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Abstract

We investigate a partially degenerate reaction–diffusion system in a periodic habitat and prove the exis-
tence and stability of pulsating waves. More specifically, we show that if the wave speed is greater than the 
spreading speed, then there exists a pulsating wave connecting the stable positive periodic steady state to 
the unstable trivial one. Further, this pulsating wave attracts exponentially in time all solutions with initial 
functions in its bounded neighborhood with respect to a weighted maximum norm.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Pulsating waves (also called spatially periodic traveling waves in the literature) were first 
introduced in [11] to study the invasion of a new migrating species in a heterogeneous environ-
ment. The definitions of pulsating waves vary but are equivalent in previous studies (see, e.g., 
[3,10,18]). Here we adopt the following generalized definition.
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Definition 1.1. For a reaction–diffusion system of general type:

∂tu =A(x)u +F(x,u), t ≥ 0, x ∈R
n,u = (u1, · · · , um), (1.1)

where A = (A1, · · · , Am) is a linear diffusion operator (involving local differential operators 
or/and nonlocal integral operators) and F = (F1, · · · , Fm) is a nonlinear operator, assume that 
A and F are periodic in x with the same period. A solution u(t, x) is called a pulsating wave
connecting two periodic steady states p−(x) and p+(x) with speed c and direction e provided 
that

(i) u(t, x) has the special form u(t, x) = �(x · e − ct, x), where e is a unit vector in Rn and 
�(s, x) is periodic in the second variable x with the same period as A and F .

(ii) As s → ±∞, �(s, x) tends to p±(x), respectively, uniformly in x ∈R
n.

Note that when m = 1 (i.e., the scalar case) and the diffusion term A(x)u has the divergent 
form ∇ · (A(x)∇u), system (1.1) was investigated by Berestycki, Hamel and Roques [1,2], where 
they proved the existence and uniqueness of stationary solution and analyzed asymptotic behav-
ior of solutions. Furthermore, they obtained the existence of pulsating waves and a variational 
characterization of the minimal wave speed.

A nonlocal and time-delayed population model in a periodic habitat was proposed by Weng 
and Zhao [16], and the authors studied the spatial dynamics of the model system, the global 
attractiveness of spatially periodic steady state, and the existence of spreading speeds and pul-
sating waves. This work was further extended by Ouyang and Ou [8] to obtain the stability and 
convergence rate of pulsating waves.

For the general case (m ≥ 1), if the solution maps associated with (1.1) are compact with re-
spect to the compact open topology, or more weakly, if the solution maps are α-contractions with 
respect to the Kuratowski measure of non-compactness, then one may use the abstract theory de-
veloped by Weinberger [14,15] and Liang and Zhao [5,6] to show that a pulsating wave exists if 
and only if the wave speed c is no less than the spreading speed. A natural question is whether 
this result (i.e., the spreading speed coincides with the minimal wave speed) can be extended to 
the non-compact case. For the special case of scalar equations (m = 1) with a nonlocal integral 
diffusion operator, the authors of [3,10] gave an affirmative answer. Our purpose is to study a 
class of partially-degenerate systems, namely, m > 1 and some components of the diffusion op-
erator A = (A1, · · · , Am) vanish. For simplicity, we consider the following partially degenerate 
reaction–diffusion system in a periodic and one-dimensional habitat:

∂tu1(t, x) = D1(x)∂xxu1 + D2(x)∂xu1 + f (x,u1, u2),

∂tu2(t, x) = g(x,u1, u2). (1.2)

This system is motivated by the benthic–pelagic population model proposed by Lutscher, Lewis 
and McCauley [7], where u1 and u2 are the densities of individuals in the pelagic and benthic 
zones, respectively. Note that the benthic individuals u2 do not have any diffusion term, which 
leads to the non-compactness of solution maps. So we may not expect to apply the abstract results 
in [5,6,15] to study the spatial dynamics of system (1.2). Recently, Wu, Xiao and Zhao [17]
established the existence of spreading speeds by combining the theory of monotone dynamical 
systems and the ideas in [9]. As a consequence, we can easily conclude that (1.2) admits no 
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pulsating wave if the wave speed is less than the spreading speed. It remains an open problem 
whether the pulsating waves exist for the case where the wave speed is larger than the spreading 
speed. In this paper, we will give an assertive answer by constructing suitable upper and lower 
solutions and appealing to the comparison principle developed by Thieme [12]. We should point 
out that this method of upper and lower solutions was used earlier in [10] to prove the existence 
of pulsating waves for a scalar nonlocal dispersal equation.

Another main contribution of this paper is the stability of pulsating waves. To be specific, we 
will show that if the initial function is within a bounded distance from a certain pulsating wave 
with respect to a weighted maximum norm, then the solution will converge to the pulsating wave 
exponentially in time. A similar result for the scalar nonlocal dispersal equation was obtained 
in [8,10]. Although the case of scalar equations has been studied intensively in the existing litera-
ture (see, e.g., [1–3,8,10,16] and references therein), not much is known about pulsating waves of 
partially degenerate parabolic systems. The main difficulties come from the loss of compactness 
for solution maps and interaction between different components in a higher dimensional system. 
Our work provides insights on how to obtain the existence and stability of pulsating waves for 
the general high-dimensional reaction–diffusion systems without the compactness condition.

The rest of this paper is organized as follows. In Section 2, we present some basic assumptions 
and preliminary results. Our main theorems on the existence and stability of pulsating waves are 
stated and proved in Section 3.

2. Preliminaries

Throughout this paper, we make the following assumptions:

(A1) The functions D1, D2, f and g are periodic in x with the same period and Hölder contin-
uous in x of order ν ∈ (0, 1). Moreover, D1(x) > 0 for all x ∈ R, which implies that the 
differential operator D1(x)∂xx + D2(x)∂x is uniformly elliptic.

(A2) The functions f and g are second-order differentiable with respect to u1 and u2, 
f (x, 0, 0) ≡ 0, and g(x, 0, 0) ≡ 0.

(A3) There exists a positive vector M = (M1, M2) ∈ R
2 such that f (x, M) ≤ 0 and 

g(x, M) ≤ 0 for all x ∈R.
(A4) ∂u2f (x, u1, u2) > 0 and ∂u1g(x, u1, u2) > 0 for all x ∈ R and u ∈ [0, M], where 

[0, M] := [0, M1] × [0, M2].
(A5) The reaction term F(x, u) := (f (x, u), g(x, u)) is strictly subhomogeneous on [0, M] in 

the sense that F(x, νu) > νF(x, u) for all x ∈ R, ν ∈ (0, 1) and u ∈ (0, M1] × (0, M2].

Without loss of generality, we may scale the period of functions D1, D2, f and g to be 1. In the 
followings, we may not mention it each time but all the periodic functions should have the same 
period 1.

Definition 2.1. A solution u(t, x) of (1.2) is called a (rightward) pulsating wave connecting a 
positive periodic state p(x) to the trivial solution 0 with speed c > 0 provided that

(i) u(t, x) = �(x−ct, x) and �(s, x) is periodic in the second variable x, namely, �(s, x+1) =
�(s, x).

(ii) lim
s→−∞(�(s, x) − p(x)) = 0 and lim

s→∞�(s, x) = 0 uniformly in x ∈R.
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If the functions D1, D2, f and g are independent of x (i.e., in the homogeneous case), then 
the pulsating wave u(t, x) = �(x − ct) is reduced to the classical traveling wave and the system 
(1.2) admits the property of translation invariance, namely, u(t, x + z) is also a solution of the 
system (1.2) for any z ∈ R. However, in the heterogeneous case, we shall consider the following 
shifted system (with z ∈ R):

∂tu1(t, x) = D1(x + z)∂xxu1 + D2(x + z)∂xu1 + f (x + z,u1, u2),

∂tu2(t, x) = g(x + z,u1, u2). (2.1)

Note that if u(t, x) is a solution of (1.2), then u(t, x + z) is a solution of (2.1). We introduce the 
Green function G(t, x, y) (cf. [17]) associated with the operator D1(x)∂xx + D2(x)∂x − K on 
the whole real line, where K > 0 is a sufficiently large constant such that K + ∂u1f (x, u1, u2)

and K + ∂u2g(x, u1, u2) are positive for any x ∈ R and u ∈ [0, M]. Therefore, the solution map 
of the linear equation

∂tu1 = D1(x + z)∂xxu1 + D2(x + z)∂xu1 − Ku1 (2.2)

has the following integral representation

[l1(t)u0
1](x; z) =

∫
R

G(t, x + z, y)u0
1(y)dy. (2.3)

For convenience, we denote

f̃ (x,u1, u2) := f (x,u1, u2) + Ku1,

g̃(x, u1, u2) := g(x,u1, u2) + Ku2. (2.4)

Then system (2.1) can be transformed to the following integral form:

u1(t, x;u0, z) = [l1(t)u0
1](x; z)

+
t∫

0

[l1(t − s)f̃ (· + z,u1(s, ·;u0, z), u2(s, ·;u0, z))](x; z)ds,

u2(t, x;u0, z) = e−Ktu0
2(x)

+
t∫

0

e−K(t−s)g̃(x + z,u1(s, x;u0, z), u2(s, x;u0, z))ds. (2.5)

Given any Borel measurable and bounded function u0 = (u0
1, u

0
2), the functions l1(t)u0

1 and 
e−Ktu0

2 are also Borel measurable and bounded. By Banach’s fixed point theorem, there exists 
a unique Borel measurable solution u = u(t, x; u0, z) of the above integral equation on [0, ∞)

such that u is bounded on [0, T ] for any T ≥ 0 (see [12, Theorem 2.2]). Such u is called a 
mild solution of (2.1). Furthermore, if u0 is continuous in x, then u becomes a classical solution 
of (2.1). For simplicity, we denote u(t, x; u0) := u(t, x; u0, 0) when z = 0.
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Given a bounded Borel measurable function u0, we can define the lower (upper) solution of 
the integral equation (2.5) if the equalities are replaced by inequalities ≤ (≥). By the argument 
similar to [12, Comparison Lemma 3.2], we can establish the following comparison principle.

Lemma 2.2. Let w be a lower solution and v be an upper solution of (2.5) corresponding to a 
bounded Borel measurable function u0. If w(0, x) ≤ v(0, x) for all x ∈ R, then w(t, x) ≤ v(t, x)

for all t ≥ 0 and x ∈R.

A weaker version of the above lemma can be stated as follows. Let w(t, x) be a lower solution 
of (2.5) with initial value w(0, x), and v(t, x) be an upper solution of (2.5) with initial value 
v(0, x). If w(0, x) ≤ v(0, x) for all x ∈ R, then w(t, x) ≤ v(t, x) for all t ≥ 0 and x ∈ R. To 
prove this, we only need to choose u0(x) to be either w(0, x) or v(0, x) and then apply the above 
lemma. Since this weak version will be frequently used in the following context, it is convenient 
to simply say that u(t, x) is a lower (or upper) solution without specifying the initial value if the 
initial value is the same as u(0, x).

For convenience, let

fi(x) = ∂ui
f (x,0,0), gi(x) = ∂ui

g(x,0,0), i = 1,2.

We then consider the following periodic eigenvalue problem:

λφ1(x) = D1(x)φ′′
1 (x) + [D2(x) − 2μD1(x)]φ′

1(x)

+ [μ2D1(x) − μD2(x) + f1(x)]φ1(x) + f2(x)φ2(x),

λφ2(x) = g1(x)φ1(x) + g2(x)φ2(x). (2.6)

The following two results come from [17, Theorems 2.2–2.4].

Proposition 2.3. Assume that either of the following conditions is satisfied:

(i) There exist x0 ∈R and δ0 > 0 such that g2(x) = maxx∈R g2(x) for all x ∈ (x0 − δ0, x0 + δ0).
(ii) maxx∈R g2(x) < λ∗, where λ∗ is the principal eigenvalue of the eigenvalue problem with the 

Dirichlet boundary condition:

D1(x)ξ ′′
1 (x) + D0(x)ξ ′

1(x) + f1(x)ξ1(x) = λξ1(x), x ∈ (0,1),

ξ1(0) = ξ1(1) = 0.

Then for any parameter μ ∈R, the periodic eigenvalue problem (2.6) has a geometrically simple 
eigenvalue λ(μ) and a strongly positive and periodic eigenfunction φ(x) = (φ1(x), φ2(x)).

To obtain a threshold type result for system (1.2), we need the following assumption:

(A6) For any parameter μ ∈R, the periodic eigenvalue problem (2.6) has a geometrically simple 
eigenvalue λ(μ) and a strongly positive and periodic eigenfunction φ(x) = (φ1(x), φ2(x)).

Proposition 2.4. Assume that (A6) holds. Then the following statements are valid:
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(i) If λ(0) < 0, then for any periodic initial value u0 ∈ [0, M], we have limt→∞ u(t, x; u0) = 0
uniformly for x ∈ R.

(ii) If λ(0) > 0, then there exists a unique positive periodic stationary solution p ∈ [0, M] such 
that for any nonzero periodic initial value u0 ∈ [0, M], we have limt→∞ u(t, x; u0) = p(x)

uniformly for x ∈ R.

From now on, we will always assume that (A6) and the following assumption are satisfied:

(A7) The trivial solution 0 is linearly unstable, namely, λ(0) > 0.

Define

C∗+ := {u = (u1, u2) ∈ C(R,R2) : 0 ≤ ui(x) < min
x∈R pi(x),

lim inf
x→−∞ui(x) > 0, ui(x) = 0, ∀ x > x1 for some x1 ∈R}.

According to [17], the rightward spreading speed is given by

c∗+ = sup{c : ∀u0 ∈ C∗+, lim
t→∞,x≤ct

(u(t, x;u0) − p(x)) = 0}

= inf{c : ∀u0 ∈ C∗+, lim
t→∞,x≥ct

u(t, x;u0) = 0}

= inf
μ>0

λ(μ)

μ
,

and the following statements hold true:

(a) If c > c∗+, then for every u0 ∈ C∗+, we have

lim
t→∞,x≥ct

u(t, x;u0, z) = 0 uniformly for z ∈ R.

(b) If c < c∗+, then for every u0 ∈ C∗+, we have

lim
t→∞,x≤ct

(u(t, x;u0, z) − p(x + z)) = 0 uniformly for z ∈R.

We remark that the rightward spreading speed c∗+ may not be necessarily positive due to the 
presence of advection term D2(x). However, if we define the leftward spreading speed c∗− in a 
similar manner, the sum of two spreading speeds should be positive, namely, c∗+ + c∗− > 0; see 
[17, Theorem 4.1]. It is also noted from [17, Theorem 2.5] that λ(μ) is convex, λ(μ)/μ → ∞ as 
μ → 0 or μ → ∞, and hence, c∗+ = λ(μ∗)/μ∗ for some finite μ∗ > 0.

A straightforward application of the above spreading result is the non-existence of the pulsat-
ing wave with c < c∗+.

Proposition 2.5. If c < c∗+, then there is no pulsating wave connecting p(x) to 0 with speed c.
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Proof. We proceed by contradiction. Assume u(t, x) = �(x − ct, x) is a pulsating wave with 
speed c < c∗+. Choose a nonzero number c1 ∈ (c, c∗+) and u0 ∈ C∗+ such that u0(x) < �(x, x). 
By the spreading result, we obtain

lim
t→∞,x≤c1t

(u(t, x;u0) − p(x)) = 0.

Especially, there exist δ > 0 and T > 0 such that u(t, x; u0) > δ for all t > T and x ≤ c1t . Then 
the comparison principle implies that �(x − ct, x) > δ for all t > T and x ≤ c1t . Given any 
x0 ∈ R, we choose xn = x0 + sign(c1)n and tn = xn/c1 for large integers n > 0. Note that � is 
periodic with respect to the second variable. We have �(xn − ctn, x0) = �(xn − ctn, xn) > δ. 
On the other hand, since c < c1, it follows that as n → ∞, xn − ctn = (c1 − c)tn → ∞ and 
�(xn − ctn, x0) → 0. This leads to a contradiction. �

We denote by p = (p1, p2) the unique positive stationary solution of (1.2) and study the 
linearized eigenvalue problem at p(x):

λ̃ψ1(x) = D1(x)ψ ′′
1 (x) + D2(x)ψ ′

1(x) + F1(x)ψ1(x) + F2(x)ψ2(x),

λ̃ψ2(x) = G1(x)ψ1(x) + G2(x)ψ2(x), (2.7)

where

Fi := ∂ui
f (x,u1, u2)

∣∣
u=p

, Gi := ∂ui
g(x,u1, u2)

∣∣
u=p

, i = 1,2.

The following proposition comes from [17, Theorems 2.2 and 2.3].

Proposition 2.6. Assume that either of the following conditions is satisfied:

(i) There exist x0 ∈R and δ0 > 0 such that G2(x) = maxx∈R G2(x) for all x ∈ (x0 −δ0, x0 +δ0).
(ii) maxx∈R G2(x) < λ∗, where λ∗ is the principal eigenvalue of the eigenvalue problem with 

the Dirichlet boundary condition:

D1(x)ξ ′′
1 (x) + D0(x)ξ ′

1(x) + F1(x)ξ1(x) = λξ1(x), x ∈ (0,1),

ξ1(0) = ξ1(1) = 0.

Then the periodic eigenvalue problem (2.7) has a geometrically simple eigenvalue λ̃ and a 
strongly positive and periodic eigenfunction ψ(x) = (ψ1(x), ψ2(x)).

To obtain the local asymptotic stability of the periodic solution p(x), we need the following 
assumptions:

(A8) The periodic eigenvalue problem (2.7) has a geometrically simple eigenvalue λ̃ ∈ R and a 
strongly positive and periodic eigenfunction ψ(x) = (ψ1(x), ψ2(x)).

(A9) Let p = (p1, p2) be the unique positive periodic stationary solution of (1.2). Assume that
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f (x,p1(x),p2(x)) ≥ F1(x)p1(x) + F2(x)p2(x),

g(x,p1(x),p2(x)) ≥ G1(x)p1(x) + G2(x)p2(x),

where Fi := ∂ui
f (x, u1, u2)

∣∣
u=p

and Gi := ∂ui
g(x, u1, u2)

∣∣
u=p

, i = 1, 2, and one of these 
two inequalities is strict for some x ∈ R.

Proposition 2.7. Assume that (A8) and (A9) hold. Then the principle eigenvalue of the linearized 
problem (2.7) is negative, namely, λ̃ < 0.

Proof. Note that p = (p1, p2) is a stationary positive solution of (1.2), namely,

0 = D1(x)p′′
1 (x) + D2(x)p′

1(x) + f (x,p1(x),p2(x)),

0 = g(x,p1(x),p2(x)).

The second equation together with (A9) implies that 0 ≥ G1p1 + G2p2. Especially, G2 < 0 on 
account of the positivity of G1, p1 and p2. The first equation implies that 0 is the principle 
eigenvalue (with p1 being the eigenfunction) of the following problem:

λϕ = D1(x)ϕ′′(x) + D2(x)ϕ′(x) + f (x,p1(x),p2(x))

p1(x)
ϕ(x).

In view of (2.7), it follows that λ̃ is the principle eigenvalue (with ψ1 being the eigenfunction) of 
the following problem:

λϕ(x) = D1(x)ϕ′′(x) + D2(x)ϕ′(x) +
(

F1(x) + F2(x)G1(x)

λ̃ − G2(x)

)
ϕ(x).

We further claim that λ̃ < 0. Assuming λ̃ ≥ 0, we see from 0 ≥ G1p1 + G2p2 and (A9) that

F1(x) + F2(x)G1(x)

λ̃ − G2(x)
≤ F1(x) + F2(x)p2(x)

p1(x)
≤ f (x,p1(x),p2(x))

p1(x)
,

and one of the above two inequalities is strict for some x ∈ R. By the monotonicity of the prin-
cipal eigenvalue with respect to the weight function, we then obtain that λ̃ < 0, a contradiction. 
Therefore, we have λ̃ < 0. �
3. Main results

In this section, we always assume that (A1)–(A9) are satisfied. Recall that the rightward 
spreading speed is c∗+ = infμ>0 λ(μ)/μ. We can choose μ∗ > 0 such that c∗+ = λ(μ∗)/μ∗. Given 
c > c∗+, since λ(0) > 0, there exists 0 < μ < μ∗ such that c = λ(μ)/μ. We use φ = (φ1, φ2) to 
denote the strongly positive and periodic eigenfunction associated with the eigenvalue λ = λ(μ).

Next, we choose με = μ + ε > μ sufficiently close to μ such that με < min{2μ, μ∗}. Let 
λε = λ(με) and φε = (φε

1, φε
2) be the principal eigenvalue and eigenfunction of the problem (2.6)

with parameter με . Since λ(μ) is convex in μ (see [17, Theorem 2.5]), we obtain μεc − λε > 0. 
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Moreover, we denote by p = (p1, p2) the unique positive stationary solution of (1.2). Without 
loss of generality, we assume that φ < p.

Motivated by [10], we define

u(t, x;T , z) := min{e−μ(x+cT −ct)φ(x + z),p(x + z)},

u(t, x;T , z) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max{e−μ(x+cT −ct)φ(x + z) − Me−με(x+cT −ct)φε(x + z), σφ0(x + z)},
x + cT − ct < KM,

e−μ(x+cT −ct)φ(x + z) − Me−με(x+cT −ct)φε(x + z),

x + cT − ct ≥ KM,

where M > 0, KM > 0 and σ > 0 are to be determined, and φ0 is the principal eigenfunction 
corresponding to the problem (2.6) with parameter μ = 0. Furthermore, we require

λ(0) > max{f1(x)σφ0
1(x) + f2(x)σφ0

2(x) − f (x,σφ0
1(x), σφ0

2(x))

σφ0
1(x)

,

g1(x)σφ0
1(x) + g2(x)σφ0

2(x) − g(x,σφ0
1(x), σφ0

2(x))

σφ0
2(x)

}, ∀x ∈R.

Note that λ(0) > 0 and, by Taylor’s expansion, the right-hand side converges to zero uniformly 
for x ∈R as σ → 0+. Thus, the above inequality is satisfied as long as σ > 0 is small enough. In 
the following, we verify that for sufficiently large M > 0, KM > 0 and sufficiently small σ > 0, 
u and u formulate an ordered pair of upper and lower solutions of the shifted system (2.1).

Proposition 3.1. Let Cf (resp. Cg) be the maximum of the second derivatives of f (resp. g) with 
respect to u = (u1, u2) for all x ∈ R, 0 ≤ u1 ≤ maxφ1 and 0 ≤ u2 ≤ maxφ2. We first choose 
M > 0 such that

M > max
x∈R

φ1(x)

φε
1(x)

+ max
x∈R

Cf [φ2
1(x) + φ2

2(x)]
(μεc − λε)φε

1(x)

+ max
x∈R

φ2(x)

φε
2(x)

+ max
x∈R

Cg[φ2
1(x) + φ2

2(x)]
(μεc − λε)φε

2(x)
.

When M > 0 is determined, we choose KM > 0 so large that

e−μKM min
x∈R φ(x) − Me−μεKM max

x∈R
φε(x) > 0.

Finally, we choose σ > 0 to be sufficiently small such that

σ max
x∈R

φ0(x) < e−μKM min
x∈R φ(x) − Me−μεKM max

x∈R
φ(x),

and

σ maxφ0(x) < minp(x).

x∈R x∈R
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With such choices of M , KM and σ , the functions u and u formulate an ordered pair (i.e., u > u) 
of upper and lower solutions of the shifted system (2.1).

Proof. For convenience, we denote

ϕ(t, x;T , z) := e−μ(x+cT −ct)φ(x + z),

ϕε(t, x;T , z) := e−με(x+cT −ct)φε(x + z),

and ϕ̃ := ϕ − Mϕε . We then have u(t, x; T , z) = min{ϕ(t, x; T , z), p(x + z)} and

u(t, x;T , z) =
{

max{ϕ̃(t, x;T , z), σφ0(x + z)}, x + cT − ct < KM,

ϕ̃(t, x;T , z), x + cT − ct ≥ KM.

By the choice of M , we have φ(x) − Mφε(x) < 0 for all x ∈ R. It then follows that 
ϕ̃(t, x; T , z) < 0 and u(t, x; T , z) = σφ0(x + z) for all x + cT − ct ≤ 0. Since σφ0(x) <
e−μKM φ(x) for all x ∈ R, we obtain σφ0(x + z) < ϕ(t, x; T , z) for all x + cT − ct < KM . 
From the choice of KM , we see that

e−μKM min
x∈R φ(x) − Me−μεKM max

x∈R
φε(x) > 0.

Thus, ϕ̃(t, x; T , z) > 0 for all x + cT − ct ≥ KM . By the choice of σ , we have

σ max
x∈R

φ0(x) < e−μKM min
x∈R φ(x) − Me−μεKM max

x∈R
φε(x).

Thus, for x + cT − ct near KM , ϕ̃(t, x; T , z) > σφ0(x + z), and consequently, u(t, x; T , z) =
ϕ̃(t, x; T , z). Especially, u is continuous at x + cT − ct = KM . Since the maximum function of 
two continuous function is still continuous, it follows that u is continuous everywhere. Moreover, 
for any x, z, T ∈R, u is differentiable in t except at finitely many points. We intend to show that 
for any t where u is differentiable,

∂tu1 − (D1∂xxu1 + D2∂xu1) ≤ f (x,u1, u2),

∂tu2 ≤ g(x,u1, u2).

By the definition, we have either (i) u = ϕ̃; or (ii) u = σφ0; or (iii) u = (u1, u2) = (ϕ̃1, σφ0
2); or 

(iv) u = (u1, u2) = (σφ0
1 , ϕ̃2).

(i) If u = ϕ̃ > 0, then x + cT − ct > 0 and 0 < ϕ̃ < ϕ. Since φ and φε are the principal 
eigenfunctions corresponding to the problem (2.6) with parameters μ and με , respectively, we 
have

∂tϕ1 − (D1∂xxϕ1 + D2∂xϕ1) = f1ϕ1 + f2ϕ2,

∂tϕ2 = g1ϕ1 + g2ϕ2,

and
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∂t ϕ̃1 − (D1∂xxϕ̃1 + D2∂xϕ̃1) = −M(μεc − λε)ϕε
1 + f1ϕ̃1 + f2ϕ̃2,

∂t ϕ̃2 = −M(μεc − λε)ϕε
2 + g1ϕ̃1 + g2ϕ̃2.

In view of με < 2μ, x + cT − ct > 0, 0 < ϕ̃ < ϕ and the choice of M , we obtain

f1ϕ̃1 + f2ϕ̃2 − f (x, ϕ̃1, ϕ̃2) ≤ Cf (ϕ̃2
1 + ϕ̃2

2) ≤ Cf (ϕ2
1 + ϕ2

2) ≤ M(μεc − λε)ϕε
1,

g1ϕ̃1 + g2ϕ̃2 − g(x, ϕ̃1, ϕ̃2) ≤ Cg(ϕ̃
2
1 + ϕ̃2

2) ≤ Cg(ϕ
2
1 + ϕ2

2) ≤ M(μεc − λε)ϕε
2 .

It then follows that

∂t ϕ̃1 − (D1∂xxϕ̃1 + D2∂xϕ̃1) ≤ f (x, ϕ̃1, ϕ̃2),

∂t ϕ̃2 ≤ g(x, ϕ̃1, ϕ̃2).

Replacing ϕ̃ by u in the above inequalities gives our desired inequalities for the first case where 
u = ϕ̃.

(ii) If u = σφ0, since φ0 is the principal eigenfunction corresponding to the problem (2.6)
with parameter μ = 0, we have

∂t (σφ0
1) − [D1∂xx(σφ0

1) + D2∂x(σφ0
1)] = [f1 − λ(0)](σφ0

1) + f2(σφ0
2)

≤ f (x,σφ0
1 , σφ0

2),

∂t (σφ0
2) = g1(σφ0

1) + [g2 − λ(0)](σφ0
2)

≤ g(x,σφ0
1 , σφ0

2).

Recall that we have chosen σ > 0 so small that the above two inequalities are satisfied. Replacing 
σφ0 by u in the above inequalities gives our desired inequalities for the second case where 
u = σφ0.

(iii) If u = (u1, u2) = (ϕ̃1, σφ0
2), we have ϕ̃2 < σφ0

2 , 0 < ϕ̃1 < ϕ1, 0 < x + cT − ct < KM , 
and σφ0 < ϕ. By (A4), we obtain f2 > 0 and f2ϕ̃2 < f2σφ0

2 . It follows from 0 < σφ0
2 < ϕ2, 

0 < ϕ̃1 < ϕ1, με < 2μ, x + cT − ct > 0 and the choice of M that

f1ϕ̃1 + f2ϕ̃2 − f (x, ϕ̃1, σφ0
2) ≤ Cf [ϕ̃2

1 + (σφ0
2)2] ≤ Cf (ϕ2

1 + ϕ2
2) ≤ M(μεc − λε)ϕε

1 .

Consequently,

∂t ϕ̃1 − (D1∂xxϕ̃1 + D2∂xϕ̃1) ≤ f (x, ϕ̃1, σφ0
2).

Moreover, since ∂u1g(x, u1, u2) > 0 by (A4), it follows that

∂t (σφ0
2) ≤ g(x,σφ0

1, σφ0
2) ≤ g(x, ϕ̃1, σφ0

2).

Replacing ϕ̃1 by u1 and σφ0
2 by u2 in the above inequalities gives our desired inequalities for the 

third case where u = (u1, u2) = (ϕ̃1, σφ0).
2
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(iv) If u = (u1, u2) = (σφ0
1 , ϕ̃2), we have ϕ̃1 < σφ0

1 , 0 < ϕ̃2 < ϕ2, 0 < x + cT − ct < KM , 
and σφ0 < ϕ. By (A4), we obtain g1 > 0 and g1ϕ̃1 < g1σφ0

1 . It follows from 0 < σφ0
1 < ϕ1, 

0 < ϕ̃2 < ϕ2, με < 2μ, x + cT − ct > 0 and the choice of M that

g1ϕ̃1 + g2ϕ̃2 − g(x,σφ0
1 , ϕ̃2) ≤ Cg[(σφ0

1)2 + ϕ̃2
2 ] ≤ Cg(ϕ

2
1 + ϕ2

2) ≤ M(μεc − λε)ϕε
2 .

Consequently,

∂t ϕ̃2 ≤ g(x,σφ0
1 , ϕ̃2).

Moreover, since ∂u2f (x, u1, u2) > 0 by (A4), it follows that

∂t (σφ0
1) − [D1∂xx(σφ0

1) + D2∂x(σφ0
1)] ≤ f (x,σφ0

1 , σφ0
2) ≤ f (x,σφ0

1 , ϕ̃2).

Replacing σφ0
1 by u1 and ϕ̃2 by u2 in the above inequalities gives our desired inequalities for the 

fourth case where u = (u1, u2) = (σφ0
1 , ϕ̃2).

Based on the above arguments, we see that for any t where u is differentiable,

∂tu1 − (D1∂xxu1 + D2∂xu1) ≤ f (x,u1, u2),

∂tu2 ≤ g(x,u1, u2).

At the point t where u is not differentiable, the left-hand derivative of u is less than the right-hand 
derivative of u because u is defined as the maximum of two differentiable functions. It is readily 
seen from (2.2)–(2.5) that u is a lower solution of (2.1).

On the other hand, since u = min{ϕ, p}, ∂u2f > 0, ∂u1g > 0 and F = (f, g) is strictly sub-
homogeneous, we have f1ϕ1 + f2ϕ2 − f (x,u1, u2) ≥ 0 and g1ϕ1 + g2ϕ2 − g(x,u1, u2) ≥ 0. 
Therefore, it follows from (2.2)–(2.5) that u is an upper solution of (2.1).

Finally, we prove that u < u. By the choice of M > 0, we obtain

φ(x) − Mφε(x) < 0, x ∈R.

Consequently, for all x + cT − ct ≤ 0, ϕ̃(t, x; T , z) < 0 and u = σφ0. Since u = ϕ̃ for x + cT −
ct ≥ KM and KM > 0, we only need to prove that ϕ̃ ≤ u for x + cT − ct > 0 and σφ0 ≤ u for 
x + cT − ct < KM .

If x + cT − ct < KM , then the choice of σ implies that

σφ0(x + z) ≤ σ max
x∈R

φ0(x) < min
x∈R p(x) ≤ p(x + z),

and

σφ0(x + z) ≤ σ max
x∈R

φ0(x) < e−μKM min
x∈R φ(x) ≤ e−μ(x+cT −ct)φ(x + z).

Thus, σφ0(x + z) < u(t, x; T , z).
If x + cT − ct > 0, then we have

ϕ̃(t, x;T , z) < ϕ(t, x;T , z) < φ(x + z) < p(x + z).

Here we have used the fact that φ < p. Thus, ϕ̃(t, x; T , z) < u(t, x; T , z).
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Combining the above two cases, we obtain u(t, x; T , z) < u(t, x; T , z) for all
t, x, T , z ∈ R. �

Recall that u(t, x; u0, z) is the unique mild solution of the shifted system (2.1) with a 
given bounded Borel measurable function u0(x), namely, u satisfies the integral equation (2.5). 
The following result shows that u(t + τ, x;u(0, ·; τ, z), z) is increasing in τ > 0 and u(t +
τ, x;u(0, ·; τ, z), z) is decreasing in τ > 0.

Lemma 3.2. Given any z ∈ R and τ2 > τ1 > 0, we have for any t > −τ1 and x ∈ R,

u(t + τ2, x;u(0, ·; τ2, z), z) ≥ u(t + τ1, x;u(0, ·; τ1, z), z),

u(t + τ2, x;u(0, ·; τ2, z), z) ≤ u(t + τ1, x;u(0, ·; τ1, z), z).

Proof. By the comparison principle, we have

u(τ2 − τ1, x;u(0, ·; τ2, z), z) ≥ u(τ2 − τ1, x; τ2, z) = u(0, x; τ1, z).

A further application of the comparison principle yields

u(t + τ2, x;u(0, ·; τ2, z), z) = u(t + τ1, x;u(τ2 − τ1, ·;u(0, ·; τ2, z)), z)

≥ u(t + τ1, x;u(0, ·; τ1, z), z).

This gives the first inequality. Similarly, we obtain by the comparison principle

u(τ2 − τ1, x;u(0, ·; τ2, z), z) ≤ u(τ2 − τ1, x; τ2, z) = u(0, x; τ1, z).

A further application of the comparison principle yields

u(t + τ2, x;u(0, ·; τ2, z), z) = u(t + τ1, x;u(τ2 − τ1, ·;u(0, ·; τ2, z)), z)

≤ u(t + τ1, x;u(0, ·; τ1, z), z).

This gives the second inequality. �
By monotonicity, we can define

U(t, x; z) := lim
τ→∞u(t + τ, x;u(0, ·; τ, z), z), (3.1)

U(t, x; z) := lim
τ→∞u(t + τ, x;u(0, ·; τ, z), z), (3.2)

and

�(x, z) := U(0, x; z) = lim
τ→∞u(τ, x;u(0, ·; τ, z), z), (3.3)

�(x, z) := U(0, x; z) = lim u(τ, x;u(0, ·; τ, z), z). (3.4)

τ→∞
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It is easy to see that �(x, z) and �(x, z) are periodic in z. In the following proposition, we 
prove that U(t, x; z) (resp. U(t, x; z)) is a mild solution of (2.1) with initial value �(x, z) (resp. 
�(x, z)).

Proposition 3.3. Let U, U, �, and � be defined as in (3.1)–(3.4). Then we have U(t, x; z) =
u(t, x;�(·, z), z) and U(t, x; z) = u(t, x;�(·, z), z).
Proof. Note that

u1(t + τ, x;u(0, ·; τ, z), z) = [l1(t + τ)u(0, ·; τ, z)](x; z) +
t+τ∫
0

[l1(t + τ − s)

f̃ (· + z,u1(s, ·;u(0, ·; τ, z), z), u2(s, ·;u(0, ·; τ, z), z))](x; z)ds,

and

u1(τ, x;u(0, ·; τ, z), z) = [l1(τ )u(0, ·; τ, z)](x; z)

+
τ∫

0

[l1(τ − s)f̃ (· + z,u1(s, ·;u(0, ·; τ, z), z), u2(s, ·;u(0, ·; τ, z), z))](x; z)ds.

It follows from the semigroup property of l1(t) that

u1(t + τ, x;u(0, ·; τ, z), z) = [l1(t)u1(τ, ·;u(0, ·; τ, z), z)](x; z) +
t∫

0

[l1(t − s)

f̃ (· + z,u1(s + τ, ·;u(0, ·; τ, z), z), u2(s + τ, ·;u(0, ·; τ, z), z))](x; z)ds.

Taking τ → ∞ and making use of the dominated convergence theorem, we obtain

U1(t, x; z) = [l1(t)U1(0, ·; z)](x; z)

+
t∫

0

[l1(t − s)f̃ (· + z,U1(s, ·; z),U2(s, ·; z))](x; z)ds.

Similarly, we have

U2(t, x; z) = e−KtU2(0, x; z) +
t∫

0

e−K(t−s)g̃(x,U1(s, ·; z),U2(s, ·; z))ds.

This proves that U(t, x; z) is the solution of integral equation (2.5) with initial value �(x, z). 
The argument for U(t, x; z) can be proceeded similarly. �

Now we are in a position to prove that U(t, x; 0) and U(t, x; 0) are pulsating waves of (1.2)
connecting p(x) to 0 with speed c > c∗+.
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Theorem 3.4. Let c > c∗+ be given, μ ∈ (0, μ∗) be chosen such that c = λ(μ)/μ, and φ be the 
positive and periodic eigenfunction of (2.6) associated with the principal eigenvalue λ(μ). Then 
we have

U(t, x; z) = u(t, x;�(·, z), z) = �(x − ct, z + ct)

and

lim
x−ct→∞

Ui(t, x; z)
e−μ(x−ct)φi(x + z)

= 1, i = 1,2,

lim
x−ct→−∞(U(t, x; z) − p(x + z)) = 0

uniformly in z ∈ R. Especially, if we define �(s, x) := �(s, x − s), then U(t, x; 0) = �(x −
ct, ct) = �(x − ct, x) is a pulsating wave of system (1.2). Similar results hold for U(t, x; z).

Proof. The equality U(t, x; z) = u(t, x;�(·, z), z) was already proved in the previous proposi-
tion. We further claim u(t, x;�(·, z), z) = �(x − ct, z + ct). In view of (2.1) and the definition 
of u, we see that for any T ≥ 0,

u(t, x;u(0, ·; τ, z), z) = u(t, x − cT ;u(0, ·; τ + T , z + cT ), z + cT ).

It follows that for any t ≥ 0,

u(t, x;�(·, z), z) = lim
τ→∞u(t, x;u(τ, ·;u(0, ·; τ, z), z), z)

= lim
τ→∞u(t + τ, x;u(0, ·; τ, z), z)

= lim
τ→∞u(t + τ, x − ct;u(0, ·; τ + t, z + ct), z + ct)

= �(x − ct, z + ct).

Similarly, we can prove u(t, x;�(·, z), z) = �(x − ct, z + ct).
Next, by the comparison principle, we have for any τ > 0,

u(t + τ, x; τ, z) ≥ u(t + τ, x;u(0, ·; τ, z), z)
≥ u(t + τ, x;u(0, ·; τ, z), z) ≥ u(t + τ, x; τ, z).

On account of Lemma 3.2 and the definitions of U and U , we obtain for any τ > 0,

u(t + τ, x; τ, z) ≥ U(t, x; z) ≥ U(t, x; z) ≥ u(t + τ, x; τ, z).

By the definition of u and u, we have for large x − ct ,

u(t + τ, x; τ, z) = e−μ(x−ct)φ(x + z),

u(t + τ, x; τ, z) = e−μ(x−ct)φ(x + z) − Me−με(x−ct)φε(x + z).
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Therefore, the squeezing argument gives (noting that με > μ > 0)

lim
x−ct→∞

Ui(t, x; z)
e−μ(x−ct)φi(x + z)

= 1, lim
x−ct→∞

Ui(t, x; z)
e−μ(x−ct)φi(x + z)

= 1, i = 1,2.

Finally, since c∗+ is the rightward spreading speed, it follows that for any c1 < c∗+ and any 
u0 ∈ C∗+,

lim
t→∞,x≤c1t

(u(t, x;u0, z) − p(x + z)) = 0

uniformly in z ∈R. First, we choose u0 ∈ C∗+ such that u0(x) ≡ σ min
y∈R φ0(y) for x ≤ KM −1 and 

u0(x) ≡ 0 for x ≥ KM and u0(x) is continuous and non-increasing for KM − 1 ≤ x ≤ KM . It is 
easily seen that u0(x) ≤ u(0, x; 0, z) ≤ �(x, z) ≤ �(x, z) for any x, z ∈R. Next, we obtain from 
the above formula and the comparison principle that for any ε > 0, there exists T > 0 such that 
for any x ≤ c1T and z ∈R,

|u(T , x;�(·, z), z) − p(x + z)| < ε.

Recall that u(T , x;�(·, z), z) = U(T , x, z) = �(x − cT , z + cT ). It is readily seen that for any 
x < c1T and z ∈ R,

|�(x − cT , z + cT ) − p(x + z)| < ε.

Let x′ = x − cT and z′ = z + cT . It follows that for any x′ < (c1 − c)T and z′ ∈ R,

|�(x′, z′) − p(x′ + z′)| < ε.

Note that the choice of T > 0 depends on the value of ε > 0. In view of c1 < c, the above 
inequality implies that

lim
x′→−∞

(�(x′, z′) − p(x′ + z′)) = 0

uniformly in z′ ∈ R. Now we make use of U(t, x; z) = �(x − ct, z + ct) again with x′ = x − ct

and z′ = z + ct to obtain

lim
x−ct→−∞(U(t, x; z) − p(x + z)) = 0

uniformly in z ∈R. A similar result holds for U(t, x; z). �
Recall from Proposition 2.7 that ψ = (ψ1, ψ2) and λ̃ < 0 are the principal eigenfunction and 

eigenvalue of the problem (2.7). Choose 0 < ε̄ < −λ̃ and ε1 > 0 such that

ε1(ψ1(x) + ψ2(x)) < ε̄ min{ψ1(x),ψ2(x)}, ∀x ∈R.
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Next, we choose a small δ > 0 such that for any two vector-valued functions v = (v1, v2) and 
v̄ = (v̄1, v̄2) satisfying |vi(x) − pi(x)| < δ, |v̄i (x) − pi(x)| < δ and vi(x) ≤ v̄i (x) for all x ∈ R, 
we have for any x ∈R,

|f (x, v̄) − f (x, v)| < (F1 + ε1)[v̄1(x) − v1(x)] + (F2 + ε1)[v̄2(x) − v2(x)],
|g(x, v̄) − g(x, v)| < (G1 + ε1)[v̄1(x) − v1(x)] + (G2 + ε1)[v̄2(x) − v2(x)], (3.5)

where

Fi := ∂ui
f (x,u1, u2)

∣∣
u=p

, Gi := ∂ui
g(x,u1, u2)

∣∣
u=p

, i = 1,2.

Then we have the following result on the stability of pulsating waves.

Theorem 3.5. Let U(t, x) be a rightward pulsating wave of (1.2) connecting p(x) and 0 with 
speed c > c∗+. For a sufficiently small ε > 0, we denote με = μ + ε and introduce the weight 
function

wε(ξ) :=
{

eμε(ξ−ξ0), ξ ≥ ξ0,

1, ξ < ξ0,

where ξ0 ∈ R is chosen such that |Ui(t, x) − pi(x)| < δ for all x − ct < ξ0 and i = 1, 2. Then 
there exists a real number ε0 > 0 such that for any given initial value u0(x) with 0 ≤ u0(x) ≤
p(x) and

[u0(·) − U(0, ·)]wε(·) ∈ L∞(R,R2),

we have

sup
x∈R

|ui(t, x;u0) − Ui(t, x)| ≤ Ce−ε0t , i = 1,2, t ≥ 0,

for some C > 0.

Proof. Let U±(t, x) be the mild solutions of (1.2) with initial values

U+(0, x) := max{u0(x),U(0, x)}, U−(0, x) := min{u0(x),U(0, x)},

respectively. A simple application of the comparison principle yields

0 ≤ U−(t, x) ≤ min{u(t, x;u0),U(t, x)}
≤ max{u(t, x;u0),U(t, x)} ≤ U+(t, x) ≤ p(x).

We aim to show that U±(t, x) converges to U(t, x) exponentially in time. If this is done, then 
the desired stability result follows from the above inequality and the squeezing argument. By 
symmetry, we only need to prove V (t, x) := U+(t, x) − U(t, x) vanishes exponentially in time. 
In view of 0 ≤ V (0, x) ≤ |u0(x) − U(0, x)|, we obtain that V (0, x)wε(x) is uniformly bounded 
on R. We consider two cases x − ct ≥ ξ0 and x − ct < ξ0, respectively.
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Case I. x − ct ≥ ξ0.
By the subhomogeneity of f (t, u) in u = (u1, u2), we obtain

f (x,U1 + V1,U1 + V2) − f (x,U1,U2) ≤ f1V1 + f2V2

and hence,

V1(t, x) ≤ [l1(t)V1(0, ·)](x) +
t∫

0

l1(t − s)[f̃1(·)V1(s, ·) + f2(·)V2(s, ·)](x)ds,

where f̃1(x) := f1(x) + K . Similarly, define g̃2(x) := g2(x) + K . We obtain from the subhomo-
geneity of g(t, u) in u = (u1, u2) that

V2(t, x) ≤ e−KtV2(0, x) +
t∫

0

e−K(t−s)[g1(x)V1(s, x) + g̃2(x)V2(s, x)]ds.

Next, we define

V̄i (t, x) := C1φ
ε
i (x)e−με(x−ξ0)+λεt , i = 1,2,

where φε = (φε
1, φε

2) is the eigenfunction of (2.6) associated with the eigenvalue λε and param-
eter με = μ + ε. The constant C1 > 0 is chosen sufficiently large such that V (0, x) ≤ V̄ (0, x). 
This can be done since V (0, x)wε(x) is uniformly bounded on R. A straightforward calculation 
gives

∂t V̄1(t, x) = D1(x)∂xxV̄1(t, x) + D2(x)∂xV̄1(t, x)

+ f1(x)V̄1(t, x) + f2(x)V̄2(t, x),

∂t V̄2(t, x) = g1(x)V̄1(t, x) + g2(x)V̄2(t, x).

Therefore, we have

V̄1(t, x) ≥ [l1(t)V̄1(0, ·)](x) +
t∫

0

l1(t − s)[f̃1(·)V̄1(s, ·) + f2(·)V̄2(s, ·)](x)ds,

V̄2(t, x) ≥ e−Kt V̄2(0, x) +
t∫

0

e−K(t−s)[g1(x)V̄1(s, x) + g̃2(x)V̄2(s, x)]ds.

The inequalities are actually equalities but we choose to use the inequalities to emphasize that 
V̄ is an upper solution. By using the comparison principle, we obtain V (t, x) ≤ V̄ (t, x), which 
implies

Vi(t, x) ≤ V̄i (t, x) = C1φ
ε
i (x)e−με(x−ct−ξ0)e−(cμε−λε)t ≤ C̃1e

−(cμε−λε)t ,

where in the last inequality we have made use of the fact that x − ct ≥ ξ0.



7256 X.-S. Wang, X.-Q. Zhao / J. Differential Equations 259 (2015) 7238–7259
Case II. x − ct < ξ0.
Note that U(t, x) is very close to p(x) (i.e., |Ui(t, x) − pi(x)| < δ) for all x − ct < ξ0 and 

i = 1, 2. Since U(t, x) ≤ U(t, x) + V (t, x) = U+(t, x) ≤ p(x), we obtain from (3.5) that for 
x − ct < ξ0,

f (x,U+) − f (x,U) ≤ (F1 + ε1)V1 + (F2 + ε1)V2,

and

g(x,U+) − g(x,U) ≤ (G1 + ε1)V1 + (G2 + ε1)V2,

where Fi := ∂ui
f (x, u1, u2)

∣∣
u=p

, Gi := ∂ui
g(x, u1, u2)

∣∣
u=p

, i = 1, 2. Consequently, V (t, x)

satisfies

∂tV1(t, x) ≤ D1(x)∂xxV1(t, x) + D2(x)∂xV1(t, x)

+ [F1(x) + ε1]V1(t, x) + [F2(x) + ε1]V2(t, x),

∂tV2(t, x) ≤ [G1(x) + ε1]V1(t, x) + [G2(x) + ε1]V2(t, x),

for all (t, x) in the domain

D := {(t, x) : t > 0, x − ct < ξ0}.

Next, we choose ε0 = min{cμε − λε, −λ̃ − ε̄} > 0 and define

Ṽi (t, x) := C2ψi(x)e−ε0t , i = 1,2,

where ψ = (ψ1, ψ2) and λ̃ < 0 are the principal eigenfunction and eigenvalue of the linearized 
eigenvalue problem (2.7). The constant C2 > 0 is chosen sufficiently large such that V (t, x) ≤
Ṽ (t, x) on the boundary

∂D = {(t, x) : t = 0, x ≤ ξ0} ∪ {(t, x) : t ≥ 0, x − ct = ξ0}.

This can be done due to the result obtained from case I and the inequality ε0 ≤ cμε − λε . Now, 
we verify that the function Ṽ (t, x) is an upper solution of the following linear system in the 
domain D:

∂tV1(t, x) = D1(x)∂xxV1(t, x) + D2(x)∂xV1(t, x)

+ [F1(x) + ε1]V1(t, x) + [F2(x) + ε1]V2(t, x),

∂tV2(t, x) = [G1(x) + ε1]V1(t, x) + [G2(x) + ε1]V2(t, x).

Since ε0 ≤ −λ̃ − ε̄, we have
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∂t Ṽ1(t, x) = −ε0Ṽ1(t, x)

≥ (λ̃ + ε̄)Ṽ1(t, x)

= D1(x)∂xxṼ1(t, x) + D2(x)∂xṼ1(t, x)

+ [F1(x) + ε̄]Ṽ1(t, x) + F2(x)Ṽ2(t, x).

Note that ε1(ψ1 + ψ2) < ε̄ min{ψ1, ψ2}. It then follows that ε1(Ṽ1 + Ṽ2) < ε̄Ṽ1, and hence,

∂t Ṽ1(t, x) ≥ D1(x)∂xxṼ1(t, x) + D2(x)∂xṼ1(t, x)

+ [F1(x) + ε1]Ṽ1(t, x) + [F2(x) + ε1]Ṽ2(t, x).

Similarly, we obtain

∂t Ṽ2(t, x) ≥ [G1(x) + ε1]Ṽ1(t, x) + [G2(x) + ε1]Ṽ2(t, x).

Thus, by the comparison principle in the domain D (see, e.g., [13, Theorem 4.6]), we have 
V (t, x) ≤ Ṽ (t, x), and hence,

Vi(t, x) ≤ Ṽi (t, x) = C2ψi(x)e−ε0t ≤ C̃2e
−ε0t

for all t ≥ 0 and x − ct < ξ0.
Combining cases I and II above, we then see that

Vi(t, x) ≤ Ce−ε0t , i = 1,2, t ≥ 0, x ∈R,

where C > 0 denotes a large fixed constant. �
As a consequence of the above stability theorem, we are able to show that two pulsating waves 

U(t, x; 0) and U(t, x; 0) obtained from the upper and lower solutions are indeed identical.

Corollary 3.6. If U(t, x) = �(x − ct, x) and Ũ(t, x) = �̃(x − ct, x) are two pulsating waves 
of (1.2) connecting p(x) to 0 with speed c > c∗+ and satisfy

lim
x−ct→∞

U1(t, x)

e−μ(x−ct)φ1(x)
= lim

x−ct→∞
U2(t, x)

e−μ(x−ct)φ2(x)
= A > 0

and

lim
x−ct→∞

Ũ1(t, x)

e−μ(x−ct)φ1(x)
= lim

x−ct→∞
Ũ2(t, x)

e−μ(x−ct)φ2(x)
= B > 0

for some positive constants A and B , then U(t, x) = Ũ (t + t∗, x) for some real number t∗. 
Especially, U(t, x; 0) = U(t, x; 0) and it is a classical solution of (1.2).
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Proof. Upon a linear translation of the variable t , we may assume both U(t, x) and Ũ(t, x)

satisfy the same asymptotic conditions:

lim
x−ct→∞

Ui(t, x)

e−μ(x−ct)φi(x)
= lim

x−ct→∞
Ũi(t, x)

e−μ(x−ct)φi(x)
= 1, i = 1,2,

lim
x−ct→−∞(U(t, x) − p(x)) = lim

x−ct→−∞(Ũ(t, x) − p(x)) = 0.

It remains to show that U(t, x) = Ũ (t, x) for all t ≥ 0 and x ∈ R. Since U(t, x) and Ũ(t, x) are 
two solutions of (1.2) with the same leading term as x − ct → ∞, we obtain from the equation 
satisfied by the difference U(t, x) − Ũ (t, x) and a simple asymptotic analysis near x − ct → ∞
that [U(t, x) − Ũ (t, x)]eμε(x−ct) is uniformly bounded for some small ε = με − μ > 0. Espe-
cially, [U(0, ·) − Ũ (0, ·)]wε(·) ∈ L∞(R, R2). It follows from Theorem 3.5 that

lim
t→∞ sup

x∈R
|Ui(t, x) − Ũi(t, x)| = 0, i = 1,2.

Note that U(t, x) = �(x − ct, x) and Ũ(t, x) = �̃(x − ct, x); and �(ξ, x) and �̃(ξ, x) are pe-
riodic in the second variable x. We conclude that U(t, x) = Ũ (t, x) for all t ≥ 0 and x ∈ R. 
Especially, we have U(t, x) = U(t, x). Finally, we observe from the definition (3.1) that U(t, x)

is upper semi-continuous in x since it is the limit of a decreasing sequence of continuous 
functions. Similarly, it follows from (3.2) that U(t, x) is lower semi-continuous in x. Thus, 
U(t, x) = U(t, x) is actually continuous in x. Recall that U(t, x) is the solution of (1.2) with 
initial function U(0, x). The continuity of U(0, x) implies that U(t, x) is a classical solution. �

Inspired by the results in [4] for the case of scalar equations, we may expect that the exponen-
tial decay condition as imposed in Corollary 3.6 is automatically satisfied by any pulsating wave 
u(t, x) = �(x − ct, x) connecting 0 and p(x) with speed c > c∗+. It is also worthy to point out 
that the existence and stability of the critical pulsating wave with c = c∗+ have not been addressed 
in this paper. We leave these challenging problems for future investigations.
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