1, then the model (1.1) has no positive spatially homogeneous steady state, and the 
trivial steady state 0 of (1.1) is globally asymptotically stable in C+.
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Fig. 1. The graph of p(u).

(ii) If R0 > 1 and a2 ≥ (5
√

5 − 11)/2, then the model (1.1) has exactly one positive spatially 
homogeneous steady state.

(iii) If R0 > 1 and a2 < (5
√

5 − 11)/2, then the cubic function p1(u) = u3 − u2 + a2u + a2 has 
exactly two positive roots, denoted by a1 < a2 < 1. Moreover, the quartic function p2(u) =
u4 − 2u3 + 6a2u − a4 has a unique solution, denoted by a3, in [a1, a2].
(iii.a) If R0 ≤ (a2 − a2

3)ea3/p1(a3), then the model (1.1) has exactly one positive spatially 
homogeneous steady state.

(iii.b) If R0 > (a2 − a2
3)ea3/p1(a3), then the function e−up1(u)/(u2 − a2) + 1/R0 has 

exactly two roots, denoted by c1 and c2 respectively in the two intervals (a1, a3) and 
(a3, a2). The model (1.1) has exactly one positive spatially homogeneous steady state 
if either (3.8) or (3.9) is satisfied, exactly two spatially homogeneous steady states 
if either (3.6) or (3.7) is satisfied, and exactly three spatially homogeneous steady 
states if (3.5) is satisfied.

For cases (ii) and (iii.a) in Theorem 3.1, p(u) defined in (3.1) is strictly increasing on [0, ∞). 
We use Fig. 1 to illustrate the graph of p(u) for the case (iii.b) in Theorem 3.1.

Now, we are ready to discuss the stability of the positive spatially homogeneous steady state. 
For convenience, we make the following assumptions.

(A1) One of the following conditions holds: (i) a2 ≥ (5
√

5 − 11)/2; (ii) a2 < (5
√

5 − 11)/2 and 
R0 ≤ (a2 − a2

3)ea3/p1(a3); (iii) a2 < (5
√

5 − 11)/2, R0 > (a2 − a2
3)ea3/p1(a3) and either 

(3.8) or (3.9) is satisfied.
(A2) R0 > (a2 − a2

3)ea3/p1(a3) and a2 < (5
√

5 − 11)/2.

For Ricker’s function, we obtain from (2.6) that c̄ = 1/a and f ′(0) = γ . Hence, we have

τmax = 1

δ
ln

b

γ
and τ̂ = max{1

δ
ln

b

e(γ + a )
,0}. (3.10)
a2+1
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To obtain the global stability of w∗, we shall assume that c̄ ≤ 1, that is, a ≥ 1. By using the same 
arguments as in the proof of Theorem 2.4, we obtain the following results.

Theorem 3.2. Consider the model (1.1) with f (w) = bwe−aw . Assume that R0 > 1, τ ∈
[̂τ , τmax), and (A1) holds. The unique positive spatially homogeneous steady state w∗ of (1.1)
is locally asymptotically stable. If further a ≥ 1, then all solutions of (1.1) with nontrivial initial 
conditions converge to w∗.

Next, we investigate the stability of positive spatially homogeneous steady states when the 
model (1.1) has two or three positive spatially homogeneous steady states.

Theorem 3.3. Consider the model (1.1) with f (w) = bwe−aw . Assume that R0 > 1 and (A2)

holds. Let c1 < c2 < 1 and ̂τ be defined in Theorem 3.1 and (3.10), respectively.

(i) If (3.5) holds, then the model (1.1) has exactly three positive spatially homogeneous 
steady states w1 < w2 < w3, where w1 ∈ (0, c1/a) is locally asymptotically stable, w2 ∈
(c1/a, c2/a) is unstable, and w3 ∈ (c2/a, ∞) is locally asymptotically stable provided 
τ ∈ [̂τ , τmax).

(ii) If (3.6) holds, then the model (1.1) has two positive spatially homogeneous steady states 
w∗

1 = c1/a and w3 ∈ (c2/a, ∞), where w∗
1 is unstable, and w3 is locally asymptotically 

stable provided τ ∈ [̂τ , τmax).
(iii) If (3.7) holds, then the model (1.1) has two positive spatially homogeneous steady states 

w1 ∈ (0, c1/a) and w∗
2 = c2/a, where w1 is locally asymptotically stable, and w∗

2 is unsta-
ble.

Proof. (i) Theorem 3.1 gives the existence of three positive spatially homogeneous steady states 
w1 ∈ (0, c1/a), w2 ∈ (c1/a, c2/a) and w3 ∈ (c2/a, ∞). The characteristic equation at wi is

λ + an(wi) − bn(wi)e
−λτ = 0 for integer n ≥ 0 and i = 1,2,3, (3.11)

where an(wi) = dμn + γ + 2wi/(1 +w2
i )

2 > 0 and bn(wi) = e−δτ f ′(wi). Note that w1 < w2 <

1/a. Then bn(w1) > 0 and bn(w2) > 0. A simple calculation gives

an(wi) − bn(wi) = dμn + be−δτ awip
′(awi) for integer n ≥ 0 and i = 1,2,3.

Since p′(aw1) > 0, we have an(w1) − bn(w1) > 0. Note that an(w1) > 0 and bn(w1) > 0. It 
then follows from [25, Lemma 6] that all eigenvalues of (3.11) with i = 1 have negative real 
parts. Hence, w1 is locally asymptotically stable. Clearly, p′(aw2) < 0 and a0(w2) −b0(w2) < 0. 
Since a0(w1) > 0 and b0(w2) > 0, we obtain from [25, Lemma 6] that the characteristic equation 
with i = 2 and n = 0 admits at least one positive eigenvalue. Thus, w2 is unstable. Note from 
p′(aw3) > 0 that an(w3) − bn(w3) > 0. It is also readily seen that an(w3) > 0. Furthermore, 
bn(w3) ≥ 0 if and only if w3 ≤ 1/a. By using a similar argument as in the proof of Theorem 2.4, 
we can show that w3 is locally asymptotically stable if τ ∈ [̂τ , τmax).

(ii) If (3.6) holds, we obtain from Theorem 3.1 and the argument in the previous case that (1.1)
has two positive spatially homogeneous steady states w∗

1 = c1/a < 1/a and w3 ∈ (c2/a, ∞), 
where w3 is locally asymptotically stable provided τ ∈ [̂τ , τmax). To analyze the stability of 
w∗, we shall investigate the characteristic equation in (3.11) with i = 1. It is easy to show that 
1
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an(w
∗
1) > 0 and bn(w

∗
1) = e−δτ f ′(w∗

1) > 0 for all integer n ≥ 0. Moreover, a0(w
∗
1) −b0(w

∗
1) = 0

and an(w
∗
1) − bn(w

∗
1) = dμn > 0 for integer n ≥ 1. Thus, 0 is the only real eigenvalue for n = 0

and all other eigenvalues have negative real parts. By (2.5), we have  = {0} and (1.1) satisfies 
the nonresonance condition relative to . We will investigate the local stability of w∗

1 by normal 
form. Let v = w − w∗

1 and rewrite (1.1) as an abstract equation v̇t = A1vt + F1(vt ) on C, where 
A1 is defined as (A1φ)(θ) = φ′(θ) for θ ∈ [−τ, 0) and

(A1φ)(0) = d�φ(0) − (γ + 2w∗
1

(1 + w∗2
1 )2

)φ(0) + e−δτ f ′(w∗
1)φ(−τ).

The nonlinear operator F1 is defined by (F1(φ))(θ) = 0 for θ ∈ [−τ, 0) and

(F1(φ))(0) =e−δτ f (w∗
1 + φ(−τ)) − e−δτ f ′(w∗

1)φ(−τ) − γw∗
1

− (w∗
1 + φ(0))2

1 + (w∗
1 + φ(0))2 + 2w∗

1

(1 + w∗2
1 )2

φ(0).

For ψ ∈ C([0, τ ], X) and φ ∈ C, we define a bilinear form

〈ψ,φ〉 =
∫
�

⎡⎣ψ(0)φ(0) + e−δτ f ′(w∗
1)

0∫
−τ

ψ(θ + τ)φ(θ)dθ

⎤⎦dx.

We choose ψ = 1 and ϕ = 1 to be the left and right eigenfunctions of A1 with respect to the 
eigenvalue 0, respectively. We decompose vt as vt = zϕ + y with 〈ψ, y〉 = 0. By using A1ϕ = 0
and 〈ψ, A1y〉 = 0, we obtain ż〈ψ, ϕ〉 = 〈ψ, F1(zϕ + y)〉, that is,

ż

∫
�

(1 + τe−δτ f ′(w∗
1))dx =

∫
�

(F1(zϕ + y))(0)dx.

The initial value is a small perturbation of w1, then z is small and y = O(z2). By using Taylor 
expansion, we have

(F1(zφ + y))(0) =
(

e−δτ

2
f ′′(w∗

1) − 1 − 3w∗2
1

(1 + w∗2
1 )3

)
z2 + O(z3)

= a2c1p2(c1)

2(a2 + c2
1)

3
z2 + O(z3),

where p2(c1) > 0 is defined in Theorem 3.1. Thus, the flow on the center manifold is

ż = a2c1p2(c1)

2(a2 + c2
1)

3(1 + τe−δτ f ′(w∗
1))

z2 + O(z3),

where f ′(w∗) > 0. Hence, the spatially homogeneous steady state w∗ = c1/a of (1.1) is unstable.
1 1
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(iii) If (3.7) holds, we obtain from Theorem 3.1 that (1.1) has two positive spatially homo-
geneous steady states w1 ∈ (0, c1/a) and w∗

3 = c2/a. From the proof of (i), we obtain the local 
asymptotical stability of w1. We use a similar argument as in (ii) to calculate the normal form of 
(1.1) at w∗

2 = c2/a. The resulting equation is given by

ż = a2c2p2(c2)

2(a2 + c2
2)

3(1 + τe−δτ f ′(w∗
2))

z2 + O(z3),

where p2(c2) < 0 and f ′(w∗
2) > 0. Therefore, the spatially homogeneous steady state w∗

2 of (1.1)
is unstable. This completes this proof. �
4. Hopf bifurcation analysis

In this section, we use the delay τ > 0 as the bifurcation parameter to analyze periodic so-
lutions of (1.1) bifurcating from the positive spatially homogeneous steady state. For the model 
(1.1) with a general birth function satisfying (H2), Hopf bifurcation may occur at the unique 
positive spatially homogeneous steady state w∗ only if τ ∈ [0, ̂τ). Throughout this section, we 
assume that τ ∈ [0, ̂τ ), which in view of (2.7) is the same as w∗ > c̄. Hence, by (H1) and (2.9), 
we have bn < 0 < an for all integers n ≥ 0.

4.1. Existence of Hopf bifurcations

Recall that w∗ is locally asymptotically stable when τ = 0 and 0 cannot be an eigenvalue of 
(2.8) for any τ ≥ 0. Thus, the stability of w∗ changes only when at least a pair of eigenvalues 
of (2.8) cross the imaginary axis to the right. This suggests us to find a pair of purely imaginary 
eigenvalues for some τ > 0. Substituting λ = iν with ν > 0 into (2.8) yields

sinντ = − ν

bn

, cosντ = an

bn

, Pn(ν, τ ) := ν2 − b2
n + a2

n = 0, n ≥ 0. (4.1)

Note that bn −an < 0 for all n ≥ 0, and bn +an is increasing in n. Hence, Pn(ν, τ) has no positive 
zeros for all n ≥ 0 if and only if b0 + a0 ≥ 0. On the other hand, Pn(ν, τ) has a unique positive 
zero

νn(τ ) =
√

b2
n − a2

n (4.2)

for some n ≥ 0 if and only if b0 + a0 = γ + 2w∗
(1+w∗2)2 + e−δτ f ′(w∗) < 0; namely,

γ + 2w∗

(1 + w∗2)2 + f ′(w∗) < 0 and τ < τ̃ := 1

δ
ln

( −f ′(w∗)
γ + 2w∗/(1 + w∗2)2

)
. (4.3)

Set

In = {τ ∈ [0, τ̂ ) such that bn + an < 0}. (4.4)

We have the following lemma.
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Lemma 4.1. I0 = ∅ if and only if either γ + 2w∗
(1+w∗2)2 + f ′(w∗) ≥ 0 or ̃τ ≥ τ̂ , where ̂τ and ̃τ are 

defined in (3.10) and (4.3), respectively.

Clearly, I0 = ∅ implies that In = ∅ for all integer n ≥ 0. In the following, we assume that 
I0 	= ∅, that is, γ + 2w∗/(1 + w∗2)2 + f ′(w∗) < 0 and τ̃ < τ̂ . Then there exists an integer 
N1 ≥ 0 such that I0 ⊃ I1 ⊃ · · · ⊃ IN1 	= ∅ and In = ∅ for n ≥ N1 + 1. For τ ∈ In, let θn(τ ) be the 
unique solution of sin θn(τ ) = −νn(τ )/bn > 0 and cos θn(τ ) = an/bn < 0 in (0, 2π], that is,

θn(τ ) = arccos(an/bn) ∈ (π/2,π).

For n ∈ [0, N1] and k ≥ 0, we define

Sk
n(τ ) = τνn(τ ) − (θn(τ ) + 2kπ) for τ ∈ In. (4.5)

Clearly, νn(τ ) in (4.2) is strictly decreasing in n and θn(τ ) is strictly increasing in n. Thus, Sk
n >

Sk+1
n for τ ∈ In, and Sk

n > Sk
n+1 for τ ∈ In+1. It can be verified that for each integer 0 ≤ n ≤ N1, 

±iνn(τ
∗
n ) are a pair of purely imaginary eigenvalues of (2.8) if and only if τ ∗

n is the zero of Sk
n(τ )

for some integer k ≥ 0. The local stability of w∗ of model (1.1) when τ = 0 implies S0
0(0) < 0. 

For all integer n ∈ [0, N1], denote

τ̂n = sup In = sup{τ ∈ [0, τ̂ ) such that bn + an < 0}.

Clearly, ̂τn is decreasing in n and an(̂τn) + bn(̂τn) = 0. Hence, as τ → τ̂−
n , we have νn(τ ) → 0, 

sin θn(τ ) → 0, cos θn(τ ) → −1, θn(τ ) → π , and Sk
n(τ ) → −(2k +1)π . By [1, Theorem 2.2], we 

obtain

Sign
dReλ(τ ∗

n )

dτ
= Sign(

∂Pn

∂ν
(νn(τ

∗
n ), τ ∗

n ))Sign
dSk

n(τ ∗
n )

dτ
= Sign

dSk
n(τ ∗

n )

dτ
. (4.6)

Moreover, the pair of purely imaginary roots ±iνn(τ
∗
n ) cross the imaginary axis from left to right 

at τ = τ ∗
n if (Sk

n)′(τ ∗
n ) > 0 and from right to left if (Sk

n)′(τ ∗
n ) < 0.

Note that f ′(0)e−δτ > γ if and only if f ′(0) > γ and 0 ≤ τ < τmax := ln(f ′(0)/γ )/δ. If 
sup
τ∈I0

S0
0(τ ) < 0, then Sk

n(τ ) has no zeros in In for any n ∈ [0, N1] and k ≥ 0. Hence, w∗ is locally 

asymptotically stable for all τ ∈ [0, τmax). If sup
τ∈I0

S0
0(τ ) = 0, then S0

0(τ ) has a zero τ ∗ of even 

multiplicity in I0. By (4.6), there is no eigenvalue crossing the imaginary axis to the right. Thus, 
w∗ is locally asymptotically stable for τ ∈ [0, τmax). To ensure the existence of Hopf bifurcation 
at w∗, we assume that

(H3) sup
τ∈I0

S0
0(τ ) > 0 and Sk

n(τ ) has at most two zeros (counting multiplicity) for each n ∈ [0, N1]
and k ≥ 0.

Condition (H3) implies that there exists an integer N0 ∈ [0, N1] such that, for any integer n ∈
[0, N0], there exists an integer Kn ≥ 1 such that Si

n(τ ) has two simple zeros (τ i
n, τ 2Kn−i−1

n ) if 
0 ≤ i ≤ Kn−1 and no zeros if i ≥ Kn. Since Sk(0) < 0 and Sk(̂τn) < 0, then for each n ∈ [0, N0], 
n n
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there are 2Kn simple zeros τ j
n of Sk

n(τ ) for all k ≥ 0 and 0 < τ 0
n < τ 1

n < τ 2
n < · · · < τ

2Kn−1
n < τ̂n. 

From (4.6), we have dSi
n(τ

i
n)/dτ > 0 and dS

2Kn−i−1
n (τ i

n)/dτ < 0 for each 0 ≤ i ≤ Kn − 1.
Next, we consider the collection of all τ i

n with integers (n, i) ∈ [0, N0] × [0, Kn]. If a value 
appears more than once in the collection, then there are at least two pairs of purely imaginary 
roots and thus the condition of Hopf bifurcation is violated. For this reason, we only keep the 
values which appear exactly once in the collection and rearrange them in increasing order. Denote 
the new set by

�H = {τH
i : 0 ≤ i ≤ 2K − 1} with an integer 0 < K ≤

N2∑
j=0

Kj . (4.7)

Clearly, τH
0 and τH

2K−1 are two simple zeros of S0
0(τ ), system (1.1) undergoes a Hopf bifurcation 

at w∗ when τ = τH
i for each 0 ≤ i ≤ 2K − 1. Furthermore, w∗ is locally asymptotically stable 

for τ ∈ [0, τH
0 ) ∪ (τH

2K−1, τmax), and unstable for τ ∈ (τH
0 , τH

2K−1). To summarize, we have the 
following results on the stability of w∗ and the existence of Hopf bifurcation.

Theorem 4.2. Consider the model (1.1) with a general birth function satisfying (H2). Assume 
that R0 > 1. Let In, Sk

n(τ ) and �H be defined in (4.4), (4.5) and (4.7), respectively.

(i) If either I0 = ∅ or sup
τ∈I0

S0
0(τ ) ≤ 0, then w∗ is locally asymptotically stable for all τ ∈

[0, τmax).
(ii) If (H3) holds, then there exist exactly 2K local Hopf bifurcation values, namely, 0 < τH

0 <

τH
1 < · · · < τH

2K−1 < τ̂ . w∗ is locally asymptotically stable for τ ∈ [0, τH
0 ) ∪ (τH

2K−1, τmax), 
and unstable for τ ∈ (τH

0 , τH
2K−1). Moreover, the periodic solutions bifurcating at τ ∈ �H

0
are spatially homogeneous, which coincide with the periodic orbits of the corresponding 
ODE system; and the periodic solutions bifurcating at τ ∈ �H \ �H

0 are spatially heteroge-
neous, where �H

0 = {τ ∈ �H : Sk
0(τ ) = 0 for some integer k ∈ [0, k0]}.

For the model (1.1) with Ricker’s birth function f (w) = bwe−aw , Hopf bifurcation may occur 
only if R0 > 1 and τ ∈ [0, ̂τ). Moreover, if (A1) holds, then periodic solutions may bifurcate from 
the unique positive spatially homogeneous steady state w∗; if (A2) holds and either (3.5) or (3.6)
is satisfied, then periodic solutions may bifurcate from the largest positive spatially homogeneous 
steady state w3, we denote w∗ = w3 in this case.

Remark 4.3. Consider the model (1.1) with f (w) = bwe−aw .

(i) If we replace the condition (H2) in Theorem 4.2 with (A1), we have same results in Theo-
rem 4.2 at the unique positive spatially homogeneous steady state w∗.

(ii) If we replace the condition (H2) in Theorem 4.2 with (A2), and either (3.5) or (3.6), we have 
same results in Theorem 4.2 at the largest positive spatially homogeneous steady state w3.

4.2. Global Hopf bifurcation analysis

Theorem 4.2 states that periodic solutions can bifurcate from w∗ when τ is near the local 
Hopf bifurcation values τH ∈ �H . In this subsection, we study the global continuation of these 
i
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local bifurcating periodic solutions via the global Hopf bifurcation theorem [31]. Let z(t) =
w(·, τ t) − w∗. System (1.1) can be written as the following semilinear functional differential 
equation

z′(t) = Az(t) + F(zt , τ, T ), (t, τ, T ) ∈ R+ × [0, τ̂ ) ×R+, (4.8)

where zt ∈ C([−1, 0], X) with zt (θ) = z(t + θ) for θ ∈ [−1, 0], A = τd� − τγ and

F(zt ) = τe−δτ f (zt (−1) + w∗) − τ(zt (0) + w∗)2

1 + (zt (0) + w∗)2 .

Denote by {T (t)}t≥0 the semigroup generated by the operator A with Neumann boundary con-
dition on �. Clearly, T (t) → 0 as t → ∞, and the solution of (4.8) satisfies

z(t) = T (t)z(0) +
t∫

0

T (t − s)F (zs)ds. (4.9)

If z(t) is a periodic solution of (4.8) with period κ , it then follows from the above equation that

z(t) = T (t + nκ)z(0) +
t∫

−nκ

T (t − s)F (zs)ds.

Since T (t + nκ)z(0) → 0 as n → ∞, the above equation is equivalent to

z(t) =
t∫

−∞
T (t − s)F (zs)ds. (4.10)

Thus, a periodic solution of (4.10) is also a periodic solution (4.9). From Chapter 6.5 in [30], 
the integral operator on the right-hand side of (4.10) is differential, completely continuous and 
G-equivariant. Theorem 2.4 and Corollary 5.2 imply that w∗ is the unique positive steady state of 
(1.1). Note that an−bn > 0 for all integer n ≥ 0 and τ ∈ [0, ̂τ), then 0 is not an eigenvalue of (2.8)
if R0 > 1 and (H2) holds. Hence, the condition (H1) in [30, Chapter 6.5] holds. By Theorem 4.2, 
when τ = τH

i for some integer i ∈ [0, 2K − 1], the characteristic equation (2.8) has exactly 
one pair of purely imaginary eigenvalues ±iνn(τ

H
i ) for some n ∈ [0, N0]. Then, the condition 

(H2) in [30, Chapter 6.5] holds. For (τ, ω) ∈ [τH
i − ε1, τH

i + ε1] × [νn(τ
H
i ) − ε2, νn(τ

H
i ) + ε2]

with sufficiently small ε1, ε2 > 0, ±iνn(τ
H
i ) are a pair of eigenvalues of (2.8) if and only if 

τ = τH
i and ν = νn(τ

H
i ). Thus, the smoothness condition (H3) in [30, Chapter 6.5] is satisfied, 

and (w∗, τ i
H , 2π/(τH

i νn(τ
H
i ))) is an isolated singular point. From the transversality condition 

(4.6), the crossing number η(w∗, τ i
H , 2π/(τH

i νn(τ
H
i ))) at each of these centers is

ηi(w
∗, τH

i ,
2π

ν (τH )τH
) = −Sign(Reλ′(τH

i )) =
{

−1, 0 ≤ i ≤ K − 1,

1, K ≤ i ≤ 2K − 1.
n i i
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Hence, the condition (H4) in [30, Chapter 6.5] is satisfied. We next define a closed subset � of 
X ×R2+ by

� = Cl{(z, τ, T ) ∈ X ×R2+ : z is a nontrivial T -periodic solution of (4.8)}.

Let Pi (w
∗, τH

i , Ti) be the connected component of (w∗, τH
i , Ti) in � for each integer i ∈

[0, 2K − 1]. Theorem 4.2 (ii) ensures that Pi (w
∗, τH

i , Ti) is a nonempty subset of �.
To find the interval of τ in which periodic solutions exist, we shall further investigate the 

properties of periodic solutions of (4.8).

Lemma 4.4. Consider the model (1.1) with a general birth function satisfying (H2). Assume 
that R0 > 1. Let M be defined as in Proposition 2.1. There exists a constant m > 0 such that 
m ≤ w(x, t) ≤ M for all (x, t) ∈ �̄ ×R+, where w(x, t) is any nonnegative periodic solution of 
(1.1).

Proof. We claim that w(x, t) ≤ M for all (x, t) ∈ �̄ × R+. Otherwise, if there exists (x1, t1) ∈
�̄ × R+ such that w(x1, t1) > M , then lim

n→∞w(x1, t1 + nκ) = w(x1, t1) > M , where κ is the 

period of the periodic solution. This contradicts lim sup
t→∞

w(x, t) ≤ M for all x ∈ �̄ in Proposi-

tion 2.1. Hence, M is a uniform upper bound of w(x, t).
To find a uniform lower bound for w(x, t), we note from Proposition 2.1 that w(x, t) should 

be strictly positive, and thus possesses a positive minimum wm > 0 at (x2, t2); namely wm =
min

�̄×R+
w(x, t) = w(x2, t2). We then have ∂w(x2, t2)/∂t = 0 and �w(x2, t2) ≥ 0. It follows from 

(1.1) that

e−δτ f (w(x2, t2 − τ)) ≤ h1(wm), where h1(w) = γw + w2

1 + w2 .

If wm ≤ w(x2, t2 − τ) < w∗, then h1(m) ≤ h1(w(x2, t2 − τ)) < e−δτ f (w(x2, t2 − τ)), a 
contradiction. Hence, we have 1/a ≤ w∗ ≤ w(x2, t2 − τ) ≤ M . Consequently, h1(wm) ≥
e−δτ f (w(x2, t2 − τ)) ≥ e−δτ f (M) and wm ≥ m := h−1

1 (e−δτ f (M)). This ends the proof. �
Lemma 4.5. Consider the model (1.1) with a general birth function satisfying (H2). If R0 > 1, 
then system (1.1) has no nontrivial periodic solution of period τ .

Proof. Assume to the contrary, w(x, t) is a nontrivial periodic solution of (1.1) with period τ , 
that is, w(x, t − τ) = w(x, t). Then it satisfies the following equation

∂w(x, t)

∂t
= d�w(x, t) − γw(x, t) − w2(x, t)

1 + w2(x, t)
+ e−δτ f (w(x, t)) (4.11)

with positive initial condition and Neumann boundary condition. We claim that lim
t→∞w(x, t) =

w∗. To prove this claim, we consider the ordinary differential equation

v′(t) = h2(v(t)) := e−δτ f (v(t)) − γ v(t) − v2(t)

2 . (4.12)

1 + v (t)
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Clearly, the above equation has two equilibria v = 0 and v = w∗ > 0. Moreover, h2(v) > 0 for 
v ∈ (0, w∗), and h2(v) < 0 for v > w∗. Thus, the solution of (4.12) with positive initial condition 
converges to the unique positive equilibrium w∗, that is, lim

t→∞v(t, v0) = w∗ for any v0 > 0. 

Let M0 = max
�̄

w(x, 0), then w(x, t) = v(t, M0) and w(x, t) = 0 are upper solution and lower 

solution of (4.11), respectively. Thus, system (4.11) has a unique solution w(x, t) which satisfies 
0 ≤ w(x, t) ≤ v(t, M0). It then follows from the strong maximum principle that w(x, t) > 0 for 
any (x, t) ∈ �̄ ×R+. Fix any t1 > 0, then u(x, t) := w(x, t + t1) satisfies the following system

∂u(x, t)

∂t
= d�u(x, t) − γ u(x, t) − u2(x, t)

1 + u2(x, t)
+ e−δτ f (u(x, t)), x ∈ �, t > 0,

∂νu(x, t) = 0, x ∈ ∂�, t > 0,

u(x,0) = w(x, t1) > 0, x ∈ �.

Denote m1 := min
�̄

w(x, t1) > 0 and M1 := max
�̄

w(x, t1) > 0. Thus, v(t, M1) and v(t, m1) are 

upper solution and lower solution of the above system, respectively. Hence, we have v(t, m1) ≤
u(x, t) = w(x, t + t1) ≤ v(t, M1). This, together with lim

t→∞v(t, m1) = lim
t→∞v(t, M1) = w∗, leads 

to lim
t→∞w(x, t) = w∗. This precludes the existence of nontrivial periodic solution of system 

(4.11). Hence, system (1.1) has no nontrivial periodic solution of period τ . �
We are now ready to analyze the structure of Pi(w

∗, τH
i , Ti) and prove global existence of 

periodic solutions of (4.8). For each 0 ≤ j ≤ K0, we denote

�
j
H = {τ ∈ �H : Sj

n(τ ) = 0 for some n ∈ [0,N0]}. (4.13)

Lemma 4.5 shows that model (4.8) has no nontrivial periodic solution with period 1 and thus 
has no nontrivial periodic solution with period 1/j for any positive integer j . When τ is close 
to the bifurcation point τi ∈ �

j
H , we obtain from local Hopf bifurcation theorem that νjτ ∈

(2jπ + π/2, 2jπ + π) ⊂ (2jπ, 2jπ + π). Thus, the period T = 2π/(νj τ ) ∈ (1/(j + 1), 1/j)

for j ≥ 1, and T > 1 for j = 0. For j ≥ 1, system (4.8) has no nontrivial periodic solution of 
period 1/j or 1/(j + 1). It then follows from the continuity of Hopf bifurcation branch that 
the periods on Pi are bounded by 1/j and 1/(j + 1). For j = 0, the periods on Pi are always 
greater than 1. Therefore, any two global Hopf branches do not intersect: Pi1 ∩ Pi2 = ∅ with 
τi1 ∈ �

j1
H , τi2 ∈ �

j2
H and j1 	= j2.

By using an argument similar to [17, Theorem 4.12], we arrive at our conclusion concerning 
the global existence of periodic solutions and the properties of the global Hopf branches.

Theorem 4.6. Consider the model (1.1) with a general birth function satisfying (H2). Assume 
that R0 > 1 and (H3) holds. For each integer i ∈ [0, 2K − 1], denote by Pi := Pi (w

∗, τH
i , Ti)

the connected component of (w∗, τH
i , Ti) in �. We have the following results.

(i) For τi ∈ �
j
H with j ≥ 1 and i ∈ [0, 2K − 1], the global Hopf branch Pi is bounded with 

bounded τ -component in [0, ̂τ), bounded solution component in [m, M], and bounded pe-
riod component in (1/(j + 1), 1/j).
445



H. Shu, W. Xu, X.-S. Wang et al. Journal of Differential Equations 336 (2022) 427–455
(ii) For τi1 ∈ �
j1
H , τi2 ∈ �

j2
H with i1, i2 ∈ [0, 2K −1] and j1, j2 ∈ [0, K0], we have Pi1 ∩Pi2 = ∅

if j1 	= j2.
(iii) For any τ ∈ ( min

1≤j≤K0
�

j
H , max

1≤j≤K0
�

j
H ), there exists at least one periodic solution for system 

(1.1).

Note that if the periods of any nontrivial periodic solutions of (1.1) are bounded from the 
above, then all global Hopf branches Pi with integer i ∈ [0, 2K − 1] are bounded, and for each 
τ ∈ (τ0, τ2K−1), there exists at least one periodic solution for system (1.1). We leave the proof 
of upper boundedness of the periods of any nontrivial periodic solutions of (1.1) as an open 
problem.

Remark 4.7. Consider the model (1.1) with Ricker’s birth function f (w) = bwe−aw . The state-
ments in Theorem 4.6 remain valid if we replace the condition (H2) with (A1).

5. The positive heterogeneous steady states

The steady state of (1.1) satisfies the following elliptic equation

−d�w(x) = e−δτ f (w(x)) − γw(x) − w2(x)

1 + w2(x)
, x ∈ �,

∂νw(x) = 0, x ∈ ∂�.

(5.1)

The strong maximum principle implies that any nonnegative heterogeneous steady state w(x)

of (5.1) is positive; namely, w(x) > 0 for all x ∈ �̄. We now provide a general result on the 
nonexistence of positive heterogeneous solutions for the following general elliptic equation.

−d�z(x) = G(z(x)) in �, ∂νz(x) = 0 on ∂� (5.2)

Here, d > 0, � is an open and bounded domain with sufficiently smooth boundary (for instance, 
the boundary is C1 and satisfies the interior ball condition) in a Euclidean space.

Theorem 5.1. Assume that G(z) ∈ C1(R) has finite number of zeros, and there exists z1 > 0 such 
that G(z)(z−z1) ≤ 0 for all z ≥ 0. Then the elliptic equation (5.2) has no positive heterogeneous 
solution.

Proof. Let z(x) be a positive solution of (5.2). Multiplying (5.2) by z(x) − z1 and integrating
over �, we obtain from Green’s identity that

0 ≤ d

∫
�

|∇z(x)|2dx =
∫
�

G(z(x))(z(x) − z1)dx ≤ 0.

Hence, z(x) ≡ constant. This ends the proof. �
If R0 ≤ 1, it follows from the global stability of the trivial steady state in Theorem 2.2 that 

there does not exist any positive heterogeneous steady states of (1.1). If R0 > 1 and the model 
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(1.1) admits one or two positive spatially homogeneous steady states, we denote by ŵ the largest 
positive spatially homogeneous steady state and find

(e−δτ f (w) − γw − w2

1 + w2 )(w − ŵ) ≤ 0

for all w ≥ 0. This together with Theorem 5.1 gives the following corollary.

Corollary 5.2. If the model (1.1) admits zero, one, or two positive spatially homogeneous steady 
states, then it has no positive heterogeneous steady state.

The existence conditions for the positive heterogeneous steady state of (5.2) are stated in the 
following theorem.

Theorem 5.3. Let G(z) ∈ C1(R+) and z ≥ z > 0 such that G(z) > 0 for z ∈ (0, z) and G(z) <
0 for z ∈ (z, ∞). Choose L > 0 such that |G′(z)| ≤ L for all z ∈ [z, z]. Let 0 = λ0 < λ1 <

λ2 < · · · be the odd eigenvalues of −� on � with Neumann boundary condition. Denote by λ
the smallest positive eigenvalue of −� on � with Neumann boundary condition. We have the 
following results.

(i) Any nonnegative and nontrivial solution of (5.2) satisfies z ≤ z(x) ≤ z for all x ∈ �.
(ii) If d > L/λ, then all nonnegative solutions of (5.2) are constant solutions.

(iii) The equation (5.2) possesses at least one positive spatially heterogeneous solution if there 
exists a positive root z∗ of G(z) such that G′(z∗) > 0 and

d ∈
⋃
k≥1

(
G′(z∗)

λ2k

,
G′(z∗)
λ2k−1

). (5.3)

Proof. The first statement is a direct consequence of [10, Proposition 2.2] or [19, Lemmas 2.3-
2.4]. If z(x) is a nonnegative and nontrivial solution of (5.2), then the strong maximum principle 
implies that z(x) > 0 for all x ∈ �. We claim that z(x) ≤ z for all x ∈ �. Assume to the contrary 
that M := max

x∈�̄

z(x) > z. Since G(M) < 0, we have from the maximum principle that z(x0) = M

for some x0 ∈ ∂�. The Hopf lemma implies that ∂νz(x0) > 0, which contradicts the Neumann 
boundary condition. Hence, we obtain z(x) ≤ z for all x ∈ �. In a similar manner, we can show 
that z(x) ≥ z for all x ∈ �.

Now, we assume d > L/λ and let z(x) be any positive solution of (5.2). Denote c :=∫
�

z(x)dx/|�| ∈ [z, z] such that 
∫
�
(z(x) − c)dx = 0. It then follows from (5.2) and Green’s 

formula that

d

∫
�

|∇(z(x) − c)|2dx =
∫
�

[G(z(x)) − G(c)][z(x) − c]dx.

By mean value theorem, we have |G(z(x)) −G(c)| ≤ L|z(x) − c|. We then obtain from Poincar-
é’s inequality that
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dλ

∫
�

|z(x) − c|2dx ≤ d

∫
�

|∇(z(x) − c)|2dx ≤ L

∫
�

|z(x) − c|2dx.

Since d > L/λ, the above inequalities are valid only if z(x) ≡ c is a constant solution.
Next, we will use Leray-Schauder’s theory [8] to prove the existence of positive spatially 

heterogeneous solutions of (5.2) if (5.3) is satisfied. Note that the solution of (5.2) is the same as 
the fixed point of the nonlinear compact operator

Gd(z) := (L − d�)−1(Lz + G(z))

in the open set

U := {z ∈ C2(�) ∩ C1(�̄) : ∂νz|∂� = 0, z/2 < z(x) < 2z}.

Since all positive solutions of (5.2) are bounded by z from below and z from the above, Gd does 
not possess any fixed point on ∂U . Consequently, the Leray-Schauder degree

deg(I − Gd ,U,0) = deg(I − G0,U,0) = deg(−G,U,0) = 1 (5.4)

is independent of d ≥ 0, where the last equality follows from the fact that G(z/2) > 0 > G(2z). 
Now, we assume d satisfies (5.3) and prove by contradiction that (5.2) possesses at least one 
positive heterogeneous solution. If not, then all positive solutions of (5.2) are constants which 
correspond to the positive roots of G(z). In this case, we have

deg(I − Gd,U,0) =
∑

z∗>0,G(z∗)=0

deg(I − Gd ,Uε(z
∗),0),

where Uε(z
∗) is a small neighborhood of z∗ in U . Let

DGd(z∗) = (L − d�)−1(L + G′(z∗))

be the linearized operator of Gd about z∗. We shall consider the following four cases.

(a) If G′(z∗) < 0, then all eigenvalues of DGd(z
∗) are less than one, and hence

deg(I − Gd ,Uε(z
∗),0) = deg(I − DGd(z∗),Uε(z

∗),0) = 1.

(b) If G′(z∗) = 0 and z∗ is an even root of G(z), then we can find a small perturbation of G
that does not change sign in [z∗ − ε, z∗ + ε] for all sufficiently small ε > 0. By homotopy 
property of the Leray-Schauder degree [16], we then have

deg(I − Gd ,Uε(z
∗),0) = 0.

(c) If G′(z∗) = 0 and z∗ is an odd root of G(z), then we can find a small perturbation of G, 
denoted by Gδ , which has a simple root z∗

δ ∈ (z∗ − ε, z∗ + ε) for a sufficiently small ε > 0. 
By homotopy property of the Leray-Schauder degree, we then have
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deg(I − Gd ,Uε(z
∗),0) = deg(I − Gd,δ,Uε(z

∗),0) = deg(I − DGd,δ,Uε(z
∗),0),

where Gd,δ(z) := (L −d�)−1(Lz+Gδ(z)) and DGd,δ := (L −d�)−1(L +G′
δ(z

∗
δ )) are small 

perturbations of Gd and DGd , respectively. We choose the perturbation parameter δ > 0 to 
be sufficiently small such that |G′

δ(z
∗
δ )| < dλ. If G(z)(z − z∗) ≤ 0 for z ∈ (z∗ − ε, z∗ + ε), 

then G′
δ(z

∗
δ ) < 0 and all eigenvalues of DGd,δ(z

∗) are less than one. Consequently,

deg(I − Gd ,Uε(z
∗),0) = deg(I − DGd,δ,Uε(z

∗),0) = 1.

If G(z)(z − z∗) ≥ 0 for z ∈ (z∗ − ε, z∗ + ε), then G′
δ(z

∗
δ ) > 0 and the principal eigenvalue of 

DGd,δ(z
∗) is 1 + G′

δ(z
∗
δ )/L > 1 while all other eigenvalues of DGd,δ(z

∗) are less than one. 
Consequently,

deg(I − Gd ,Uε(z
∗),0) = deg(I − DGd,δ,Uε(z

∗),0) = −1.

(d) If G′(z∗) > 0, then

deg(I − Gd ,Uε(z
∗),0) = deg(I − DGd(z∗),Uε(z

∗),0) ≥ −1.

If further, G′(z∗)/λ2k < d < G′(z∗)/λ2k−1 for some k ≥ 1, then the set of odd eigenvalues 
of DGd,δ(z

∗) which are greater than one is given by

⋃
0≤l≤2k−1

{L + G′(z∗)
L + dλl

},

and consequently,

deg(I − Gd ,Uε(z
∗),0) = deg(I − DGd(z∗),Uε(z

∗),0) = (−1)2k = 1.

Let 0 < z1 < z2 < · · · < z2m+1 be the odd roots of G(z) in (z/2, 2z). Since G(z/2) > 0 and 
G(2z) < 0, we have G(z)(z − z2j+1) ≤ 0 for z ∈ (z2j , z2j+2) (where for convenience we have 
denoted z0 = 0 and z2m+2 = ∞) and G(z)(z − z2j ) ≥ 0 for z ∈ (z2j−1, z2j+1). From the above 
arguments, we obtain deg(I − Gd , Uε(z2j+1), 0) = 1 and deg(I − Gd , Uε(z2j ), 0) ≥ −1. More-
over, there exists j such that deg(I − Gd , Uε(z2j ), 0) = 1. Consequently,

deg(I − Gd ,U,0) =
m∑

j=0

deg(I − Gd ,Uε(z2j+1),0) +
m∑

j=1

deg(I − Gd ,Uε(z2j ),0)

≥ (m + 1) − (m − 2) = 3.

This contradicts (5.4). Therefore, the elliptic equation (5.2) possesses at least one positive het-
erogeneous solution if (5.3) is satisfied. The proof is completed. �
Corollary 5.4. If d > d∗ := (f ′(0)e−δτ − γ )/μ1, where μ1 is defined in (2.4), then the model 
(1.1) has no positive heterogeneous steady states.
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Fig. 2. The existence and stability regions of equilibria of (1.1) in the a − τ plane.

Corollary 5.5. Let 0 = λ0 < λ1 < λ2 < · · · be the odd eigenvalues of −� on � with Neumann 
boundary condition. If there exists w∗ > 0 such that e−δτ f (w∗) = γw∗ + (w∗)2/(1 + (w∗)2)

and

dλ2k−1 < e−δτ f ′(w∗) − γ − 2w∗

(1 + (w∗)2)2 < dλ2k

for some k ≥ 1, then (1.1) possesses at least one positive heterogeneous steady state.

Note that Corollary 5.5 gives a sufficient condition for the existence of a positive heteroge-
neous steady state, which can be satisfied only when the model (1.1) has at least three positive 
spatially homogeneous steady states.

6. Numerical exploration

In this section, we use numerical exploration to illustrate our theoretical results on the model 
dynamics. We set � = (0, π) and choose the birth function as f (w) = bwe−aw . The parameter 
values as given as d = 1, γ = 1, δ = 0.1, b = 14.5. The regions for the existence and stability of 
equilibria of system (1.1) in the a − τ plane are plotted in Fig. 2. No positive equilibrium shall 
exist in the region above the horizontal line with τ = τmax . There exist two positive equilibria 
on the two curves defined by p(c1) = 0 and p(c2) = 0, respectively. There are three positive 
equilibria in the regions bounded by the these two curves. In the other regions, there exists exactly 
one positive equilibrium w∗, which is locally asymptotically stable when τ ≥ τ̂ . Moreover, the 
positive equilibrium w∗ is globally asymptotically stable if τ ∈ [τ̂ , τmax) and a ≥ 1.

Now, we choose a = 0.8 to explore the stability of the unique positive spatially homogeneous 
steady state w∗. A simple calculation gives ̂τ ≈ 12.77, τmax ≈ 26.74, sup I0 ≈ 5.43 and In = ∅

for n ≥ 1. We further obtain that supI0
S0

0(τ ) ≈ 0.49 > 0, and S0
0(τ ) has exactly two zeros in I0: 

τH ≈ 2.01 and τH ≈ 4.45. The dynamics of system (1.1) are summarized as follows.
0 1
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(i) If τ ∈ [τmax, ∞), then 0 is globally asymptotically stable; see Fig. 3(a).
(ii) If τ ∈ (0, τH

0 ) ∪ (τH
1 , τmax), then w∗ is locally asymptotically stable; see Fig. 3(b).

(iii) If τ ∈ (τH
0 , τH

1 ), then 0 and w∗ are unstable. Moreover, there exists a periodic solution 
bifurcated from w∗; see Fig. 3(c). System (1.1) undergoes a Hopf bifurcation at w∗ when 
τ = τH

i for i = 0, 1.

Next, we choose a = 0.02, τ = 23.48 to explore the stability of three positive spatially homo-
geneous equilibria obtained in Theorem 3.3. By a simple calculation, we have ̂τ ≈ 16.54, τmax ≈
26.74, c1/a ≈ 1.09, c2/a ≈ 7.67, and w1 ≈ 0.45 ∈ (0, c1/a), w2 ≈ 2.91 ∈ (c1/a, c2/a), w3 ≈
12.48 ∈ (c2/a, ∞). The dynamics of system (1.1) are summarized as follows.

(i) w1 is locally asymptotically stable; see Fig. 3(d).
(ii) w2 is unstable, for instance, the solution of (1.1) converges to w3 by choosing an initial 

condition close to w2; see Fig. 3(e).
(iii) w3 is locally asymptotically stable for τ ∈ [̂τ , τmax); see Fig. 3(f).

Corollary 5.5 gives sufficient conditions for the existence of positive heterogeneous steady 
states. We set d = 0.1, γ = 1, δ = 0.01, a = 0.04, b = 4.21, τ = 100.1, � = (0, 3π) and 
w0(x, θ) = 1.571 + 0.1 cosx. There are three positive equilibria w1 ≈ 0.864, w2 ≈ 1.571, w3 ≈
8.015. For k = 2, two simple eigenvalues of −� in � with Neumann boundary condition are 
λ3 = 1, λ4 = 16/9 and then dλ3 < e−δτ f ′(w2) − γ − 2w2

(1+w2
2)2 ≈ 0.1004 < dλ4. It then follows 

from Corollary 5.5 that system (1.1) has at least one positive heterogeneous solution; see Fig. 4.
To demonstrate the existence of multiple global Hopf branches, we choose � = (0, π) and

d = 0.2, γ = 1, δ = 0.1, a = 11, b = 50.

It follows from Section 4 that sup I0 ≈ 15.94, sup I1 ≈ 14.08, sup I2 ≈ 8.82, sup I3 ≈ 0.8 and 
In = ∅ for n ≥ 4. By Theorem 4.2 and 4.6, there are exactly 12 Hopf bifurcation values (see 
Fig. 5):

τH
0 ≈ 0.68 < τH

1 ≈ 0.74 < τH
2 ≈ 1 < τH

3 ≈ 3.24 < τH
4 ≈ 3.5

< τH
5 ≈ 8 < τH

6 ≈ 8.6 < τH
7 ≈ 11.04 < τH

8 ≈ 12.74
< τH

9 ≈ 13.94 < τH
10 ≈ 14.72 < τH

11 ≈ 15.8.

By Theorem 4.2, the unique positive spatially homogeneous steady state w∗ is locally asymp-
totically stable for τ ∈ [0, τH

0 ) ∪(τH
11 , τmax), and unstable for τ ∈ (τH

0 , τH
11). Moreover, the model 

(1.1) has at least one periodic solution for τ ∈ (τH
0 , τH

11). The periodic solutions bifurcated from 
τ ∈ {τH

0 , τH
3 , τH

5 , τH
7 , τH

10, τH
11} are spatially homogeneous, and the periodic solutions bifurcated 

from τ ∈ {τH
1 , τH

2 , τH
4 , τH

6 , τH
8 , τH

9 } are spatially nonhomogeneous, see Fig. 6. One can also ob-
serve from numerical simulations that the periods of the periodic solution for (1.1) are bounded. 
It then follows from Theorem 4.6 that all global Hopf branches are bounded and connected by a 
pair of Hopf bifurcation values.

7. Summary and discussion

In this paper, we derive a general delayed diffusive spruce budworm model from an age 
structure system. When the basic reproduction number is no more than one, we prove global 
H. Shu, W. Xu, X.-S. Wang et al. Journal of Differential Equations 336 (2022) 427–455
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Fig. 3. The dynamics of system (1.1) with different values of a and τ . The initial conditions are: w0(x, θ) = 0.2 for 
(a); w0(x, θ) = w∗ + 0.1 cosx for (b) and (c); w0(x, θ) = w1 + 0.2 cosx for (d); w0(x, θ) = 3 + 0.01 cosx for (e); and 
w0(x, θ) = w3 + cosx for (f).
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Fig. 4. The solution w(x, t) and its projection on x − t plane. Parameter values are d = 0.1, γ = 1, δ = 0.01, a =
0.04, b = 4.21, τ = 100.1, � = (0, 3π) and w0(x, θ) = 1.571 + 0.1 cosx, θ ∈ [−τ, 0]. (For interpretation of the col-
ors in the figure(s), the reader is referred to the web version of this article.)

Fig. 5. The graphs of Sk
n for 0 ≤ n, k ≤ 2, and the Hopf bifurcation values τH

j
for 0 ≤ j ≤ 11.

Fig. 6. Left: τ = 0.72 ∈ (τH
0 , τH

1 ), a bifurcating spatially homogeneous periodic solution exists. Right: τ = 4.144 ∈
(τH

4 , τH
5 ), a bifurcating spatially non-homogeneous periodic solution exists.
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asymptotic stability of the trivial steady state via the Lyapunov functional technique and LaSalle 
invariance principle. When the basic reproduction number is greater than one, we analyze the 
nonlinear functions in the model system and establish necessary and sufficient conditions for the 
existence of one, two, and three positive spatially homogeneous steady states, respectively. By 
Leray-Schauder’s theory, we establish existence conditions of positive spatially heterogeneous 
steady states for a general elliptic equation with Neumann boundary condition. To examine the 
onset and termination of periodic solutions bifurcated from the positive spatially homogeneous 
steady state, we use the maturation delay as the bifurcation parameter and prove the existence 
and boundedness of the global Hopf branches.
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