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Abstract
We study the existence and nonexistence of traveling waves of diffusive epidemic models
with general incidence rates. The model systems are non-monotone because of the intrinsic
predator–prey interaction between the susceptible and infective compartments in epidemic
systems.Moreover, the incidence ratemaynot bemonotone in the infectedpopulationbecause
social behaviors and collective activities may change in response to the prevalence of dis-
ease. To find positive traveling solutions of the non-monotone system with a non-monotone
incidence function, we will construct a suitable convex set in a weighted function space, and
then apply Schauder fixed point theorem. It turns out that the basic reproduction number of
the corresponding ordinary differential equations plays an important role in the existence
theory of traveling waves. Moreover, the critical wave speed can be explicitly obtained in
terms of the diffusion coefficient, recovery rate and death rate for the infected group, and
partial derivative of incidence function at the disease-free equilibrium. Finally, we prove that
the positive traveling wave solution does not exist if the basic reproduction number is no
more than one, or the wave speed is less than the critical value.
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1 Introduction

Traveling waves in monotone diffusive systems have been investigated extensively in the
literature, and there exists a general theory of monotone dynamical systems to deal with
this problem; see [5,17] and references therein. Unfortunately, for non-monotone dynamical
systems, especially those arising fromdiffusive epidemicmodels, the corresponding traveling
wave solutions can be only studied case by case. So far as we know, there is no traveling
wave theory for non-monotone systems as general and complete as that formonotone systems.
Recently, Huang [14] used a geometric shooting method to study a non-monotone diffusive
system with two compartments and relatively general reaction terms, where the incidence
rate (or predation function) was assumed to be monotone in the infected group (or predators).
A different approach via Schauder fixed point theorem on a similar problem was developed
in [27], where the model system had only two compartments and the incidence rate was
monotone. The objective of this paper is to extend the aforementioned results to the diffusive
disease models with three compartments and non-monotone incidence rates. To be specific,
we will consider the following reaction-diffusion system:

∂t S = d1∂xx S − ϕ(S, I , R), (1.1)

∂t I = d2∂xx I + ϕ(S, I , R) − γ I − δ I , (1.2)

∂t R = d3∂xx R + γ I . (1.3)

Here, S, I , R denote the susceptible, infected, and recovered populations which are time and
spatial dependent. For sake of simplicity,we assume the spatial variable x is of one dimension.
Let d1, d2, d3 be diffusion coefficients for the three groups, respectively. We denote by γ

the recovery rate and δ the disease-induced death rate. The nonlinear incidence function
ϕ(S, I , R) ∈ C1,2,1(R3+,R+) satisfies the following conditions. For any S, I , R > 0,

ϕ(0, I , R) = ϕ(S, 0, R) = 0, (1.4)

∂Sϕ(S, I , R) ≥ 0, ∂Rϕ(S, I , R) ≤ 0, (1.5)

ϕ(S, I , 0)

I
≤ ∂Iϕ(S, 0, 0), (1.6)

and for some θ > 0 and any S > 0,

sup
I≥0

ϕ(S, I , 0) < ∞, inf
I≤1≤R

Rθϕ(S, I , R)

I
> 0, (1.7)

and for any S, I > 0,
sup
R≥0

|∇ϕ(S, I , R)| < ∞. (1.8)

Here, ∇ϕ(S, I , R) is the gradient of ϕ(S, I , R) and |∇ϕ(S, I , R)| is a vector norm in R
3.

The interpretations of the conditions (1.4)–(1.8) are: there is no disease transmission if either
S = 0 or I = 0; the incidence rate is increasing in S and decreasing in R (but not necessarily
monotone in I ); the incidence rate is sub-homogeneous in the sense that it makes the fastest
change at the initial time of an outbreak; the incidence rate is saturated as I increases; the
incidence rate decays at most algebraically as R increases; the incidence rate does change
rapidly with small perturbation in the population.

If the recovered group R does not influent the disease transmission, the incidence function
is independent of R and the three dimensional system can be reduced to a two dimensional
system. Examples include the standard incidence rate βSI/(S + I ) in [20,21], the incidence
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rates withmedia impactμSI e−mI in [3] and (μ1−μ2 f (I ))SI/(S+ I ) in [4]. Note that when
media coverage takes effect, contact patterns will change and thus the incidence rate is not
necessarymonotone as a function of infected population [16]. If the recovered group R comes
back to the community and thus inhibits the transmission of disease to the susceptible group,
the model system becomes three dimensional. Examples include the standard incidence rate
βSI/(S+ I+R) in [19],Michaelis–Menten type incidence rateβSI/(1+b(S+ I+R)) in [2],
and a general incidence rate β f (S+ I +R)SI/(S+ I +R) in [10]. Due to the involvement of
multiple compartments, it seems difficult, if not impossible, to apply the geometric shooting
method developed in [14]. The traveling wave solutions for the standard incidence rate
have been studied in [19] where a technical assumption on the diffusion coefficients (i.e.,
d3 < 2d2) was used to prove the existence result. In this paper, we will extend this result to
a more general incidence function which may not be monotone in I . Moreover, we will also
remove the technical assumption by some new ideas in the construction of convex subset.

The traveling wave solutions are useful illustrations in understanding disease propaga-
tion of diffusive epidemic models, and critical wave speed provides important information
about propagation speed of the disease in a spatial environment [5,6]. On the other hand,
disease models are typical examples of non-monotone dynamical systems and the analy-
sis of traveling wave solutions for these systems is generally much more challenging than
that of monotone dynamical systems [25,26]. There are two major methods in the study
of traveling waves for diffusive epidemic models. The first one is called shooting method,
which was introduced by Dunbar [8,9], later developed by Hosono and Ilyas [11,12], and by
Huang [13,14]. Since the geometric structure of the invariant manifold in high dimensional
Euclidean space is very complicated to analyze, the application of shooting method mainly
restricts to reaction-diffusion systems with only two compartments. Another widely used
method, which will be applied in this paper, is the Schauder fixed point theorem. As we shall
see, finding a travelingwave is equivalentwith the problemof finding afixed point for a certain
integral map. The key step of this method is to construct a convex set that is invariant under
the integral map. This convex set is usually bounded by several super- and sub-solutions.
Unlike the monotone systems where comparison principle guarantees that super-solutions
are independent of sub-solutions, for non-monotone systems, the super-solutions and sub-
solutions are fully coupled. For instance, to construct a convex set for an epidemic model
with n compartments, one should find n super-solutions and n sub-solutions which satisfy 2n
differential inequalities. Once the convex set has been constructed and proven to be invariant,
we can verify the continuity and compactness of the integral map by using Arzela–Ascoli
theorem and a standard diagonal process, and thus conclude the existence of traveling wave
from Schauder fixed point theorem. The nonexistence result can obtained by analyticity of
Laplace transform and a contradiction argument. It is also a standard process to find the
asymptotic behavior of traveling wave solution at infinity. Through this routine, the main
difficult is in the construction of invariant convex set to overcome the non-monotonicity of
diffusive systems. Note that non-monotonicity of incidence rate makes the task even more
challenging, because it is more difficult to verify the inequalities satisfied by the super- and
sub-solutions.

The traveling wave of (1.1)–(1.3) takes the form (S(x + ct), I (x + ct), R(x + ct)), and
it connects an equilibrium (S−∞, 0, 0) to another equilibrium (S∞, 0, R∞). By introducing
a new variable ξ = x + ct , we obtain

cS′(ξ) = d1S
′′(ξ) − ϕ(S(ξ), I (ξ), R(ξ)), (1.9)

cI ′(ξ) = d2 I
′′(ξ) + ϕ(S(ξ), I (ξ), R(ξ)) − (γ + δ)I (ξ), (1.10)

cR′(ξ) = d3R
′′(ξ) + γ I (ξ). (1.11)
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For any S−∞ > 0, we define the linearized transmission rate

β := ∂Iϕ(S−∞, 0, 0), (1.12)

and the critical wave speed (when β > γ + δ)

c∗ := 2
√
d2(β − γ − δ). (1.13)

Following [7,18], the basic reproduction number for the ordinary differential system without
diffusion is given by

R0 := β

γ + δ
. (1.14)

Our main theorem is stated as below.

Theorem 1.1 For any S−∞ > 0, R0 > 1 and c > c∗, there exist S∞ < S−∞ and a
traveling wave solution for (1.1)–(1.3) such that S(−∞) = S−∞, S(∞) = S∞, I (±∞) = 0,
R(−∞) = 0, and R(∞) = γ (S−∞ − S∞)/(γ + δ). Furthermore, S′(x) < 0, I (x) ≤
S−∞ − S∞, R′(x) > 0, and

∫ ∞

−∞
(γ + δ)I (x)dx =

∫ ∞

−∞
ϕ(S(x), I (x), R(x))dx = c(S−∞ − S∞). (1.15)

On the other hand, if c < c∗ or R0 ≤ 1, then there does not exist a non-trivial and non-
negative traveling wave solution for (1.1)–(1.3) such that S(−∞) = S−∞, S(∞) < S−∞,
I (±∞) = 0, and R(−∞) = 0.

The paper is organized as follows. In Sect. 2, we will define some linear second-order
differential operators and a linear integral map associated with traveling wave equations. A
convex set will be constructed in Sect. 3 and we shall prove the invariance of this set under
the integral map. In Sect. 4, we will prove continuity and compactness of the integral map;
while in Sect. 5, we will prove the existence of traveling wave solutions under the conditions
that R0 > 1 and c > c∗. Throughout Sects. 2, 3, 4 and 5, we will assume these two conditions
are satisfied. Section 6 is devoted to the non-existence result when the existence conditions
are violated. Finally, we give conclusion and discussion in Sect. 7.

2 Differential Operators and Integral Map

We first assume that R0 > 1 and c > c∗. Linearizing the Eq. (1.10) for I at the point
(S−∞, 0, 0) gives the characteristic function

f0(λ) := −d2λ
2 + cλ − (β − γ − δ). (2.1)

We denote the smallest positive root of the characteristic function f0(λ) by

λ0 := c − √
c2 − 4d2(β − γ − δ)

2d2
> 0. (2.2)

Let α1, α2 and α3 be three sufficiently large constants to be determined later. For each
i = 1, 2, 3, we define the second-order differential operator �i h := −di h′′ + ch′ + αi h for
any h ∈ C2(R). The characteristic roots for the differential operator �i are calculated as

λ±
i = c ± √

c2 + 4diαi

2di
. (2.3)
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Denote

ρi := di (λ
+
i − λ−

i ) =
√
c2 + 4diαi . (2.4)

The inverse operator �−1
i has the following integral representation

(�−1
i h)(x) := 1

ρi

∫ x

−∞
eλ−

i (x−y)h(y)dy + 1

ρi

∫ ∞

x
eλ+

i (x−y)h(y)dy (2.5)

for h ∈ Cμ−,μ+(R) with μ− > λ−
i and μ+ < λ+

i , where

Cμ−,μ+(R) := {h ∈ C(R) : sup
x≤0

|h(x)e−μ−x | + sup
x≥0

|h(x)e−μ+x | < ∞}.

Given h ∈ Cμ−,μ+(R), the derivatives of �−1
i h are given by

(�−1
i h)′(x) = λ−

i

ρi

∫ x

−∞
eλ−

i (x−y)h(y)dy + λ+
i

ρi

∫ ∞

x
eλ+

i (x−y)h(y)dy; (2.6)

(�−1
i h)′′(x) = (λ−

i )2

ρi

∫ x

−∞
eλ−

i (x−y)h(y)dy + (λ+
i )2

ρi

∫ ∞

x
eλ+

i (x−y)h(y)dy − h(x)

di
. (2.7)

The following lemma provides some properties on the composition of the integral operator
�−1

i with the differential operator �i .

Lemma 2.1 Let h ∈ Cμ−,μ+(R) be a piecewise function defined as h(y) = h j (y) for y ∈
[y j , y j+1] with j = 0, 1, . . . ,m, where h j (y) ∈ C2[y j , y j+1], and for convenience, we
denote y0 = −∞ and ym+1 = ∞. If h′

j−1(y j ) ≤ h′
j (y j ) for 1 ≤ j ≤ m, then �−1

i (�i h) ≥
h. Similarly, if h′

j−1(y j ) ≥ h′
j (y j ) for 1 ≤ j ≤ m, then �−1

i (�i h) ≤ h. Especially, if

h′ ∈ C(R), then �−1
i (�i h) = h.

Proof For any x ∈ R, there exists l such that x ∈ [yl , yl+1]. It follows from (2.5) that

ρi [�−1
i (�i h)](x) =

l−1∑

j=0

∫ y j+1

y j
eλ−

i (x−y)�i h j (y)dy +
∫ x

yl
eλ−

i (x−y)�i hl(y)dy

+
∫ yl+1

x
eλ+

i (x−y)�i hl(y)dy +
m∑

j=l+1

∫ y j+1

y j
eλ+

i (x−y)�i h j (y)dy.

On account of (2.3), we take integration by parts twice and obtain

ρi

[
�−1

i (�i h)
]
(x) =

l−1∑

j=0

[
−di h

′
j (y) + ch j (y) − diλ

−
i h j (y)

]
eλ−

i (x−y)
∣∣∣∣

y j+1

y j

+ [−di h
′
l(y) + chl(y) − diλ

−
i hl(y)

]
eλ−

i (x−y)
∣∣∣∣
x

yl

+ [−di h
′
l(y) + chl(y) − diλ

+
i hl(y)

]
eλ+

i (x−y)
∣∣∣∣

yl+1

x

+
m∑

j=l+1

[
−di h

′
j (y) + ch j (y) − diλ

+
i h j (y)

]
eλ+

i (x−y)
∣∣∣∣
y j+1

y j

.
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Since h ∈ Cμ−,μ+(R), we observe

lim
y→−∞

[−di h
′
0(y) + ch0(y) − diλ

−
i h0(y)

]
eλ−

i (x−y) = 0,

lim
y→∞

[−di h
′
m(y) + chm(y) − diλ

+
i hm(y)

]
eλ+

i (x−y) = 0.

The continuity of h implies that h j−1(y j ) = h j (y j ) for 1 ≤ j ≤ m. Moreover, since
h′
j−1(y j ) ≤ h′

j (y j ) for 1 ≤ j ≤ m, we have

ρi

[
�−1

i (�i h)
]
(x) ≥ [−di h

′
l(x) + chl(x) − diλ

−
i hl(x)

]

− [−di h
′
l(x) + chl(x) − diλ

+
i hl(x)

]

= ρi hl(x) = ρi h(x).

Here, we have made use of di (λ
+
i − λ−

i ) = ρi ; see (2.4).
On the other hand, if h′

j−1(y j ) ≥ h′
j (y j ) for 1 ≤ j ≤ m, then −h′

j−1(y j ) ≤ −h′
j (y j ),

which implies that �−1
i [�i (−h)] ≥ −h; namely, �−1

i (�i h) ≤ h. This completes the proof.

�

By (1.12), we have ϕ(S−∞, I , 0)/I → β > γ + δ as I → 0+. By (1.7), we have
ϕ(S−∞, I , 0)/I → 0 < γ + δ as I → ∞. Hence, there exists I0 > 0 such that

ϕ(S−∞, I0, 0) = (γ + δ)I0. (2.8)

Now, we choose α1, α2 sufficiently large and α3 > 0 such that

α1 ≥ ∂Sϕ(S, I , R), α2 ≥ γ + δ − ∂Iϕ(S, I , R)

for all 0 ≤ S ≤ S−∞, 0 ≤ I ≤ I0, R ≥ 0, and |λ−
i | = −λ−

i > σ for i = 1, 2, 3, where
I0 > 0 is a solution to (2.8) and σ > 0 is a small constant such that σ < λ0, σ < c/d1,
σ < c/d3, and f0(λ0 + σ) > 0. Find a μ > 0 such that σ < μ < −λ−

i < λ+
i for all

i = 1, 2, 3. We then have λ−
i < −μ < μ < λ+

i . Introduce a Banach space

Bμ(R,Rn) := C−μ,μ(R) × · · · × C−μ,μ(R)
︸ ︷︷ ︸

n

equipped with the norm

|u|μ := max
1≤i≤n

sup
x∈R

e−μ|x ||ui (x)|, (2.9)

where u = (u1, . . . , un)T ∈ Bμ(R,Rn) and n is a positive integer. Now,we define an integral
map F = (F1, F2, F3)T on the space Bμ(R,R3) as follows:

F(u) =
⎛

⎝
F1(u)

F2(u)

F3(u)

⎞

⎠ :=
⎛

⎝
�−1

1 [α1u1 − ϕ(u1, u2, u3)]
�−1

2 [α2u2 + ϕ(u1, u2, u3) − (γ + δ)u2]
�−1

3 (α3u3 + γ u2)

⎞

⎠ , (2.10)

for u = (u1, u2, u3)T ∈ Bμ(R,R3).

Lemma 2.2 Let u = (S, I , R)T ∈ Bμ(R,R3) be a fixed point of the map F, then (S, I , R)

satisfy the traveling wave Eqs. (1.9)–(1.11).
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Proof Set h1 := α1S − ϕ(S, I , R). It follows from (2.4) to (2.7) and the fact that λ±
1 are the

roots of f1(λ) = −d1λ2 + c + α1 that

−d1(�
−1
1 h1)

′′ + c(�−1
1 h1)

′ + α1(�
−1
1 h1) = h1.

Since (S, I , R) is a fixed point of F , it follows that �−1
1 h1 = S. Thus, the above equation is

the same as (1.9). Similarly, we can show that the other two Eqs. (1.10) and (1.11) are also
satisfied. 
�

3 Convex Set

For x ∈ R, we define super-solutions and sub-solutions as follows:

S+(x) :=
{
S−∞, x ≤ x0,

S−∞ − ε + εe−λ1(x−x0), x ≥ x0,
(3.1)

S−(x) :=
{
S−∞

(
1 − eσ(x−x1)

)
, x ≤ x1,

0, x ≥ x1,
(3.2)

I+(x) :=
{
eλ0x , x ≤ x0,

eλ0x0 , x ≥ x0,
(3.3)

I−(x) :=
⎧
⎨

⎩
eλ0x

[
1 − λ0+λ2

λ0+λ2+σ
eσ(x−x2)

]
, x ≤ x2,

σeλ0x2

λ0+λ2+σ
e−λ2(x−x2), x ≥ x2,

(3.4)

R+(x) := Meσ x , (3.5)

R−(x) := 0, (3.6)

where x0 = (ln I0)/λ0 with I0 > 0 being a positive solution to (2.8); σ > 0 is a small
constant such that σ < λ0, σ < c/d1, σ < c/d3, and f0(λ0 + σ) > 0; x1 is chosen such
that x1 < x0 and βeλ0x1 ≤ S−∞(cσ − d1σ 2); M = γ e(λ0−σ)x0/(cσ − d3σ 2); λ2 > 0 is the
unique positive solution to the equation d2λ22 + cλ2 − (γ + δ) = 0; λ1 = λ2 + σθ with θ

given in (1.7); x2 ∈ R and ε > 0 are constants to be determined in the following lemma.

Lemma 3.1 By appropriate choices of λ1 > 0, λ2 > 0, σ > 0, ε > 0, x2 < x1 < x0, we
have

ϕ(S+, I , R+) ≥ d1S
′′+ − cS′+, x �= x0, (3.7)

ϕ(S−, I , R−) ≤ d1S
′′− − cS′−, x �= x0, (3.8)

ϕ(S+, I+, R−) − (γ + δ)I+ ≤ −d2 I
′′+ + cI ′+, x �= x1, (3.9)

ϕ(S−, I−, R+) − (γ + δ)I− ≥ −d2 I
′′− + cI ′−, x �= x1, (3.10)

γ I+ ≤ −d3R
′′+ + cR′+, x �= x2, (3.11)

γ I− ≥ −d3R
′′− + cR′−, x �= x2, (3.12)

where I (x) is any continuous function such that I− ≤ I ≤ I+.

Proof The last inequality (3.12) follows immediately from (3.4) to (3.6). We will prove the
remaining five inequalities in the following order.
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First, we prove (3.9). If x < x0, then I+(x) = eλ0x . It follows from (1.6) to (1.12) that
ϕ(S, I , R) ≤ β I . This together with (2.2) implies that

ϕ(S+, I+, R−) − (γ + δ)I+ ≤ (β − γ − δ)I+ = −d2 I
′′+ + cI ′+.

If x > x0, then I+(x) = eλ0x0 = I0, where we have chosen x0 = (ln I0)/λ0. It can be
obtained from (1.5) to (2.8) that

ϕ(S+, I+, R−) − (γ + δ)I+ ≤ ϕ(S−∞, I0, 0) − (γ + δ)I0 = 0 = −d2 I
′′+ + cI ′+.

This proves (3.9).
Then,weprove (3.8). If x > x1, then S− = 0 and the inequality is satisfied. If x < x1 < x0,

we have S− = S−∞(1 − eσ(x−x1)) and

d1S
′′− − cS′− = S−∞(cσ − d1σ

2)eσ(x−x1).

Moreover, it follows from (1.6) to (1.12) that

ϕ(S−, I , R−) ≤ β I ≤ β I+ = βeλ0x .

If σ < c/d1, σ < λ0 and βeλ0x1 ≤ S−∞(cσ − d1σ 2), we then have

βeλ0x ≤ S−∞(cσ − d1σ
2)eσ(x−x1)

for all x < x1. This implies that

ϕ(S−, I , R−) ≤ d1S
′′− − cS′−.

Thus, (3.8) is proved.
Next, we prove (3.11). If x < x0, the inequality is the same as

γ e(λ0−σ)x ≤ M(cσ − d3σ
2).

Wemay choose σ < λ0, σ < c/d3 and M = γ e(λ0−σ)x0/(cσ −d3σ 2). The above inequality
is satisfied. If x > x0, by the same choice of M , we have

γ I+ = γ eλ0x0 = M(cσ − d3σ
2)eσ x0 ≤ M(cσ − d3σ

2)eσ x = −d3R
′′+ + cR′+.

This gives (3.11).
Now, we prove (3.10). We choose λ2 > 0 such that d2λ22 + cλ2 − (γ + δ) = 0 (it is

obvious that such λ2 exists and is unique). If x > x2, then (3.4) gives

ϕ(S−, I−, R+) − (γ + δ)I− ≥ −(γ + δ)I− = −d2 I
′′− + cI ′−.

If x < x2 < x1, it follows from (2.2) to (3.4) that

d2 I
′′− − cI ′− + (β − γ − δ)I− = λ0 + λ2

λ0 + λ2 + σ
eλ0x+σ(x−x2) f0(λ0 + σ).

As x → −∞, we have S− → S−∞, I− → 0, R+ → 0, and ϕ(S−, I−, R+)/I− → β. Since
ϕ ∈ C1,2,1(R3+,R+), there exist X < x1 and A > 0 such that

|β I− − ϕ(S−, I−, R+)| ≤ A(S−∞ − S− + I− + R+)I−
≤ A[S−∞eσ(x−x1) + eλ0x + Meσ x ]eλ0x

for all x ≤ X . We shall choose x2 < X such that

A
[
S−∞eσ(x−x1) + eλ0x + Meσ x

]
eλ0x ≤ λ0 + λ2

λ0 + λ2 + σ
eλ0x+σ(x−x2) f0(λ0 + σ)
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for all x < x2. The above inequality is equivalent with

S−∞eσ(x2−x1) + e(λ0−σ)x+σ x2 + Meσ x2 ≤ λ0 + λ2

A(λ0 + λ2 + σ)
f0(λ0 + σ).

Note that when σ < λ0 and x < x2, the left-hand side is bounded above by

S−∞eσ(x2−x1) + eλ0x2 + Meσ x2

which can be arbitrarily small as long as x2 is negative large. Hence, there exists x2 such that
x2 < X < x1 and

β I− − ϕ(S−, I−, R+) ≤ d2 I
′′− − cI ′− + (β − γ − δ)I−

for all x < x2. This proves (3.10).
Finally, we prove (3.7). If x < x0, then S+ = S−∞ and

ϕ(S+, I , R+) ≥ 0 = d1S
′′+ − cS′+.

If x > x0, then S+ = S−∞ − ε + εe−λ1(x−x0) and

d1S
′′+ − cS′+ = ε(d1λ

2
1 + cλ1)e

−λ1(x−x0).

We set ε < S−∞/2 such that S+ > S−∞/2. It follows from (1.5) to (1.7) that

ϕ(S+, I , R+) ≥ ϕ(S−∞/2, I , R+) ≥ I

K Rθ+
≥ I−

K Rθ+
= σeλ0x2−λ2(x−x2)−θσ x

Mθ K (λ0 + λ2 + σ)

for some constant K > 0. We choose λ1 = λ2 + σθ and ε > 0 small such that ε < S−∞/2
and

ε <
σeλ0x2+λ2x2−λ1x0

Mθ K (λ0 + λ2 + σ)(d1λ21 + cλ1)
.

It is readily seen that

ϕ(S+, I , R+) ≥ d1S
′′+ − cS′+

for all x > x0. This proves (3.7). 
�

Remark 3.2 Note that (3.7) and (3.8) are stronger results than the inequalities

ϕ(S+, I+, R+) ≥ d1S
′′+ − cS′+, ϕ(S−, I−, R−) ≤ d1S

′′− − cS′−.

Since ϕ(S, I , R) is not monotone in I (for instance, ∂Iϕ may be positive for small I but neg-
ative for large I ), we will later need (3.7) and (3.8), instead of the above weaker inequalities,
to prove the invariance of the convex set; see Lemma 3.4.

Corollary 3.3 We have

�−1
1 (�1S+) ≤ S+, �−1

2 (�2 I+) ≤ I+, �−1
3 (�3R+) = R+, (3.13)

�−1
1 (�1S−) ≥ S−, �−1

2 (�2 I−) = I−, �−1
3 (�3R−) = R−. (3.14)
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Proof Note from (3.4) that

lim
x→x−

2

I−(x) = σeλ0x2

λ0 + λ2 + σ
= lim

x→x+
2

I−(x),

lim
x→x−

2

I ′−(x) = −λ2σeλ0x2

λ0 + λ2 + σ
= lim

x→x+
2

I ′−(x).

Thus, it follows fromLemma 2.1 that�−1
2 (�2 I−) = I−. The other equalities and inequalities

can be obtained in a similar manner. 
�

With the aid of the super-solutions and sub-solutions in (3.1)–(3.6), we define a convex
set � as

� := {(S, I , R) ∈ Bμ(R,R3) : S− ≤ S ≤ S+, I− ≤ I ≤ I+, R− ≤ R ≤ R+}. (3.15)

Since μ > σ > 0, it is easily seen that � is uniformly bounded with respect to the norm
| · |μ defined in (2.9). Now, we are ready to show that the convex set � defined in (3.15) is
invariant under the integral map F = (F1, F2, F3)T defined in (2.10).

Lemma 3.4 The convex set � is invariant under the integral map F; that is, for any
(S, I , R)T ∈ Bμ(R,R3) such that S− ≤ S ≤ S+, I− ≤ I ≤ I+ and R− ≤ R ≤ R+,
we have S− ≤ F1(S, I , R) ≤ S+, I− ≤ F2(S, I , R) ≤ I+, and R− ≤ F3(S, I , R) ≤ R+.

Proof Since α1 ≥ ∂Sϕ(S, I , R) for all 0 ≤ S ≤ S−∞, 0 ≤ I ≤ I0, R ≥ 0, it follows
from (1.5) that the function α1S − ϕ(S, I , R) is increasing in S and R. Consequently, we
obtain from (3.7) to (3.8) that

�1S− ≤ α1S− − ϕ(S−, I , R−) ≤ α1S − ϕ(S, I , R) ≤ α1S+ − ϕ(S+, I , R+) ≤ �1S+.

This together with Corollary 3.3 implies that

S− ≤ �−1
1 (�1S−) ≤ F1(S, I , R) ≤ �−1

1 (�1S+) ≤ S+.

Since α2 ≥ γ + δ − ∂Iϕ(S, I , R) for all 0 ≤ S ≤ S−∞, 0 ≤ I ≤ I0, R ≥ 0, it follows
from (1.5) that the function (α2−γ −δ)I+ϕ(S, I , R) is increasing in S and I , and decreasing
in R. Consequently, we obtain from (3.9) to (3.10) that

�2 I− ≤ (α2 − γ − δ)I− + ϕ(S−, I−, R+)

≤ (α2 − γ − δ)I + ϕ(S, I , R)

≤ (α2 − γ − δ)I+ + ϕ(S+, I+, R−) ≤ �2 I+.

This together with Corollary 3.3 implies that

I− = �−1
2 (�2 I−) ≤ F2(S, I , R) ≤ �−1

2 (�2 I+) ≤ I+.

Finally, we observe from (3.11) to (3.12) that

�3R− ≤ α3R− + γ I− ≤ α3R + γ I ≤ α3R+ + I+ ≤ �3R+.
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This together with Corollary 3.3 implies that

R− = �−1
3 (�3R−) ≤ F3(S, I , R) ≤ �−1

3 (�3R+) ≤ R+.

Hence, the proof is complete. 
�

4 Continuity and Compactness of the Integral Map

To apply Schauder fixed point theorem, we need the following result.

Lemma 4.1 The integral map F is continuous and compact on � with respect to the norm
| · |μ.
Proof By (1.8), the gradient of ϕ(u1, u2, u3) is uniformly bounded for 0 ≤ u1 ≤ S−∞,
0 ≤ u2 ≤ I0, and u3 ≥ 0. There exists L > 0 such that for any u = (u1, u2, u3) and
v = (v1, v2, v3) in �,

|F1(u)(x) − F1(v)(x)|e−μ|x | ≤ Lg(x)|u − v|μ,

where

g(x) := e−μ|x |[
∫ x

−∞
eλ−

1 (x−y)+μ|y|dy +
∫ ∞

x
eλ+

1 (x−y)+μ|y|dy].

Recall that λ−
1 < −μ < μ < λ+

1 . A simple application of L’Hôpital’s rule gives

lim
x→−∞ g(x) = 1

μ + λ+
1

− 1

μ + λ−
1

, lim
x→∞ g(x) = 1

λ+
1 − μ

+ 1

μ − λ−
1

.

Consequently, g(x) is uniformly bounded on R, which implies that F1 is continuous on �.
Similarly, one can show that F2 and F3 are also continuous on �.

Now, we want to prove that F is compact on �; namely, for any bounded sequence
{u(n)} ∈ �, the sequence {Fu(n)} has a convergent subsequence in � with respect to the norm
| · |μ. We first show that for any k ∈ N, there exists a convergent subsequence of {Fu(n)},
denoted by {Fu(n,k)}, on the Banach space C([−k, k],R3) equipped with the maximum
norm. To see this, we note that {Fu(n)} is uniformly bounded because {Fu(n)} are bounded
by S±, I±, R± and these functions are uniformly bounded in C([−k, k],R3). Furthermore,
for any u = (u1, u2, u3)T ∈ �, one can estimate the derivative of each component of Fu as
below:

|[F1(u)]′(x)| ≤ −λ−
1 α1S−∞
ρ1

∫ x

−∞
eλ−

1 (x−y)dy + λ+
1 α1S−∞

ρ1

∫ ∞

x
eλ+

1 (x−y)dy

= 2α1S−∞
ρ1

,

and

|[F2(u)]′(x)| ≤ −λ−
2 (α2 + β − γ − δ)eλ0x0

ρ2

∫ x

−∞
eλ−

2 (x−y)dy

+ λ+
2 (α2 + β − γ − δ)eλ0x0

ρ2

∫ ∞

x
eλ+

2 (x−y)dy

= 2(α2 + β − γ − δ)eλ0x0

ρ2
,
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and

|[F3(u)]′(x)| ≤ −λ−
3

ρ3

∫ x

−∞
eλ−

3 (x−y)(γ eλ0x0 + α3Meσ y)dy

+ λ+
3

ρ3

∫ ∞

x
eλ+

3 (x−y)(γ eλ0x0 + α3Meσ y)dy

= 2γ eλ0x0

ρ3
+ α3Meσ x

ρ3

(
−λ−

3

σ − λ−
3

+ λ+
3

λ+
3 − σ

)

.

Thus, the sequence {Fu(n)} is equi-continuous inC([−k, k],R3). ByArzela–Ascoli theorem,
there exists a convergent subsequence of {Fu(n)}, denoted by {Fu(n,k)}, on C([−k, k],R3),
for any k ∈ N. We now extract a sequence of the diagonal terms: v(n) = Fu(n,n). It follows
that v(n) converges to a function v ∈ C([−k, k],R3) for any k ∈ N. Actually, v is continuous
on R. Since {v(n)} are bounded by S±, I±, R±, so is the limit v. Thus, v ∈ �. Moreover, for
any μ > σ and ε > 0, there exists K ∈ N such that

e−μ|x ||v(n)(x) − v(x)| < ε, |x | ≥ K , n ∈ N.

On the other hand, for any |x | ≤ K , there exists N ∈ N such that

e−μ|x ||v(n)(x) − v(x)| < ε, n ≥ N .

From the above two inequalities, we conclude that v(n) → v in � with respect to the norm
| · |μ, which implies that F is compact. This completes the proof. 
�

5 Existence Result

The following proposition gives the first part of our main theorem.

Proposition 5.1 The map F has a fixed point u = (S, I , R)T ∈ � which corresponds to
a non-trivial traveling wave solution to the Eqs. (1.9)–(1.11). The asymptotic behaviors of
u(x) are given as follows:

u(x) ∼
⎛

⎝
S−∞
eλ0x

0

⎞

⎠ , u′(x) →
⎛

⎝
0
0
0

⎞

⎠ , u′′(x) →
⎛

⎝
0
0
0

⎞

⎠ , x → −∞, (5.1)

u(x) →
⎛

⎝
S∞
0

γ (S−∞−S∞)
γ+δ

⎞

⎠ , u′(x) →
⎛

⎝
0
0
0

⎞

⎠ , u′′(x) →
⎛

⎝
0
0
0

⎞

⎠ , x → ∞. (5.2)

Moreover, we have S′(x) < 0, I (x) ≤ S−∞ − S∞, R′(x) > 0, and
∫ ∞

−∞
(γ + δ)I (x)dx =

∫ ∞

−∞
ϕ(S(x), I (x), R(x))dx = c(S−∞ − S∞). (5.3)

Proof It follows from Lemma 3.4, Lemma 4.1 and Schauder fixed point theorem that the
integral map has a fixed point u = (S, I , R)T ∈ �. By Lemma 2.2, (S, I , R) satisfy the
traveling wave Eqs. (1.9)–(1.11). By squeeze theorem, we observe

u(x) ∼
⎛

⎝
S−∞
eλ0x

0

⎞

⎠ , x → −∞.
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From the integral representation of the derivatives of the integral map (2.6) and L’Hôpital’s
rule, we obtain

u′(x) →
⎛

⎝
0
0
0

⎞

⎠ x → −∞.

Substituting the above two formulas into the traveling wave equations gives

u′′(x) →
⎛

⎝
0
0
0

⎞

⎠ x → −∞.

Now, we integrate (1.9) from −∞ to x :

d1S
′(x) = c[S(x) − S−∞] +

∫ x

−∞
ϕ(S(y), I (y), R(y))dy.

This implies that ϕ(S(y), I (y), R(y)) is integrable on R, and S′(x) is bounded on R; other-
wise, S′(x) → ∞ as x → ∞, which contradicts to the boundedness of S(x). Consequently,
S′′(x) is also bounded on R. Note from (1.10) that

I (x) = 1

ρ

∫ x

−∞
eλ−(x−y)ϕ(S(y), I (y), R(y))dy + 1

ρ

∫ ∞

x
eλ+(x−y)ϕ(S(y), I (y), R(y))dy,

where

λ± := c ± √
c2 + 4d2(γ + δ)

2d2
, ρ := d2(λ

+ − λ−) =
√
c2 + 4d2(γ + δ).

Fubini’s theorem gives
∫ ∞

−∞
I (x)dx = 1

γ + δ

∫ ∞

−∞
ϕ(S(x), I (x), R(x))dx,

where the integrability of ϕ(S(x), I (x), R(x)) yields integrability of I (x). On the other hand,
we have

I ′(x) = λ−

ρ

∫ x

−∞
eλ−(x−y)ϕ(S(y), I (y), R(y))dy

+λ+

ρ

∫ ∞

x
eλ+(x−y)ϕ(S(y), I (y), R(y))dy,

and thus

|I ′(x)| ≤ β(λ+ − λ−)

ρ

∫ ∞

−∞
I (x)dx .

This together with integrability and non-negativity of I (x) implies that I (x) → 0 as x → ∞.
Moreover, by L’Hôpital’s rule, we have I ′(x) → 0 as x → ∞. It then follows from (1.10)
that I ′′(x) also tends to zero as x → ∞. Next, we multiply both sides of (1.9) by e−cξ/d1

and integrate from x to ∞:

e−cx/d1 S′(x) = −
∫ ∞

x
e−cy/d1 ϕ(S(y), I (y), R(y))

d1
dy.
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Hence, S′(x) < 0 for all x ∈ R. This together with boundedness of S′′(x) gives S′(x) → 0
and S(x) → S∞ as x → ∞, for some S∞ < S−∞. It then follows from (1.9) that S′′(x) also
tends to zero as x → ∞. An integration of (1.9) yields

∫ ∞

−∞
ϕ(S(x), I (x), R(x))dx = c(S−∞ − S∞).

From (1.11), we obtain

R(x) = γ

c

∫ x

−∞
I (y)dy + γ

c

∫ ∞

x
e(c/d3)(x−y) I (y)dy,

and

R′(x) = γ

d3

∫ ∞

x
e(c/d3)(x−y) I (y)dy > 0.

By L’Hôpital’s rule, we have

lim
x→∞ R(x) = γ

c

∫ ∞

−∞
I (x)dx = γ

γ + δ
(S−∞ − S∞),

and

lim
x→∞ R′(x) = 0.

Furthermore, it is easily seen from (1.11) that R′′(x) → 0 as x → ∞. Finally, we introduce
the function

J (x) := I (x) + γ + δ

c

∫ x

−∞
I (y)dy + γ + δ

c

∫ ∞

x
e(c/d2)(x−y) I (y)dy,

which satisfies the differential equation−d2 J ′′+cJ ′ = ϕ(S, I , R)with boundary conditions
J (−∞) = 0 and J (∞) = S−∞ − S∞. Note that

J ′(x) = 1

d2

∫ ∞

x
e(c/d2)(x−y)ϕ(S(y), I (y), R(y))dy > 0.

It is readily seen that I (x) < J (x) < S−∞ − S∞ for any x ∈ R. This completes the proof. 
�

6 Non-existence Result

If (S, I , R) is a traveling wave solution to the Eqs. (1.9) and (1.10) with boundary conditions
S(−∞) = S−∞, I (±∞) = 0, R(−∞) = 0, then

I (x) = 1

ρ

∫ x

−∞
eλ−(x−y)ϕ(S(y), I (y), R(y))dy + 1

ρ

∫ ∞

x
eλ+(x−y)ϕ(S(y), I (y), R(y))dy,

where

λ± := c ± √
c2 + 4d2(γ + δ)

2d2
, ρ := d2(λ

+ − λ−) =
√
c2 + 4d2(γ + δ).
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Moreover, we have

I ′(x) = λ−

ρ

∫ x

−∞
eλ−(x−y)ϕ(S(y), I (y), R(y))dy

+λ+

ρ

∫ ∞

x
eλ+(x−y)ϕ(S(y), I (y), R(y))dy.

By L’Hôpital’s rule, we have I ′(±∞) = 0. It then follows from (1.10) that I ′′(±∞) = 0.
Thus, we obtain

I (±∞) = 0, I ′(±∞) = 0, I ′′(±∞) = 0. (6.1)

On the other hand, it follows from (1.9) that

S′(x) = − 1

d1

∫ ∞

x
ec/d1(x−y)ϕ(S(y), I (y), R(y))dy ≤ 0.

This implies that the limit of S(x) as x → ∞ exists. We denote the limit by S∞. Again,
by L’Hôpital’s rule, we have S′(±∞) = 0. On account of (1.9), we observe S′′(±∞) = 0.
Thus,

S(−∞) = S−∞, S(∞) = S∞, S′(±∞) = 0, S′′(±∞) = 0. (6.2)

The non-existence results are given in the following two propositions.

Proposition 6.1 If R0 > 1 and c < c∗, then there does not exist a non-trivial, non-negative
and bounded traveling wave solution of (1.9)–(1.11) such that S(−∞) = S−∞, S(∞) <

S−∞, I (±∞) = 0 and R(−∞) = 0.

Proof Assume to the contrary that (S, I , R) is a traveling wave solution for (1.9)–(1.11).
Note that limx→−∞ ϕ(S(x), I (x), R(x))/I (x) = β > γ + δ. Let τ := (β − γ − δ)/2 > 0.
We may find x̄ ∈ R such that

ϕ(S(x), I (x), R(x))/I (x) − γ − δ > τ, x < x̄ .

Substituting this into (1.10) gives

cI ′(x) − d2 I
′′(x) > τ I (x), x < x̄ .

An integration of the above inequality yields
∫ x

−∞
I (y)dy <

cI (x) − d2 I ′(x)
τ

, x < x̄,

where we have made use of (6.1) and Lebesgue’s dominated convergence theorem. For
convenience, we denote the left-hand side of the above inequality as

K (x) :=
∫ x

−∞
I (y)dy.

Then, the inequality reads K (x) < [cI (x) − d2 I ′(x)]/τ . An integration of this inequality
gives

∫ x

−∞
K (y)dy ≤ cK (x)

τ
, x < x̄ .
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In view of nonegativeness of I (x), the function K (x) is non-decreasing. Consequently, for
any η > 0,

ηK (x − η) ≤
∫ x

x−η

K (y)dy ≤ cK (x)

τ
, x < x̄ .

Wechooseη > 2c/τ such that K (x−η) < K (x)/2 for all x < x̄ . Define L(x) := e−μ0x K (x)
with μ0 := (ln 2)/η > 0. It is readily seen that L(x − η) < L(x) for all x < x̄ . Thus,
L(x) = e−μ0x K (x) is bounded on (−∞, x̄). Recall that cI ′(x) − d2 I ′′(x) > τ I (x) ≥ 0
for x < x̄ . We have cI (x) > d2 I ′(x) and cK (x) > d2 I (x) for x < x̄ . Consequently, the
functions e−μ0x I (x), e−μ0x I ′(x) and e−μ0x I ′′(x) are bounded on (−∞, x̄).

Next, we integrate (1.9) and (1.10) from −∞ to x , and use (6.1) and (6.2) to obtain

c[S(x) − S−∞] = d1S
′(x) −

∫ x

−∞
ϕ(S(y), I (y), R(y))dy,

and

cI (x) = d2 I
′(x) +

∫ x

−∞
ϕ(S(y), I (y), R(y))dy − (γ + δ)

∫ x

−∞
I (y)dy.

For convenience, we denote

�(x) :=
∫ x

−∞
ϕ(S(y), I (y), R(y))dy.

It follows that �(x) = O(eμ0x ) as x → −∞. Furthermore, we multiply the equation
c[S(x) − S−∞] − d1S′(x) = −�(x) by e−cx/d1 and integrate to obtain

[S(x) − S−∞]e−cx/d1 = − 1

d1

∫ ∞

x
e−cy/d1�(y)dy.

Choose any positive μ1 < min{μ0, c/d1, c/d3}. If e−cy/d1�(y) is integrable on R, then
S(x) − S−∞ = O(ecx/d1) and e−μ1x [S(x) − S−∞] → 0 as x → −∞. Otherwise, we have
from L’Hôpital’s rule and �(x) = O(eμ0x ) that

lim
x→−∞ e−μ1x [S(x) − S−∞] = lim

x→−∞
− ∫ ∞

x e−cy/d1�(y)dy

d1e(μ1−c/d1)x
= lim

x→−∞
�(x)e−μ1x

d1μ1 − c
= 0.

Solving the linear Eq. (1.11) gives

R(x) = γ

c

∫ x

−∞
I (y)dy + γ

c

∫ ∞

x
ec(x−y)/d3 I (y)dy.

A similar argument shows that e−μ1x R(x) → 0 as x → −∞. On account of (1.4) and (1.12),
we have

β − ϕ(S(x), I (x), R(x))

I (x)
= O(|S(x) − S−∞| + |I (x)| + |R(x)|),

as x → −∞. Consequently,

lim
x→−∞ e−μ1x [β − ϕ(S(x), I (x), R(x))

I (x)
] = 0.
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Especially, e−μ1x [β − ϕ(S(x), I (x), R(x))/I (x)] is uniformly bounded on the whole real
line. For any μ ∈ (0, μ1), we make a two-side Laplace transform on (1.10):

f0(μ)

∫ ∞

−∞
e−μx I (x)dx = −

∫ ∞

−∞
e−μx I (x)[β − ϕ(S(x), I (x), R(x))

I (x)
]dx,

where f0 is the characteristic function defined in (2.1). By analyticity of Laplace transform,
the two integrals on both sides of the above equation can be analytically continued to all
μ > 0; see [1,22,23]. We rewrite the equation as

∫ ∞

−∞
e−μx I (x)[ f0(μ) + β − ϕ(S(x), I (x), R(x))

I (x)
]dx = 0.

Note that f0(μ) → −∞ as μ → ∞, and β − ϕ(S(x), I (x), R(x))/I (x) is bounded for all
x ∈ R. Thus, the integrand on the left-hand side of the above equation is always negative
for large μ, which leads to a contradiction. This proves the non-existence of non-trivial and
non-negative traveling wave solution. 
�
Proposition 6.2 If R0 ≤ 1, then there does not exist a non-trivial and non-negative traveling
wave solution of (1.9)–(1.11) such that S(−∞) = S−∞, S(∞) < S−∞, I (±∞) = 0 and
R(−∞) = 0.

Proof Assume to the contrary that (S(x), I (x), R(x)) is a non-trivial and non-negative trav-
eling wave solution. Since R0 ≤ 1, we have ϕ(S(x), I (x), R(x)) ≤ (γ + δ)I (x) for all
x ∈ R. It follows from (1.10) that

d

dx
[e−(c/d2)x d

dx
I (x)] = − 1

d2
e−(c/d2)x [ϕ(S(x), I (x), R(x)) − (γ + δ)I (x)] ≥ 0.

Hence, the function e−(c/d2)x I ′(x) is non-decreasing. This together with (6.1) implies that
I ′(x) ≤ 0 for all x ∈ R. Since I (±∞) = 0, we have I (x) = 0 for all x ∈ R, a contradiction.
This completes the proof. 
�

7 Conclusion and Discussion

In this paper, we considered diffusive epidemic models with general incidence rates. By
applying Schauder fixed point theorem, we proved that there exist non-trivial traveling wave
solutions if the basic reproduction number is greater than one and the traveling speed exceeds
a critical value, which is explicitly determined in terms of model parameters. Moreover, we
used a contradiction argument and analytical properties of two-sided Laplace transform to
show that the non-trivial traveling wave solution does not exist if either the basic reproduction
number is not larger than one, or the traveling speed is less than the critical value. Our theorem
generalizes and improves those obtained in [19,20], where the incidence function is restricted
to the standard incidence rate. In particular, we relaxed the technical condition on diffusion
coefficients in [19]. Our results are still valid if the incidence function is non-monotone,
while this non-monotonicity will violate the conditions given in [14,27].

A perturbation technique was used in [26] to a different diffusive system. The main idea
was to prove the existence of traveling wave solutions for perturbed systems and then let the
perturbation parameter decrease to zero. However, it is not easy to apply this perturbation
technique to our model system. First of all, if we use the super- and sub-solutions constructed
in [26], a technical assumption similar to that in [19] shall be imposed in the verification
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of (3.11). Moreover, it is difficult to construct sub-solutions that are independent of the
perturbation parameter, which makes it a challenging task to prove that the traveling wave
solutions of perturbed systems converge to a positive solution during the limiting process.
Eventually, one may need to apply and modify the super- and sub-solutions constructed in
this paper so that they are independent of the perturbation parameter, and then prove the
existence of traveling wave solutions for perturbed and unperturbed systems simultaneously.
This means that the perturbation technique is applicable but not necessary for our model
system.

A possible future project would be the study of traveling wave solutions for diffusive
disease models with more refined compartmental structures to include susceptible, exposed,
infectious, and recovered groups; i.e., the SEIR model [24], or the SEIRS model which takes
the immunity loss of recovered individuals into consideration. Another possible extension of
our results in this paper is to incorporate transmission delay in the disease models [15,22].
Finally, an open and challenging problem in diffusive disease model is to study the stability
and uniqueness of traveling wave solution (if it exists); see [20].
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