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Abstract

We consider a delay differential equation for tick population with diapause, derived from an age-
structured population model, with two time lags due to normal and diapause mediated development. We 
derive threshold conditions for the global asymptotic stability of biologically important equilibria, and give 
a general geometric criterion for the appearance of Hopf bifurcations in the delay differential system with 
delay-dependent parameters. By choosing the normal development time delay as a bifurcation parameter, 
we analyze the stability switches of the positive equilibrium, and examine the onset and termination of Hopf 
bifurcations of periodic solutions from the positive equilibrium. Under some technical conditions, we show 
that global Hopf branches are bounded and connected by a pair of Hopf bifurcation values. This allows us 
to show that diapause can lead to the occurrence of multiple stability switches, coexistence of two stable 
limit cycles, among other rich dynamical behaviours.
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1. Introduction

Ticks, as vectors, are responsible for the transmission of Lyme borreliosis, tick-borne en-
cephalitis, human granulocytic anaplasmosis and human babesiosis [11]. They are the second, 
next to mosquitoes, vector of vector-borne diseases with substantial impact on human health 
[19]. We refer to [10] and [9] for discussions on the tick lifecycle and tick ecology.

Our focus here is diapause, a physiological phenomenon which was investigated mainly by 
entomologists in the past but now received much attention in the study of tick population dy-
namics and tick-borne disease transmission dynamics [4]. The first instance of tick diapause was 
described more than one century ago [3]. Alfeev [1,2] categorized diapause characteristics for 
the ticks. The diapause behaviour is controlled by many factors such as photoperiod [18] and 
temperature [17]. Some tick population dynamics models were proposed in [7,17] to study the 
environmental impact on diapause. On the other hand, it was demonstrated that diapause plays 
an important role on seasonal patterns of tick activity [13]. However, the impact of diapause on 
the complex life cycle of ticks remains unclear [11].

To the best of our knowledge, there have been very few tick diapause models developed to in-
corporate both diapause delay and normal development delay. In [28], Zhang and Wu considered 
the following model with development delay and diapause delay:

x′(t) = −μx(t) + f ((1 − α)θx(t − τ) + αθx(t − 2τ)), (1.1)

and calculated the first Hopf bifurcation value by introducing and analyzing the so-called para-
metric trigonometric functions. Global continuation of the Hopf branch was also investigated in 
[27], and it was shown that all global Hopf branches of periodic solutions, with periods within 
[3τ, 6τ ], are unbounded, and hence periodic solutions exist for all large delay.

In this paper, we consider a different delay differential equation derived from the following 
age-structured model

∂tui(t, a) + ∂aui(t, a) = −di(a)ui(t, a), i = 1,2,

where u1(t, a) and u2(t, a) are the densities of ticks with a normal development delay τ1 and a 
diapause mediated delay τ2 = τd + τ2 respectively at time t and age a, where τd is the duration 
of diapause. The population of matured ticks at time t is then given by

x(t) =
∞∫

τ1

u1(t, a)da +
∞∫

τ2

u2(t, a)da.

Assuming that the mortality rates of matured and immatured ticks are μ and δ, respectively; 
namely,

di(a) =
{

μ, a > τi,

δ, a < τi,

one can obtain that
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x′(t) =
∞∫

τ1

∂tu1(t, a)da +
∞∫

τ2

∂tu2(t, a)da

= −μx(t) −
∞∫

τ1

∂au1(t, a)da −
∞∫

τ2

∂au2(t, a)da

= −μx(t) + u1(t, τ1) + u2(t, τ2),

under the assumption that u1(t, ∞) = u2(t, ∞) = 0. Choosing the birth rate as the Ricker func-
tion f (x) = rxe−sx and letting p1 and p2 be the portions of new ticks in the two groups with 
normal development and diapause delays:

ui(t,0) = pif (x(t)), i = 1,2,

we obtain, from the integration of the age-structured equation along the characteristic line that

ui(t, τi) = ui(t − τi,0)e−δτi = pie
−δτi f (x(t − τi)).

Substituting this into the equation for x′(t) gives

x′(t) = −μx(t) + p1e
−δτ1f (x(t − τ1)) + p2e

−δτ2f (x(t − τ2)). (1.2)

In what follows, without loss of generality, we assume r = s = 1, for otherwise, we can scale 
x by a factor s and redefine pi as pir . Before scaling, we have p1 + p2 = 1 and f ′(0) = r . 
After scaling, the equalities become p1 + p2 = r and f ′(0) = 1. The parameters p1 and p2 are 
no longer probability constants. Instead, they are the two proportions of r divided in the ticks 
with development delays τ1 and τ2, respectively. Note that our model differs from (1.1) in two 
manners: (1) the growth term in our model is a linear combination of Ricker’s reproduction 
functions of x(t − τi), while the growth term in (1.1) is the Ricker’s reproduction function of a 
linear combination of x(t − τi); and (2) our coefficients in the linear combination (i.e., pie

−δτi ) 
are delay dependent while the coefficients in (1.1) are delay independent based on the assumption 
that the mortality of immature ticks is negligible.

In our study here, we will investigate the impact of diapause on the dynamical behaviours of 
our model. We will also give a general approach for the bifurcation analysis of delay differential 
systems with two delays and delay dependent parameters. We organize this paper as follows. In 
Section 2, we state some preliminary results on the positiveness and boundedness of the solu-
tions and the stability of the trivial equilibrium. In Section 3, we derive a geometric criterion 
for a general delay differential system with two delays and delay dependent parameters. In Sec-
tion 4, we investigate stability and Hopf bifurcation of the positive equilibrium. In Section 5, we 
conduct a global Hopf bifurcation analysis for periodic solutions with periods not equal to 4τ . 
In Section 6, we plot some illustrations from our numerical explorations. In Section 7, we give a 
brief summary and discuss on future open problems.
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2. Preliminaries

We choose the phase space of model (1.2) as the Banach space C := C([−τ2, 0], R) equipped 
with the supremum norm. If x(t) is continuous for all t ≥ −τ2, we denote xt ∈ C as xt (θ) =
x(t + θ) for θ ∈ [−τ2, 0] and t ≥ 0. For biological applications, the initial condition of (1.2) is 
given as

x0 = φ ∈ C+ and φ(0) > 0, (2.1)

where C+ is the nonnegative cone of C. The existence and uniqueness of the solution of model 
(1.2) with initial condition (2.1) follow from the theory of functional differential equations [12]. 
Furthermore, we can prove by contradition that x(t) is nonnegative for all t > 0. Consequently, 
x′(t) ≥ −μx(t), which implies that x(t) ≥ φ(0)e−μt > 0 for t > 0. Note that f (x) ≤ f (1) =
1/e. We have x′(t) ≤ p1e

−δτ1−1 + p2e
−δτ2−1 − μx(t), which implies that

lim sup
t→∞

x(t) ≤ p1e
−δτ1 + p2e

−δτ2

μe
. (2.2)

Note that model (1.2) has a trivial equilibrium 0. Based on the linearized model about the 
trivial equilibrium, we define the basic reproduction ratio as

R0 = p1e
−δτ1 + p2e

−δτ2

μ
. (2.3)

It is easily seen that the model admits a unique positive equilibrium x∗ = lnR0 if R0 > 1, and 
no positive equilibrium if R0 ≤ 1. To analyze the stability of the equilibria, we need the fol-
lowing lemma which characterizes the root distribution of a general exponential transcendental 
polynomial.

Lemma 2.1. Let a0 > 0, τi ≥ 0 and bi ≥ 0 with i = 1, 2 such that b1b2 	= 0. Then the transcen-
dental polynomial

ϕ(λ) = λ + a0 − b1e
−λτ1 − b2e

−λτ2

has a unique real root whose sign is the same as the sign of −ϕ(0) = b1 + b2 − a0. Furthermore, 
if a0 ≥ b1 + b2, then all non-real roots of ϕ(λ) have negative real parts.

Proof. Since ϕ′(λ) = 1 + b1τ1e
−λτ1 + b2τ2e

−λτ2 > 0 and ϕ(±∞) = ±∞, ϕ(λ) has a unique 
real root λ0. If ϕ(0) > 0 then λ0 < 0. If ϕ(0) < 0 then λ0 > 0. Consequently, the sign of this 
unique real root λ0 is the same as the sign of −ϕ(0) = b1 + b2 − a0. If ϕ(ξ + iη) = 0 for some 
ξ ≥ 0 and η ∈R, then we have from Reϕ(ξ + iη) = 0 that

a0 ≤ ξ + a0 = b1e
−ξτ1 cos(ητ1) + b2e

−ξτ2 cos(ητ2) ≤ b1 + b2.

The equality a0 = b1 + b2 holds if and only if ξ = 0, b1 cos(ητ1) = b1 and b2 cos(ητ2) = b2, 
which together with Imϕ(ξ + iη) = 0 imply that
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η = −b1e
−ξτ1 sin(ητ1) − b2e

−ξτ2 sin(ητ2) = 0.

Hence, all non-real roots of ϕ(λ) have negative real parts. This completes the proof. �
Theorem 2.2. If R0 ≤ 1, then the trivial equilibrium 0 of (1.2) is globally asymptotically stable 
in C+; whereas if R0 > 1, then the trivial equilibrium 0 is unstable, and there exists a unique 
positive equilibrium x∗ = lnR0.

Proof. The characteristic equation associated with the linearization of model (1.2) at 0 is

λ + μ − p1e
−δτ1e−λτ1 − p2e

−δτ2e−λτ2 = 0.

It follows from Lemma 2.1 that all eigenvalues have negative real parts if and only if R0 < 1, 
and there exists at least one positive eigenvalue if R0 > 1. Thus, the trivial equilibrium is locally 
asymptotically stable provided that R0 < 1, and is unstable if R0 > 1. This result could also 
be obtained from the observation that the linearized delay differential equation about the trivial 
equilibrium is actually monotone and that the local asymptotic stability of the trivial equilibrium 
for the delay differential equation is the same as that for the corresponding ordinary differential 
equation: x′(t) = −μx(t) + (p1e

−δτ1 + p2e
−δτ2)x(t); see [25, Corollary 5.2]. For the critical 

case R0 = 1, 0 is the only real eigenvalue and all other eigenvalues have negative real parts, we 
can further obtain the local stability of the trivial equilibrium by using the normal form theory. 
To see this, we first rewrite the delay differential equation (1.2) as an abstract equation on C: 
ẋt = Axt + F(xt ), where A and F are the linear and nonlinear operators defined as

(Aφ)(θ) =
{

−μφ(0) + p1e
−δτ1φ(−τ1) + p2e

−δτ2φ(−τ2), θ = 0,

φ′(θ), θ ∈ [−τ2,0),

and

[F(φ)](θ) =
{

p1e
−δτ1g(φ(−τ1)) + p2e

−δτ2g(φ(−τ2)), θ = 0,

0, θ ∈ [−τ2,0),

for φ ∈ C. Here, for simplicity, we define g(x) = f (x) − x = x(e−x − 1). It is noted that g(x) =
−x2 + O(x3) as x → 0. Next, we introduce a bilinear form

〈ψ,ϕ〉 = ψ(0)ϕ(0) + p1e
−δτ1

0∫
−τ1

ψ(θ + τ1)ϕ(θ)dθ + p2e
−δτ2

0∫
−τ2

ψ(θ + τ2)ϕ(θ)dθ

for ψ ∈ C[0, τ2] and ϕ ∈ C[−τ2, 0]. It is readily seen from R0 = 1 that ϕ ≡ 1 is the eigenfunction 
of A with respect to the eigenvalue 0. We set ψ ≡ 1 and project xt on the eigenspace spanned by 
ϕ: xt = zϕ + y such that 〈ψ, y〉 = 0. Consequently, ẋt = żϕ + ẏ and 〈ψ, ẏ〉 = 0. It then follows 
from ẋt = Axt + F(xt ) and Aϕ = 0 that

ż〈ψ,ϕ〉 = 〈ψ, ẋt 〉 = 〈ψ,Ay + F(zϕ + y)〉.
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A simple calculation gives 〈ψ, ϕ〉 = 1 + τ1p1e
−δτ1 + τ2p2e

−δτ2 , 〈ψ, Ay〉 = 0, and 〈ψ, F(zϕ +
y)〉 = p1e

−δτ1g(z+y(−τ1)) +p2e
−δτ2g(z+y(−τ2)). Recall that g(ε) = −ε2 +O(ε3) as ε → 0. 

If x0 ∈ C+ is a small perturbation of the trivial equilibrium, then z is also small and y = O(z2). 
We finally obtain the normal form for the delay differential equation (1.2) on the eigenspace 
spanned by ϕ:

(1 + τ1p1e
−δτ1 + τ2p2e

−δτ2)ż = −(p1e
−δτ1 + p2e

−δτ2)z2 + O(z3).

Since x0 ∈ C+, we have z(0) ≥ 0. The trivial equilibrium 0 of the above equation is locally 
asymptotically stable on R+, which implies that the trivial equilibrium 0 of the original model 
(1.2) is also locally asymptotically stable on C+.

When R0 ≤ 1, we construct the following Lyapunov functional L : C+ → R to show the 
global attractivity of the trivial equilibrium.

L(xt ) = xt (0) + p1e
−δτ1

0∫
−τ1

xt (s)e
−xt (s)ds + p2e

−δτ2

0∫
−τ2

xt (s)e
−xt (s)ds.

Calculating the derivative of L with respect to t along solutions of (1.2), we obtain

dL

dt
= (p1e

−δτ1 + p2e
−δτ2)x(t)e−x(t) − μx(t) ≤ μ(R0 − 1)x(t) ≤ 0.

Note that dL/dt = 0 if and only if x(t) = 0. By the Lyapunov-LaSalle Invariance Principle 
[12,20], we obtain the global attractiveness of the trivial equilibrium, which together with the 
local asymptotic result implies the global asymptotic stability of the trivial equilibrium if R0 ≤
1. �
3. A geometric criterion for Hopf bifurcation values in delay differential systems

In this section, we consider the case that τd = τ1 =: τ (namely, τ2 = 2τ1) and study the oc-
currence of possible Hopf bifurcation values when the time lag is increased. The characteristic 
equation for a general model with two delays (τ and 2τ ) and delay dependent parameters can be 
written as

�(λ, τ) := Pn(λ, τ ) + Qm(λ, τ)e−λτ + Sl(λ, τ )e−2λτ = 0, (3.1)

where

Pn(λ, τ ) =
n∑

k=0

pk(τ)λk, Qm(λ, τ) =
m∑

k=0

qk(τ )λk, and Sl(λ, τ ) =
l∑

k=0

sk(τ )λk.

Here, n, m, l ∈ N0, n > max{m, l}, τ ≥ 0, and pk(τ), qk(τ ), sk(τ ) are continuous and differen-
tiable functions of τ . Pn(λ, τ), Qm(λ, τ) and Sl(λ, τ) are analytic in λ and differentiable in τ . 
Denote
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A(λ, τ) = Re

(
−Qm(λ, τ) + Sl(λ, τ )e−λτ

Pn(λ, τ )

)
,

B(λ, τ ) = Im

(
−Qm(λ, τ) + Sl(λ, τ )e−λτ

Pn(λ, τ )

)
.

Then, the characteristic equation (3.1) is equivalent to

D(λ, τ) := A(λ, τ) + iB(λ, τ ) − eλτ = 0, (3.2)

where A(λ, τ) and B(λ, τ) are analytic in λ and differentiable in τ . We assume that

(i) (A(0, τ) − 1)2 + B(0, τ)2 	= 0 for any τ ≥ 0.
(ii) If λ = iω, ω ∈R, then (A(iω, τ) − 1)2 + B(iω, τ)2 	= 0 for any τ ≥ 0.

(iii) lim sup
|λ|→∞, Reλ≥0

A(λ, τ)2 + B(λ, τ)2 < 1 for any τ ≥ 0.

(iv) G̃(ω, τ) = A(iω, τ)2 +B(iω, τ)2 − 1 for each τ ≥ 0 has at most a finite number of real ze-
ros, and each positive zero ω(τ) of G̃(ω, τ) is continuous and differentiable in τ whenever 
it exists.

Assumption (i) implies that 0 is not a characteristic root of (3.2); (ii) ensures that the functions 
Sn(τ) with n ∈ N0 (to be defined below) are differentiable; (iii) ensures that there is no root 
entering the right (left) half of the complex plane from the left (right) half through infinities; 
(iv) ensures that there are only finite critical values for roots to cross the imaginary axis. This 
assumption is needed to compute the derivative of the imaginary roots with respect to τ .

If λ = ±iω(τ) with ω(τ) > 0 are a pair of imaginary roots of the characteristic equation (3.2), 
then sin(ωτ) = B(iω, τ), cos(ωτ) = A(iω, τ). Consequently,

G̃(ω, τ) = A(iω, τ)2 + B(iω, τ)2 − 1 = 0. (3.3)

Let I be the interval of τ on which the above equation has at least one positive root ω(τ). If I is 
empty, then there does not exist any Hopf bifurcation value. To study the geometric criterion of 
Hopf bifurcation values, we shall assume in the remaining of this section that I is nonempty. For 
any τ ∈ I , we define θ(τ ) ∈ [0, 2π) as the solution of

sin θ(τ ) = B(iω, τ), cos θ(τ ) = A(iω, τ).

Thus, for any τ ∈ I , we have ω(τ)τ = θ(τ ) + 2nπ for some n ∈N0. Define

Sn(τ) = ω(τ)τ − θ(τ ) − 2nπ, for τ ∈ I, n ∈N0.

We have the following geometric criterion for the verification of transversality condition for a 
general model with multiple delays.

Theorem 3.1. Assume that I is non-empty and that Sn(τ) has a positive root τ ∗ ∈ I for some 
n ∈ N0, then (3.2) has a pair of simple purely imaginary roots ±iω(τ ∗). Moreover, we have the 
following transversality condition:
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Sign
(
Reλ′(τ ∗)

) = Sign

(
−∂G̃

∂ω
(ω(τ ∗), τ ∗)

)
Sign S′

n(τ
∗).

Proof. Substituting λ(τ) into the characteristic equation (3.2) and taking the derivative with 
respective to τ , we obtain

Reλ′(τ ∗) = Re

(
−Aτ + iBτ − λeλτ

Aλ + iBλ − τeλτ

)
.

Note that iAλ = Aω, iBλ = Bω , eλτ = A + iB , and at τ = τ ∗, λ = iω. We obtain

Reλ′(τ ∗) = Re

(
− Aτ + iBτ − iω(A + iB)

−iAω + Bω − τ(A + iB)

)
= Re

(
− (Aτ + ωB) + i(Bτ − ωA)

(Bω − τA) − i(Aω + τB)

)
,

which implies that

Sign
(
Reλ′(τ ∗)

) = −Sign (AτBω − AωBτ + ω(BBω + AAω) − τ(AAτ + BBτ )) .

Since G̃ω = 2(AAω + BBω), G̃τ = 2(AAτ + BBτ ) and G̃ωω′ + G̃τ = 0, we have

Sign
(
Reλ′(τ ∗)

) = −Sign

(
AτBω − AωBτ + 1

2
ωG̃ω + 1

2
τω′G̃ω

)
. (3.4)

Differentiating sin θ(τ ) = B(iω, τ) with respect to τ gives θ ′ = (Bωω′ + Bτ )/A. Consequently,

GωAθ ′ = Gω(Bωω′ + Bτ ) = −GτBω + GωBτ

= −2(AAτ + BBτ )Bω + 2(AAω + BBω)Bτ = 2A(AωBτ − AτBω).

In view of (3.4) and S′
n = ω′τ + ω − θ ′, we obtain

Sign
(
Reλ′(τ ∗)

) = −Sign
(
τω′G̃ω + ωG̃ω − θ ′G̃ω

)
= Sign

(
−∂G̃

∂ω
(ω(τ ∗), τ ∗)

)
Sign S′

n(τ
∗).

This ends the proof. �
Remark 3.2. If Sl(λ, τ) = 0, then the characteristic equation (3.1) reduces to the characteris-
tic equation considered in [5]. Theorem 3.1 generalizes [5, Theorem 2.2] to delay differential 
systems with multiple delays and delay dependent parameters.
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4. Stability and Hopf bifurcation of the positive equilibrium

In this section, we always assume that R0 > 1, which ensures the instability of trivial equilib-
rium 0 and the existence of the unique positive equilibrium x∗ = lnR0. In the sequel, we consider 
a special case of (1.2) with τ2 = 2τ1, and we refer to the papers [28] for the justification of this 
constraint. For simplicity, we drop the subscript 1 in the following arguments, and rewrite the 
model (1.2) as

x′(t) = p1e
−δτ f (x(t − τ)) + p2e

−2δτ f (x(t − 2τ)) − μx(t). (4.1)

4.1. Stability of the positive equilibrium

We will investigate the stability of x∗ and identify the parameter range in which the time delay 
can destabilize x∗ and lead to Hopf bifurcations. Denote

τmax = 1

δ
ln

√
p2

1 + 4p2μ + p1

2μ
.

It is obvious that R0 > 1 if and only if p1+p2
μ

> 1 and τ ∈ [0, τmax). The characteristic equation 
associated with the linearization of (4.1) around x∗ is

λ + μ − a(τ)e−λτ − b(τ)e−2λτ = 0, (4.2)

where

a(τ) = p1e
−δτ e−x∗

(1 − x∗), b(τ ) = p2e
−2δτ e−x∗

(1 − x∗). (4.3)

Note that when τ = 0, the characteristic root of (4.2) is λ(0) = a(0) +b(0) −μ = −μ ln p1+p2
μ

<

0, which implies that x∗ is locally asymptotically stable. As τ increases, x∗ may lose its stability 
if and only if when some eigenvalues cross the imaginary axis to the right. In view of a(τ) +
b(τ) − μ = −μx∗ < 0, 0 is not an eigenvalue of the characteristic equation (4.2) for any τ ∈
[0, τmax). We thus consider the possibility of purely imaginary roots λ = ±iω with ω > 0 for 
τ > 0. Substituting λ = iω into (4.2) gives

eiωτ (iω + μ) − a(τ) − b(τ)e−iωτ = 0.

Separating the real and imaginary parts, we obtain

sin(ωτ) = −ω a(τ)

ω2 + μ2 − b2(τ )
, cos(ωτ) = a(τ) (μ + b(τ))

ω2 + μ2 − b2(τ )
. (4.4)

Squaring and adding the above two equations lead to

G(ω) := ω4 + (2μ2 − 2b2 − a2)ω2 + (μ + b)2(μ − b − a)(μ − b + a) = 0. (4.5)
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Thus, ±iω are a pair of pure imaginary eigenvalues of (4.2) only if G(ω) = 0. In view of μ −b−
a = μx∗ > 0, one can easily obtain the following lemma counting the number of simple positive 
roots of G.

Lemma 4.1. (i) G(ω) does not have any positive root if and only if

(H0) : either a2 < −8b(μ + b) or − a ≤ μ − b ≤ 2(μ + b) holds.

(ii) G(ω) has exactly one simple positive root if and only if

(H1) : either − a > μ − b or − a = μ − b < −4b holds.

(iii) G(ω) has two simple positive roots if and only if

(H2) : −a < μ − b < −4b and a2 > −8b(b + μ) hold.

Denote

τ = 1

δ
ln

√
p2

1 + 4p2eμ + p1

2eμ
< τmax.

We obtain the global stability result of x∗ by constructing a suitable Lyapunov functional.

Proposition 4.2. All solutions of model (4.1) with nontrivial initial conditions converge to x∗ if 
either

1 <
p1 + p2

μ
≤ e and τ ∈ [0, τmax), (4.6)

or

p1 + p2

μ
> e and τ ∈ [τ , τmax). (4.7)

Proof. If either (4.6) or (4.7) holds, then 0 < x∗ ≤ 1, which implies that a(τ) ≥ 0 and b(τ) ≥ 0. 
Since μ − a − b = μx∗ > 0, it is easily seen that −a ≤ μ − b ≤ 2(μ + b). Hence, (H0) is 
satisfied. It follows from Lemma 4.1 that G(z) does not have any positive root. Therefore, for 
any τ ∈ [0, τmax), the eigenvalues of (4.2) have negative real parts, which implies that x∗ is 
locally asymptotically stable. Recall from (2.2) that

lim sup
t→∞

x(t) ≤ p1e
−δτ + p2e

−2δτ

μe
= ex∗

e
≤ 1.

Let � := {φ ∈ C+ : ‖φ‖ ≤ 1, φ(0) > 0}. By an argument similar to the proof of [24, Lemma 3.1], 
we can prove that the region � is positively invariant and absorbing in C+ with respect to model 
(4.1). To establish the global stability of x∗, it suffices to show that x∗ is globally attractive in �. 
Define a Lyapunov functional V : � → R,
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V (xt ) = xt (0) − x∗ lnxt (0) + p1e
−δτ

0∫
−τ

(
f (xt (s)) − f (x∗) lnf (xt (s))

)
ds

+p2e
−2δτ

0∫
−2τ

(
f (xt (s)) − f (x∗) lnf (xt (s))

)
ds,

where f (x) = xe−x . Calculating the time derivative of V along the solution of (4.1) yields

dV

dt
= − μx(t) +

(
p1e

−δτ + p2e
−2δτ

)
f (x(t)) + μx∗

− p1e
−δτ x∗f (x(t − τ))

x(t)
− p2e

−2δτ x∗f (x(t − 2τ))

x(t)

+ f (x∗)
(

p1e
−δτ ln

f (x(t − τ))

f (x(t))
+ p2e

−2δτ ln
f (x(t − 2τ))

f (x(t))

)
.

Denote h(θ) = θ − 1 − ln θ for θ > 0. By using μx∗ = (p1e
−δτ + p2e

−2δτ )f (x∗), we obtain

dV

dt
= μx(t)(

f (x(t))

f (x∗)
− 1)(

x∗

x(t)
− f (x∗)

f (x(t))
) − μx∗h

(
x(t)f (x∗)
x∗f (x(t))

)
− p1e

−δτ f (x∗)h
(

x∗f (x(t − τ))

x(t)f (x∗)

)
− p2e

−2δτ f (x∗)h
(

x∗f (x(t − 2τ))

x(t)f (x∗)

)
.

Since f (x) is strictly increasing and concave down on [0, 1], we have f (x)/x > f ′(x) for all 
x ∈ (0, 1]. Hence, the function f (x)/x is strictly decreasing on (0, 1]. If x(t) ∈ (0, x∗), then 
f (x(t)) < f (x∗) and f (x(t))/x(t) > f (x∗)/x∗. If x(t) ∈ (x∗, 1], then f (x(t)) > f (x∗) and 
f (x(t))/x(t) < f (x∗)/x∗. Consequently, we obtain

(
f (x(t))

f (x∗)
− 1)(

x∗

x(t)
− f (x∗)

f (x(t))
) ≤ 0 for all x(t) ∈ (0,1],

and the equalities hold only if x(t) ≡ x∗. Note that h(θ) ≥ 0 for all θ > 0 and h(θ) = 0 if and 
only if θ = 1. Therefore, dV/dt ≤ 0 for all xt ∈ �, and dV/dt = 0 if and only if x(t) ≡ x∗. 
Thus the maximal compact invariant set in {dV/dt = 0} is the singleton {x∗}. By the LaSalle 
Invariance Principle [12], x∗ is globally attractive in �. Since � is absorbing in C+, the omega 
limit set ω(φ) ⊂ � for any initial value φ ∈ C+ with φ(0) > 0. Moreover, ω(φ) is internally 
chain transitive by [30, Lemma 1.2.1]. In view of [30, Theorem 1.2.1], x∗ is actually globally 
attractive in {φ ∈ C+ : φ(0) > 0}. Since x∗ is also locally asymptotically stable, we conclude that 
x∗ is globally asymptotically stable in {φ ∈ C+ : φ(0) > 0} provided that either (4.6) or (4.7)
holds. �
Proposition 4.3. The positive equilibrium x∗ is locally asymptotically stable, if either

(i)
p1 + p2 ≤ e2, τ ∈ [0, τmax); or (ii)

p1 + p2
> e2, τ ∈ [̂τ , τ )
μ μ
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holds, where ̂τ = 1
δ

ln

√
p2

1+4p2e
2μ+p1

2e2μ
< τ .

Proof. From Theorem 4.2, we obtain that x∗ is globally asymptotically stable if p1+p2
μ

≤ e

and τ ∈ [0, τmax). It suffices to prove that x∗ is locally asymptotically stable if either (i′) e <
p1+p2

μ
≤ e2, τ ∈ [0, τmax) or (ii) holds. Either (i′) or (ii) implies 1 < x∗ ≤ 2, which implies that 

a(τ) < 0 and b(τ) < 0. Denote α = 1/(1 −x∗) ≤ −1. It is readily seen that μ = αa(τ) +αb(τ) ≥
−a(τ) − b(τ). We claim that (H0) holds. If a(τ)2 < −8b(τ)[μ + b(τ)], then (H0) holds. If 
a(τ)2 ≥ −8b(τ)[μ + b(τ)], since μ + b(τ) ≥ −a(τ), we have −a(τ) ≥ −8b(τ). Consequently, 
μ ≥ −9b(τ) ≥ −3b(τ), which is the same as 2[μ + b(τ)] ≥ μ − b(τ). Moreover, we obtain 
μ − b(τ) ≥ μ ≥ −a(τ) − b(τ) ≥ −a(τ). Thus, (H0) still holds, which implies that x∗ is locally 
asymptotically stable if either (i) or (ii) holds by Lemma 4.1. �

Summarizing the above analysis, we obtain the following results on the stability of x∗.

Theorem 4.4.

(i) If 1 < p1+p2
μ

≤ e, then x∗ is globally asymptotically stable in X := {φ ∈ C+ : φ(0) > 0} for 
all τ ∈ [0, τmax).

(ii) If e <
p1+p2

μ
≤ e2, then x∗ is locally asymptotically stable for τ ∈ [0, τ) and globally 

asymptotically stable in X for τ ∈ [τ , τmax).
(iii) If p1+p2

μ
> e2, then x∗ is locally asymptotically stable for τ ∈ [̂τ , τ) and globally asymp-

totically stable in X for τ ∈ [τ , τmax).

4.2. Hopf bifurcation analyses

A necessary condition for the existence of Hopf bifurcation is that p1+p2
μ

> e2 and τ ∈ (0, ̂τ ). 
Throughout this subsection, we will conduct Hopf bifurcation analysis under this condition. It is 
readily seen that x∗ > 2, a(τ) < 0 and b(τ) < 0. If (H1) holds, then implicit function theorem 
implies the existence of a unique C1 function ω = ω+(τ ) such that G(ω+(τ )) = 0 for 0 < τ < τ̂ ; 
if (H2) holds, there exist two C1 functions ω±(τ ) such that G(ω±(τ )) = 0 for 0 < τ < τ̂ , where

ω±(τ ) =
√

a2 − 2μ2 + 2b2 ∓ a
√

a2 + 8b(b + μ)

2
. (4.8)

If ±iω+(τ ) (resp., ±iω−(τ )) is a pair of purely imaginary roots of (4.2), then ω+(τ ) (resp., 
ω−(τ )) is a solution to (4.4). For convenience, we denote by I1 (resp., I2) the subset of [0, ̂τ ]
such that (H1) (reps., (H2)) holds. Set I = I1 ∪ I2. For τ ∈ I , let θ±(τ ) ∈ [0, 2π) be the unique 
solution of

sin θ± = −a(τ)ω±
ω2± + μ2 − b2(τ )

, cos θ± = a(τ) (μ + b(τ))

ω2± + μ2 − b2(τ )
. (4.9)

Note that ω2++μ2 −b2(τ ) > 0 for all τ ∈ I , which implies sin θ+(τ ) > 0. Since G(b2(τ ) −μ2) =
−2a2(τ )b(τ )(μ + b(τ)) and G(b2(τ )−μ2)

2 2 2 > 0, we have cosθ−(τ ) < 0. Thus,

ω−+μ −b (τ)
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θ+(τ ) = arccos

(
a(τ)(μ + b(τ))

ω2+ + μ2 − b2(τ )

)
, θ−(τ ) = π − arcsin

−a(τ)ω−
ω2− + μ2 − b2(τ )

.

Now, we define

S±
n (τ ) = τω±(τ ) − θ±(τ ) − 2nπ (4.10)

for τ ∈ I and n ∈ N0. One can check that ±iω±(τ ∗) are a pair of purely imaginary eigenvalues 
of (4.2) if and only if S±

n (τ ∗) = 0 for some n ∈N0.

Lemma 4.5. For any n ∈N0, S+
n (τ ) > S+

n+1(τ ) for τ ∈ I , S−
n (τ ) > S−

n+1(τ ) and S+
n (τ ) > S−

n (τ )

for τ ∈ I2. Moreover, S+
0 (0) < 0.

Proof. For any n ∈N0, it is easily seen that S+
n (τ ) > S+

n+1(τ ) for τ ∈ I and S−
n (τ ) > S−

n+1(τ ) for 
τ ∈ I2. We claim that θ+(τ ) < θ−(τ ) for all τ ∈ I2. Assume to the contrary that θ+(τc) ≥ θ−(τc)

for some τc ∈ I2. Note that θ+(τ ) ∈ (0, π) and θ−(τ ) ∈ (π/2, 3π/2) by (4.9). It follows that 
π/2 < θ−(τc) ≤ θ+(τc) < π ; namely, cos θ+(τc) < 0 and sin θ−(τc) > 0. On account of ω+ > ω−
and (4.9), we obtain μ +b(τc) > 0 and ω2+ +μ2 −b2(τc) > ω2− +μ2 −b2(τc) > 0. It then follows 
from a(τc) < 0 that

cos θ+(τc) = a(τc) (μ + b(τc))

ω2+ + μ2 − b2(τc)
>

a(τc) (μ + b(τc))

ω2− + μ2 − b2(τc)
= cos θ−(τc),

which implies θ+(τc) < θ−(τc), a contradiction. Thus, we conclude that θ+(τ ) < θ−(τ ) for all 
τ ∈ I2. By the definition of S±

0 (τ ) and ω+ > ω−, we have

θ+
ω+

<
θ−
ω−

and S+
0 (τ ) > S−

0 (τ ) for τ ∈ I2.

Therefore, S+
n (τ ) > S−

n (τ ) for all τ ∈ I2 and n ∈N0. When τ = 0, the asymptotic stability of x∗
implies that S+

0 (0) < 0. This ends the proof. �
As we will see later, the signs of the following functions play an important role in bifurcation 

analysis.

Sign(μ + b) = Sign(ω2− + μ2 − b2) = Sign(sin θ−) = −Sign(cos θ+). (4.11)

In the following lemma, we investigate the sign of μ + b(τ).

Lemma 4.6. If p1+p2
μ

> e2+p1/p2 , then μ + b(τ) has a unique zero on (0, ̂τ), denoted by τ̆ . 
Moreover, μ + b(τ) < 0 for τ ∈ (0, τ̆ ) and μ + b(τ) > 0 for τ ∈ (τ̆ , ̂τ). On the other hand, if 
p1+p2

μ
≤ e2+p1/p2 , then μ + b(τ) > 0 for all τ ∈ (0, ̂τ).

Proof. By using μ = p1e
−δτ e−x∗ + p2e

−2δτ e−x∗
and the definition of b(τ) in (4.3), we obtain

μ + b(τ) = −e−δτ e−x∗
(

(ln
p1e

−δτ + p2e
−2δτ

− 2)p2e
−δτ − p1

)
.

μ
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Set g(τ) = (ln p1e
−δτ +p2e

−2δτ

μ
− 2)p2e

−δτ − p1. It is readily seen that g′(τ ) ≤ 0, g(0) =
(ln p1+p2

μ
− 2)p2 − p1, and g(̂τ ) = −p1 < 0. If p1+p2

μ
≤ e2+p1/p2 , then g(0) ≤ 0, which im-

plies that g(τ) < 0 and μ + b(τ) > 0 for all τ ∈ (0, ̂τ).
On the other hand, if p1+p2

μ
> e2+p1/p2 , then g(0) > 0. It follows from the intermediate value 

theorem that there exists a unique τ̆ ∈ (0, ̂τ) such that g(τ̆ ) = 0. Moreover, g(τ) > 0 for τ ∈
(0, τ̆ ) and g(τ) < 0 for τ ∈ (τ̆ , ̂τ). This completes the proof. �

Let λ(τ) = ξ(τ ) + iω(τ) be a root of the characteristic equation (4.2) near τ = τ ∗ satisfying 
ξ(τ ∗) = 0 and ω∗ = ω(τ ∗) > 0. It can be calculated that

A(iω, τ) = (a(τ ) + b(τ) cos(ωτ))μ − b(τ)ω sin(ωτ)

μ2 + ω2

and

B(iω, τ) = −ω(a(τ) + b(τ) cos(ωτ)) − b(τ)μ sin(ωτ)

μ2 + ω2 .

Consequently,

G̃(ω, τ) = a(τ)2 + b(τ)2 + 2a(τ)b(τ ) cos(ωτ) − ω2 − μ2

μ2 + ω2

= − G

(ω2 + μ2 − b2)(μ2 + ω2)
.

By using Theorem 3.1, we have the following transversality condition

Sign
(
Reλ′(τ ∗)

) = Sign

(
−∂G̃

∂ω
(ω(τ ∗), τ ∗)

)
Sign S′

n(τ
∗)

=Sign(ω(τ ∗)2 + μ2 − b(τ ∗)2) Sign

(
∂G

∂ω
(ω(τ ∗), τ ∗)

)
Sign S′

n(τ
∗),

where Sn(τ
∗) = ω(τ ∗)τ ∗ − θ(τ ∗) − 2nπ = 0 for some n ∈N0. It is easily seen that

ω+(τ ∗)2 + μ2 − b(τ ∗)2 > 0,
∂G

∂ω
(ω+(τ ∗), τ ∗) > 0 and

∂G

∂ω
(ω−(τ ∗), τ ∗) < 0.

Now, we are ready to provide a simple geometric method in the examination of the transversality 
condition.

Theorem 4.7. Assume that for some n ∈N0 the function S+
n (τ ) (resp., S−

n (τ )) has a positive root 
τ ∗ ∈ I , then a pair of simple purely imaginary roots ±iω+(τ ∗) (resp., ±iω−(τ ∗)) of (4.2) exist 
at τ = τ ∗, and
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Sign
(
Reλ′(τ ∗)

) =Sign
dS+

n (τ ∗)
dτ

,(
resp., Sign

(
Reλ′(τ ∗)

) = − Sign (ω−(τ ∗)2 + μ2 − b(τ ∗)2) Sign
dS−

n (τ ∗)
dτ

)
.

Moreover, this pair of simple purely imaginary roots ±iω+(τ ∗) (resp., ±iω−(τ ∗)) crosses the 
imaginary axis from left to right at τ = τ ∗ if Reλ′(τ ∗) > 0, and from right to left if Reλ′(τ ∗) < 0.

If sup
τ∈I

S+
0 (τ ) ≤ 0, then S+

0 (τ ) has either a zero of even multiplicity or no zero in I . Moreover, 

S−
0 (τ ) and S±

n (τ ) for all n ∈ N have no zero in I . Therefore, all eigenvalues remain to the left 
of the pure imaginary axis as τ increases from 0 to ̂τ ; namely, x∗ is locally asymptotically stable 
for all τ ∈ [0, ̂τ ].

If sup
τ∈I

S+
0 (τ ) > 0, it then follows from S0(0) < 0 that S+

0 (τ ) has at least one zero of odd 

multiplicity. In the remaining part of this subsection, we assume that p1+p2
μ

> e2 ≥
√

p2
1+p2

2

μ
, 

which guarantees that

2μ2 − 2b(τ)2 − a(τ)2 > 2(μ2 − b(τ)2 − a(τ)2)

> 2
(
μ2 − (p2

1 + p2
2)e

−2x∗
(1 − x∗)2

)
≥ 2

(
μ2 − p2

1 + p2
2

e4

)
≥ 0,

for τ ∈ (0, ̂τ ). Therefore, (H2) cannot be satisfied; namely, I2 = Ø. Moreover, (H1) is satisfied if 
and only if μ − b(τ) < −a(τ). Consequently,

I = I1 = {τ ∈ [0, τ̂ ] : μ − b(τ) < −a(τ)}.

Note that (μ − b(τ) + a(τ))eδτ+x∗ = p1(2 − x∗) + p2e
−δτ x∗ < 2p1 + (p2 − p1)x

∗. If p1 > p2, 
then [0, τb] ⊂ I1,

τb = 1

δ
ln

√
p2

1 + 4p2μβ + p1

μβ
< τ̂ , β = e

2p1
p1−p2 .

If I1 is nonempty, we denote τH = sup
τ∈I1

τ . Since μ − b(̂τ ) + a(̂τ ) = p2e
−2δτ̂ e−x∗

x∗ > 0, we 

have 0 < τH < τ̂ . As τ → τH , we have ω+(τ ) → 0. This, together with (4.9), implies that 
lim

τ→τ−
H

sin θ+(τ ) = 0 and lim
τ→τ−

H

cos θ+(τ ) = −1. Therefore, lim
τ→τ−

H

θ+(τ ) = π, lim
τ→τ−

H

S+
n (τ ) = −π

for n ∈ N0. In view of S+
0 (0) < 0, the function S+

0 (τ ) has at least two zeros in I provided that 
sup
τ∈I

S+
0 (τ ) > 0. For simplicity, we assume that

(B1) p1+p2
μ

> e2 ≥
√

p2
1+p2

2

μ
, sup

τ∈I

S+
0 (τ ) > 0, and S+

n (τ ) has at most two zeros (counting mul-

tiplicity).
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Under the assumption (B1), for any n ∈ N0, S+
n (τ ) has either zero or two simple zeros. 

Now, we collect all simple zeros of S+
n (τ ) with n ∈ N0 and list them in increasing order: 

0 < τ0 < τ1 < · · · < τ2K−1 < τ̂ (K ∈ N). It is easily seen that for each integer 0 ≤ i ≤ K − 1, 
we have dS+

m(τi)/dτ > 0 and dS+
m(τ2K−i−1)/dτ < 0 for some m ∈ N0. Therefore, the pair of 

simple conjugate purely imaginary eigenvalues ±iω+(τi) crosses the imaginary axis from left 
to right, and the pair of simple conjugate purely imaginary eigenvalues ±iω+(τ2K−i−1) crosses 
the imaginary axis from right to left. This implies that system (4.1) undergoes a Hopf bifurca-
tion at x∗ when τ = τj (0 ≤ j ≤ 2K − 1). Moreover, x∗ is locally asymptotically stable for 
τ ∈ [0, τ0) ∪ (τ2K−1, τmax), and unstable for τ ∈ (τ0, τ2K−1).

For each n = 0, · · · , K , S+
n (τ ) has two simple zeros τn and τ2K−n−1. Let Tn be the period of 

the periodic solution bifurcated at τn. Applying the Hopf bifurcation theorem for delay differen-
tial equations [15,12], we have

Tn = 2π

ω+(τn)
= 2πτk

θ+(τn) + 2nπ
,

T2K−n−1 = 2π

ω+(τ2K−n−1)
= 2πτ2K−n−1

θ+(τ2K−n−1) + 2nπ
.

If p1+p2
μ

≤ e2+p1/p2 , it follows from Lemma 4.6 and (4.11) that cos θ+(τj ) < 0. Since 

sin θ+(τj ) > 0, we obtain θ+(τj ) ∈ (π/2, π). Hence, 2τn

2n+1 < Tn < 4τn

4n+1 and 2τ2K−n−1
2n+1 <

T2K−n−1 <
4τ2K−n−1

4n+1 . To summarize, we have the following results on stability of x∗ and Hopf 
bifurcation.

Theorem 4.8. Consider model (4.1) with p1+p2
μ

> e2.

(i) If either I = ∅ or sup
τ∈I

S+
0 (τ ) ≤ 0, then x∗ is locally asymptotically stable for all τ ∈

[0, τmax).
(ii) If (B1) holds, then there exist exactly 2K local Hopf bifurcation values, namely, 0 <

τ0 < τ1 < · · · < τ2K−1 < τ̂ such that model (4.1) undergoes a Hopf bifurcation at x∗
when τ = τj for 0 ≤ j ≤ 2K − 1. x∗ is locally asymptotically stable for τ ∈ [0, τ0) ∪
(τ2K−1, τmax), and unstable for τ ∈ (τ0, τ2K−1). Moreover, if p1+p2

μ
≤ e2+p1/p2 , then for 

any n = 0, 1, · · · , K − 1, when τ is sufficiently close to τn (resp., τ2K−n−1), the pe-
riod Tn (resp., T2K−n−1) of periodic solution bifurcated at τn (resp., τ2K−n−1) satisfies 
Tn ∈ ( 2τn

2n+1 , 4τn

4n+1 ) (resp., T2K−n−1 ∈ (
2τ2K−n−1

2n+1 , 4τ2K−n−1
4n+1 )).

4.3. Stability switches of the positive equilibrium

In this subsection, we investigate the stability switches of x∗ based on the characteristic equa-

tion (4.2). Throughout this subsection, we assume that p1+p2
μ

> e2 ≥ 2p2
1

μp2
, which implies that 

p1 ≤ p2e
−δτ̂ . For τ ∈ (0, ̂τ), we have

(μ − b(τ) + a(τ))eδτ+x∗ = p1(2 − x∗) + p2e
−δτ x∗ > 2p1 + (p2e

−δτ̂ − p1)x
∗ > 0.

Hence, (H1) cannot be satisfied and I1 = Ø. Note that (μ + 3b(τ))eδτ+x∗
< p1 − 2p2e

−δτ̂ < 0. 
The condition (H2) is satisfied if and only if a(τ)2 > −8b(τ)(b(τ ) + μ). Consequently,
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I = I2 = {τ ∈ [0, τ̂ ] : a(τ)2 > −8b(τ)(b(τ ) + μ)}.
If I2 is nonempty, we denote τS = sup

τ∈I2

τ . Since a(̂τ )2 + 8b(̂τ )(b(̂τ ) + μ) = e−2δτ̂ e−4p1(p1 −
8p2e

−δτ̂ ) < 0, we have 0 < τS < τ̂ . For simplicity, we assume that

(B2) p1+p2
μ

> e2 ≥ 2p2
1

μp2
, sup

τ∈I

S+
0 (τ ) > 0, S+

0 (τS) < 0, and S±
n (τ ) has at most two zeros 

(counting multiplicity).

Assumption (B2) implies that for each n ∈ N0 the function S±
n (τ ) has either zero or two simple 

zeros. Now, we collect all simple zeros of S+
n (τ ) with n ∈ N0 and list them in increasing order: 

0 < τ 1
0 < τ 1

1 < · · · < τ 1
2K1−1 < τ̂ (K1 ∈ N). We also collect all simple zeros of S−

n (τ ) with 
n ∈ N0 and list them in increasing order: 0 < τ 2

0 < τ 2
1 < · · · < τ 2

2K2−1 < τ̂ (K2 ∈ N). Clearly, for 
each integers 0 ≤ i ≤ K1 − 1 and 0 ≤ j ≤ K2 − 1, we have dS+

m(τ 1
i )/dτ > 0, dS−

m(τ 2
j )/dτ > 0

and dS+
m(τ 1

2K−i−1)/dτ < 0, dS−
m(τ 2

2K2−j−1)/dτ < 0 for some m ∈ N0. From Lemma 4.5, we 

have S+
0 (τ ) > S−

0 (τ ), which implies that τ 1
0 < τ 2

0 and τ 1
2K1−1 > τ 2

2K2−1, that is

τ 1
0 = min

τ∈J
τ, τ 1

2K1−1 = max
τ∈J

τ, J = {τ 1
0 , τ 1

1 , · · · , τ 1
2K1−1, τ

2
0 , τ 2

1 , · · · , τ 2
2K2−1}.

If S−
0 < S+

1 , then S−
m = S−

0 − 2mπ < S+
1 − 2mπ = S+

m+1 for any m ∈ N0. Thus, system 
(4.1) undergoes a Hopf bifurcation at x∗ when τ ∈ J , and x∗ is locally asymptotically stable for 
τ ∈ [0, τ 1

0 ) ∪ (τ 1
2K1−1, τmax), and unstable for τ ∈ (τ 1

0 , τ 1
2K1−1).

If S−
0 = S+

1 , then S−
m = S+

m+1 for any m ∈N0, which implies that Hopf bifurcation occurs only 
when τ = τ 1

0 or τ = τ 1
2K1−1. For τ ∈ J − {τ 1

0 , τ 1
2K1−1}, there exist two pairs of conjugate purely 

imaginary eigenvalues, then system (4.1) undergoes a double Hopf bifurcation. Moreover, x∗ is 
locally asymptotically stable for τ ∈ [0, τ 1

0 ) ∪ (τ 1
2K1−1, τmax), and unstable for τ ∈ (τ 1

0 , τ 1
2K1−1).

If S−
0 > S+

1 , then S−
m > S+

m+1 for any m ∈N0. This yields

τ 1
0 < τ 2

0 < τ 1
1 < τ 2

1 < · · · < τ 2
m < τ 1

m+1 < τ 2
m+1 < τ 1

m+2

< · · · < τ 2
2K1−2 < τ 1

2K1−2 < τ 2
2K2−1 < τ 1

2K1−1.

Thus, system (4.1) undergoes a Hopf bifurcation at x∗ when τ ∈ J . If further, either (p1 +
p2)/μ < e2+p1/p2 or τ̆ < τ 1

0 , then μ + b(τ) > 0 for τ ∈ [τ 1
0 , ̂τ ]. By (4.11) and Theorem 4.7, 

we have Reλ′(τ 2
j ) < 0 and Reλ′(τ 2

2k2−j−1) > 0 for 0 ≤ j ≤ k2 − 1. Hence, all bifurcation val-

ues τ ∈ J are stability switches, that is, x∗ is locally asymptotically stable for τ ∈ [0, τ 1
0 ) ∪

(τ 2
0 , τ 1

1 ) ∪ · · · ∪ (τ 1
2K1−2, τ

2
2K2−1) ∪ (τ 1

2K1−1, τmax), and unstable for τ ∈ (τ 1
0 , τ 2

0 ) ∪ (τ 1
1 , τ 2

1 ) ∪
· · · ∪ (τ 2

2K2−2, τ
1
2K1−2) ∪ (τ 2

2K2−1, τ
1
2K1−1). On the other hand, if τ̆ > τ 1

0 , then μ + b(τ) < 0 for 
τ ∈ [τ 1

0 , ̂τ ]. By (4.11) and Theorem 4.7, we have Reλ′(τ 2
j ) > 0 and Reλ′(τ 2

2k2−j−1) < 0 for 0 ≤
j ≤ k2 − 1. This implies that x∗ is locally asymptotically stable for τ ∈ [0, τ 1

0 ) ∪ (τ 1
2K1−1, τmax), 

and unstable for τ ∈ (τ 1
0 , τ 1

2K1−1). To summarize, we have the following results on stability 
switches of x∗ and Hopf bifurcation.

Theorem 4.9. Consider model (4.1) with (B2). Let τ̆ be defined as in Lemma 4.6.
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(i) If S−
0 < S+

1 , then system (4.1) undergoes a Hopf bifurcation at x∗ when τ ∈ J . Moreover, 
x∗ is locally asymptotically stable for τ ∈ [0, τ 1

0 ) ∪ (τ 1
2K1−1, τmax), and unstable for τ ∈

(τ 1
0 , τ 1

2K1−1).

(ii) If S−
0 = S+

1 , then system (4.1) undergoes a Hopf bifurcation at x∗ when τ = τ 1
0 or τ =

τ 1
2K1−1, double Hopf bifurcation occurs at τ ∈ J − {τ 1

0 , τ 1
2K1−1}. Moreover, x∗ is locally 

asymptotically stable for τ ∈ [0, τ 1
0 ) ∪ (τ 1

2K1−1, τmax), and unstable for τ ∈ (τ 1
0 , τ 1

2K1−1).

(iii) If S−
0 > S+

1 , then system (4.1) undergoes a Hopf bifurcation at x∗ when τ ∈ J . If fur-
ther, either (p1 + p2)/μ < e2+p1/p2 or τ̆ < τ 1

0 , then all bifurcation values are sta-
bility switches, x∗ is locally asymptotically stable for τ ∈ [0, τ 1

0 ) ∪ (τ 2
0 , τ 1

1 ) ∪ · · · ∪
(τ 1

2K1−2, τ
2
2K2−1) ∪ (τ 1

2K1−1, τmax), and unstable for τ ∈ (τ 1
0 , τ 2

0 ) ∪ (τ 1
1 , τ 2

1 ) ∪· · ·∪ (τ 2
2K2−2,

τ 1
2K1−2) ∪ (τ 2

2K2−1, τ
1
2K1−1). On the other hand, if τ̆ > τ 1

0 , then x∗ is locally asymptotically 
stable for τ ∈ [0, τ 1

0 ) ∪ (τ 1
2K1−1, τmax), and unstable for τ ∈ (τ 1

0 , τ 1
2K1−1).

Remark 4.10. When p2 = 0 (no diapause), our model reduces to the Nicholson blowfly equation 
considered in [23], and Theorems 2.2 and 4.4 generalize the results in [23, Theorem 2.2] and 
[23, Theorem 3.8], respectively. In [23], it was proven that there is at most one pair of stability 
switches of the positive equilibrium if p2 = 0. However, this is no longer valid when p2 >

0. Theorem 4.9 indicates that diapause may induce multiple stability switches of the positive 
equilibrium.

5. Global Hopf bifurcation analyses

Theorems 4.8 and 4.9 give us sufficient conditions for the existence of periodic solutions 
bifurcated from x∗ when τ is near the local Hopf bifurcation values. In this section, we will 
discuss the global continuation of periodic solutions bifurcated from the bifurcation point as 
the bifurcation parameter τ varies. We shall use the global Hopf bifurcation theorem for delay 
differential equations [26] to show that model (4.1) admits periodic solutions globally for τ in a 
finite interval including the values that are not necessarily near the Hopf bifurcation values. Let 
z(t) = x(τ t). Model (4.1) can be rewritten as a general functional differential equation

z′(t) = F(zt , τ, T ), (t, τ, T ) ∈ R× Î ×R+, (5.1)

where Î = [0, ̂τ), zt (s) = z(t + s) for s ∈ [−2, 0], and zt ∈ Y := C([−2, 0], R+), and

F(zt , τ, T ) = p1e
−δτ τz(t − 1)e−z(t−1) + p2e

−2δτ τz(t − 2)e−z(t−2) − μτz(t). (5.2)

Restricting F on the subspace of Y which consists of all nonnegative constant functions, we 
obtain

F |R+×Î×R+= (p1e
−δτ + p2e

−2δτ )τze−z − μτz,

which is clearly twice continuously differentiable. Thus, the condition (A1) in [26] holds. By 
Theorem 2.2, the set of stationary solutions of model (5.1) is given by

E(F ) = {(0, τ, T ) : τ ∈ Î , T ∈R+} ∪ {(x∗, τ, T ) : τ ∈ Î , T ∈R+}.
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For any stationary solution (̃z, τ, T ) ∈ E(F ), the characteristic function is

�(̃z,τ,T )(λ) = λ − DF (̃z, τ, T )(eλ·)

= λ + μτ − p1τe−δτ (1 − z̃)e−̃ze−λ − p2τe−2δτ (1 − z̃)e−̃ze−2λ.

If R0 > 1, then DF (̃z, τ, T ) 	= 0 for any (̃z, τ, T ) ∈ E(F ), which implies that 0 cannot be an 
eigenvalue of any stationary solution of (5.1). Hence, the condition (A2) in [26] holds. Moreover, 
it follows from (5.2) that the smoothness condition (A3) in [26] is satisfied. Theorem 4.8 implies 
that if p1+p2

μ
> e2 and either (B1) or (B2) holds, then for each integer 0 ≤ j ≤ 2K − 1 the sta-

tionary solution (x∗, τj , 2π/(ωj τj )) is an isolated centre of (5.1), where ωj = ω+(τj ) is defined 
in (4.8). Furthermore, the set of all positive integers m such that im(2π/T̃ ) with T̃ = 2π/(ωj τj )

is a purely imaginary characteristic value contains only one element {1}. By Lemma 4.7, the 
crossing number γ1(x

∗, τj , 2π/(ωj τj )) at each isolated centre is

γ1(x
∗, τj ,

2π

ωjτj

) = −Sign
(
Reλ′(τj )

) =
{

−1, 0 ≤ j ≤ K − 1,

1, K ≤ j ≤ 2K − 1.
(5.3)

Thus, the condition (A4) in [26] holds. We define a closed subset �(F) of Y × Î ×R+ by

�(F) = Cl{(z, τ, T ) ∈ Y × Î ×R+ : z is a nontrivial T-periodic solution}.

For each integer 0 ≤ j ≤ 2K − 1, we denote by C(x∗, τj , 2π/(ωj τj )) the connected compo-
nent of (x∗, τj , 2π/(ωj τj )) in �(F). Theorem 4.8 guarantees that C(x∗, τj , 2π/(ωj τj )) is a 
nonempty subset of �(F).

To find the interval of τ in which periodic solutions exist, we shall further investigate the 
properties of periodic solutions of (5.1).

Lemma 5.1. Let z(t) be a nonconstant and nonnegative periodic solution of (5.1). There exist 
constants ε > 0 and M = p1+p2

μe
such that for any t ∈ R, ε ≤ z(t) ≤ M .

Proof. It follows from the proof of (2.2) that lim sup
t→∞

z(t) ≤ p1e
−δτ +p2e

−2δτ

μe
≤ M . Since z(t) is 

periodic, we have z(t) ≤ M for all t ≥ 0. Let zmin := min
t∈R

z(t) = z(t2) > 0 for some t2 > 0. It 

follows from z′(t2) = 0 that

μz(t2) = p1e
−δτ z(t2 − 1)e−z(t2−1) + p2e

−2δτ z(t2 − 2)e−z(t2−2). (5.4)

We claim that either z(t2 − 1) ≥ x∗ or z(t2 − 2) ≥ x∗. Otherwise,

μz(t2) > p1e
−δτ z(t2)e

−x∗ + p2e
−2δτ z(t2)e

−x∗ = μz(t2),

a contradiction. Let ε = min{p1e
−δτ , p2e

−2δτ }x∗e−M/μ > 0. It then follows from (5.4), 
max{z(t2 − 1), z(t2 − 2)} ≥ x∗ and z(t) ≤ M that

μz(t2) ≥ min{p1e
−δτ ,p2e

−2δτ }e−M [z(t2 − 1) + z(t2 − 2)] ≥ με.
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Therefore, z(t2) ≥ ε > 0. This ends the proof. �
Lemma 5.2. If p1+p2

μ
> e2, then (5.1) has no nonconstant and nonnegative periodic solution of 

period 2.

Proof. Assume to the contrary that z(t) is a nonconstant and nonnegative periodic solution of 
(5.1) with period 2. Define u1(t) = z(t) and u2(t) = z(t −1). Then (u1(t), u2(t)) is a nonconstant 
and nonnegative periodic solution of the following plane system

u′
1(t) = p1e

−δτ τu2e
−u2 + p2e

−2δτ τu1e
−u1 − μτu1(t) := P(u1, u2),

u′
2(t) = p1e

−δτ τu1e
−u1 + p2e

−2δτ τu2e
−u2 − μτu2(t) := Q(u1, u2).

(5.5)

Set H = 1
u1u2

, α1 = p1e
−δτ and α2 = p2e

−2δτ , then we have

∂(HP )

∂u1
+ ∂(HQ)

∂u2
= −τH

(
α1(

u2e
−u2

u1
+ u1e

−u1

u2
) + α2(u1e

−u1 + u2e
−u2)

)
< 0.

Dulac-Bendixson’s criterion [20] indicates that system (5.5) has no periodic solutions. This is a 
contradiction and the proof is complete. �

Our next lemma excludes the existence of periodic solutions of (5.1) of period 4 by using the 
general Bendixson’s criterion developed by Li and Muldowney [16].

Lemma 5.3. Assume that p1+p2
μ

> e2, p1
μ

< 2
3σe2 and p2

μ
< 1

3σe2, where σ > 1 is the largest 

root of ye3−ye = 1. Then model (5.1) has no nonconstant and nonnegative periodic solutions of 
period 4.

Proof. First, we list some facts which will be used frequently throughout the proof. Note that 
σ > 1 and f (σe) = σe1−σe = e−2. It is easy to verify that σ < 1.5 and f (1 − 2σ/3) > e−2. For 
τ ∈ [0, ̂τ ], we have

p1e
−δτ + p2e

−2δτ

μ
≥ p1e

−δτ̂ + p2e
−2δτ̂

μ
= e2,

and

p1e
−δτ + p2e

−2δτ

μ
≤ p1e

−δτ

μ
+ p2

μ
≤ p1e

−δτ

μ
+ 1

3
σe2.

Thus, p1e
−δτ /μ > (1 − σ/3)e2. A similar argument shows that p2e

−2δτ /μ > (1 − 2σ/3)e2.
Next, we prove the nonexistence of 4-periodic solution by contradiction. Suppose that z(t) is 

a nonconstant and nonnegative 4-periodic solution of (5.1). It is readily seen from Lemma 5.1
that z(t) ≤ (p1 + p2)/(μe) ≤ σe. Denote m = min

t∈R
z(t) = z(t2) for some t2 > 0. We have

m = p1e
−δτ

z(t2 − 1)e−z(t2−1) + p2e
−2δτ

z(t2 − 2)e−z(t2−2).

μ μ
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Similar as in the proof of Lemma 5.1, we have either z(t2 − 1) ≥ x∗ or z(t2 − 2) ≥ x∗. If z(t2 −
1) ≥ x∗, then f (z(t2 − 1)) > f (σe) = e−2 and

m >
p1e

−δτ

μ
f (z(t2 − 1)) >

p1e
−δτ

μ
e−2 > 1 − σ/3.

If z(t2 − 2) ≥ x∗, then f (z(t2 − 2)) > f (σe) = e−2 and

m >
p2e

−2δτ

μ
f (z(t2 − 2)) >

p2e
−2δτ

μ
e−2 > 1 − 2σ/3.

In either case, we have f (m) ≥ f (1 − 2σ/3) > e−2, which implies f (z(t)) > e−2 for all t ≥ 0. 
Consequently,

m >
p1e

−δτ + p2e
−2δτ

μ
e−2 ≥ 1.

Now, we let ui(t) = z(t + 1 − i) with i = 1, 2, 3, 4. Then (u1(t), u2(t), u3(t), u4(t)) is a 
nonconstant and nonnegative periodic solution of the following system:

u′
1(t) = p1e

−δτ τu2e
−u2 + p2e

−2δτ τu3e
−u3 − μτu1(t),

u′
2(t) = p1e

−δτ τu3e
−u3 + p2e

−2δτ τu4e
−u4 − μτu2(t),

u′
3(t) = p1e

−δτ τu4e
−u4 + p2e

−2δτ τu1e
−u1 − μτu3(t),

u′
4(t) = p1e

−δτ τu1e
−u1 + p2e

−2δτ τu2e
−u2 − μτu4(t).

(5.6)

Denote � = {u ∈ R4 : 1 ≤ ui ≤ σe, i = 1, 2, 3, 4}. It suffices to establish the nonexistence of 
nonconstant and nonnegative periodic solutions of (5.6) in �. The Jacobian matrix J (u) of (5.6)
is given by

J (u) = −μτ

⎛⎜⎜⎝
1 β1g(u2) β2g(u3) 0
0 1 β1g(u3) β2g(u4)

β2g(u1) 0 1 β1g(u4)

β1g(u1) β2g(u2) 0 1

⎞⎟⎟⎠ ,

where β1 = p1e
−δτ /μ, β2 = p2e

−2δτ /μ and g(x) = (x − 1)e−x . The second additive compound 
matrix [16] of J (u), denoted by J [2](u), is given as

μτ

⎛⎜⎜⎜⎜⎜⎜⎝
−2 −β1g(u3) −β2g(u4) β2g(u3) 0 0
0 −2 −β1g(u4) −β1g(u2) 0 0
−β2g(u2) 0 −2 0 −β1g(u2) −β2g(u3)

β2g(u1) 0 0 −2 −β1g(u4) β2g(u4)

β1g(u1) 0 0 0 −2 −β1g(u3)

0 β1g(u1) −β2g(u1) β2g(u2) 0 −2

⎞⎟⎟⎟⎟⎟⎟⎠ .

The Lozinskiĭ measure [6] with respect to the l∞ norm in R6, denoted by ζ(J [2](u)), is
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max{−2 + β1|g(u3)| + β2(|g(u4)| + |g(u3)|), −2 + β1(|g(u4)| + |g(u2)|),
− 2 + (β1 + β2)|g(u2)| + β2|g(u3)|, −2 + β2|g(u1)| + (β1 + β2)|g(u4)|,
− 2 + β1(|g(u1)| + |g(u3)|), −2 + (β1 + β2)|g(u1)| + β2|g(u2)|}μτ.

For any u ∈ [1, σe], |g(u)| = g(u) ≤ g(2) = e−2. This together with β1 < p1/μ < 2σe2/3 < e2

and β2 < p2/μ < σe2/3 < e2/2 implies that the Lozinskiĭ measure ζ(J [2](u)) < 0. By [16, 
Corollary 3.5], system (5.6) has no nonconstant and nonnegative periodic solution in �, which 
leads to a contradiction. This completes the proof. �

Note that the technical conditions p1/μ < 2σe2/3 and p2/μ < σe2/3 are used to prove 
nonexistence of 4-periodic solution. As we see later in the numerical exploration, the result 
of Lemma 5.3 seems to be true when these conditions are violated. We thus conjecture that 
4-periodic solution does not exist if p1 + p2 > μe2.

For any integer 0 ≤ j ≤ 2K − 1, Lemma 5.1 implies the projection of C(x∗, τj , 2π/(ωj τj ))

onto Y is bounded. Lemmas 5.2 and 5.3 show that model (5.1) has no periodic solution with 
period 2 or 4, and thus has no periodic solution with period 2/(2n + 1) or 4/(4n + 1) for any 
n ∈ N0. It follows from Theorem 4.8(ii) that the period Tn of a periodic solution located on the 
connected component C(x∗, τn, 2π/(ωnτn)) satisfies

2

2n + 1
< Tn <

4

4n + 1
(5.7)

for any integer 0 ≤ n ≤ K − 1. Similarly, 2
2n+1 < T2K−n−1 < 4

4n+1 . Hence, the projection of 
C(x∗, τj , 2π/(ωj τj )) onto the T -space is bounded. Note that τ ∈ [0, ̂τ), which is a bounded 
interval. Therefore, C(x∗, τj , 2π/(ωj τj )) is bounded in Y × Î ×R+.

The periodic solutions are all bounded away from zero by Lemma 5.1. Thus there is no need to 
consider the boundary equilibrium. We define E1(F ) = {(x∗, τ, T ), (τ, T ) ∈ Î ×R+}. It then fol-
lows from the global bifurcation theorem ([26, Theorem 3.3]) that E := C(x∗, τj , 2π/(ωj τj )) ∩
E1(F ) is finite and 

∑
(̃z,τ,T )∈E γ1(̃z, τ, T ) = 0.

Summarizing the discussion above, and further using an argument similar to [23, Theorem 
4.6], we arrive at our conclusion concerning the global existence of periodic solutions and the 
properties of the global Hopf branches.

Theorem 5.4. Assume that e2+p1/p2 ≥ p1+p2
μ

> e2, p1
μ

< 2
3σe2, p2

μ
< 1

3σe2 and either (B1) or 
(B2) holds, for j = 0, 1, . . . , 2K − 1, denote τj as a simple zero of S+

nj
(τ ) or S−

nj
(τ ) for some 

nj ∈ N0. Then we have the following results on model (5.1).

(i) All global Hopf branches C(x∗, τj , 2π/(ωj τj )) are bounded.
(ii) For each n ≤ K − 1, the two global Hopf branches C(x∗, τn, 2π/(ωnτn)) and C(x∗,

τ2K−n−1,2π/(ω2K−n−1τ2K−n−1)) coincide with each other, and thus connect a pair of 
Hopf bifurcation values τn and τ2K−n−1. Moreover, for each τ ∈ (τn, τ2K−n−1), model 
(5.1) has at least one periodic solution with period in (2/(2n + 1), 4/(4n + 1)).

(iii) C(x∗, τj , 2π/(ωj τj )) ∩ C(x∗, τr , 2π/(ωrτr )) = ∅ when r 	= 2K − j − 1.

Remark 5.5. In this section, we have always assumed that μ +b(τ) > 0 for all τ ∈ (0, ̂τ), which, 
according to (4.11), guarantees that θ±(τ ) lie in (π/2, π). This condition is essential in finding a 
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uniform upper bound for the periods of periodic solutions in a global Hopf branch. If μ +b(τ) <
0 for some τ , then θ±(τ ) may lie in (0, π/2), and we will not be able to find an upper bound for 
the periods of periodic solutions. However, as we see later in the numerical exploration, we still 
observe and thus conjecture that the global Hopf branches are bounded.

The global bifurcation result of our model is quite different from that for (1.1). It was proven 
in [27] that all global Hopf branches in (1.1) are unbounded. Since the coefficients in our model 
are delay dependent, and the trivial equilibrium 0 is globally asymptotically stable for large τ , 
the periodic solutions may only exist for τ in a bounded domain. The biological interpretation is 
that the mortality during development or diapause will inhibit the reproduction of tick population 
if the delay is too large.

It was proven in [27] that (1.1) does not have 3τ -periodic solutions. For our model (1.2), we 
have to prove that 4τ -periodic solutions (and consequently, 2τ -periodic solutions) do not exist, 
which together with (5.7) implies that the periods of all periodic solutions are uniformly bounded 
from below and above.

6. Numerical exploration

In this section, we conduct some numerical simulations by using the following parameter 
values elaborated from the literature [14,21,22,29]: δ = 0.7 per year, p2 = 400 per year, p1 = 30
per year, and μ = 20 per year. The delay τ has the unit in years. It is easy to calculate τ̆ ≈ 0.71 <
τ̂ ≈ 0.81 < τ ≈ 1.59 < τmax ≈ 2.40. Clearly, there exists a unique positive equilibrium x∗ if and 
only if τ ≤ τmax . By Theorem 4.9, there are six bifurcation values:

τ 1
0 ≈ 0.03 < τ 2

0 ≈ 0.16 < τ 1
1 ≈ 0.30 < τ 1

2 ≈ 0.60 < τ 2
1 ≈ 0.65 < τ 1

3 ≈ 0.71,

as shown in Fig. 1. Correspondingly, ω+(τ 1
0 ) ≈ 1.09, ω−(τ 2

0 ) ≈ 4.22, ω+(τ 1
1 ) ≈ 7.45, ω+(τ 1

2 ) ≈
7.62, ω−(τ 2

1 ) ≈ 4.49, and ω+(τ 1
3 ) ≈ 1.58. Note that τ̆ > τ 1

0 . Theorem 4.9 implies that x∗ is 
locally asymptotically stable for τ ∈ [0, τ 1

0 ) ∪ (τ 1
3 , τmax), and unstable for τ ∈ (τ 1

0 , τ 1
3 ). This is 

also confirmed in the bifurcation diagram in Fig. 2. As τ increases and crosses the first bifurcation 
point τ 1

0 , the positive equilibrium x∗ becomes unstable, and a stable periodic solution bifurcates 
from τ 1

0 . When τ crosses the last bifurcation point τ 1
3 , there exists no more periodic solutions 

and the positive equilibrium x∗ regains its stability. If τ keeps increasing and approaches τmax , 
then the positive equilibrium vanishes to the trivial equilibrium; see Fig. 2.

Fig. 3 plots the three global Hopf branches C(x∗, τ 1
k , 2π/(ω+(τ 1

k )τ 1
k )) and C(x∗, τ 2

0 , 2π/

(ω−(τ 2
0 )τ 2

0 )) with k = 0, 1, by using the Matlab package DDE-BIFTOOL developed by Engel-
borghs et al. [8]. We observe that all branches are bounded and connect a pair of Hopf bifurcation 
values. Note that we have proved boundedness of global Hopf branches under the condition 
μ + b(τ) > 0 for all τ ∈ [0, ̂τ ]. For the parameter values chosen in our simulation, we observe 
that μ +b(τ) is not always positive. Our simulation results suggest that the global Hopf branches 
should still be bounded even if μ + b(τ) is negative for some τ .

It is noted that periodic solutions exist for τ ∈ (τ 1
0 , τ 1

3 ). When τ ∈ (τ 2
0 , τ 2

1 ), there are more than 
two periodic solutions. By calculating the Floquet multipliers (see Fig. 4(a)), we observe that the 
periodic solutions on the first global Hopf branch is always stable (i.e., Floquet multiplier is equal 
to one), the periodic solutions on the third global Hopf branch is always unstable (i.e., Floquet 
multiplier is greater than one). Recall that in Fig. 2, we also observe that there exists a stable 
periodic solution when τ ∈ (τ 1, τ 1), which coincides with the blue curve in Fig. 4(a). On the 
0 3
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Fig. 1. The graphs of S±
n (τ ) (n = 0,1), which give bifurcation values.

Fig. 2. Bifurcation diagram of (4.1) with τ as the bifurcation parameter.

Fig. 3. All global Hopf branches of model (4.1).
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Fig. 4. (a) The principal Floquet multipliers of periodic solutions on all Hopf branches; (b) two coexisting stable periodic 
solutions for τ = 0.47. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this 
article.)

second global Hopf branch, the periodic solutions switch stability twice as τ increases from τ 2
0

to τ 2
1 ; namely, they are unstable for small or large τ , but stable for τ near 0.47; see Fig. 4(a).

It is interesting to note that there are two stable periodic solutions when τ is near 0.47. In 
Fig. 4(b), we fix τ = 0.47 and solve the delay differential equation with two different initial 
conditions. After sufficient long time, the solutions are close to two different periodic orbits.

7. Summary and discussion

In this paper, we proposed a tick diapause model with two delays and delay dependent pa-
rameters. Global stability analysis of equilibria and global Hopf bifurcation analysis on periodic 
solutions were conducted for the proposed delay differential equation. We constructed suitable 
Lyapunov functionals to obtain global asymptotic stability of equilibria under certain conditions. 
We provided a simple proof of the geometric criterion for a general delay differential system 
with two delays and delay dependent parameters. This criterion generalizes the classical result 
for the single delay case in [5]. We also used the generalized Bendixson’s criterion in [16] to 
prove nonexistence of 4-periodic solution for the scaled delay differential equation. We apply 
the global Hopf bifurcation theory in [26] to prove that the global Hopf branches are bounded 
and connected by two bifurcation values. Our theoretical analysis demonstrated that diapause 
may induce multiple stability switches of the positive equilibrium. This phenomenon was not 
observed in the single delay case, say, in the Nicholson’s blowflies model [23] or stage-structured 
differential equations with unimodal feedback [24]. Numerical exploration suggests another phe-
nomenon that a periodic solution is stable whenever the positive equilibrium is unstable, and two 
stable periodic solutions may coexist.

There are some interesting problems worth further investigations. For instance, it is possible 
that the two delays are not proportional, but differ by a constant. In this case, one should set 
τ2 = τ1 + c, where c is a constant, and treat τ1 as the bifurcation parameter. A more general case 
is when these two delays are not related and a more complicated Hopf bifurcation analysis with 
two bifurcation parameters is required. In the proof of boundedness for global Hopf branches, 
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we had to exclude the existence of 4-periodic solutions for the scaled delay differential equation. 
To prove this, we imposed a technical condition that both p1/(2μ) and p2/μ are bounded by 
σe2/3, where σ > 1 is the largest positive root of f (σe) = e−2. From numerical exploration, it 
is conjectured that this technical condition should be released; namely, 4-periodic solution does 
not exist as long as (p1 + p2)/μ > e2.
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