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a b s t r a c t

Inverse source problems arise often in real-world applications, such as localizing un-
known groundwater contaminant sources. Being different from Tikhonov regularization,
the quasi-boundary value method has been studied as an effective way for regular-
izing such inverse source problems, which was shown to achieve an optimal order
convergence under suitable assumptions. However, fast direct or iterative solvers for
the resulting large-scale all-at-once linear systems have been rarely studied in the
literature. In this work, we propose and analyze a modified quasi-boundary value
method that leads to a fast diagonalization-based parallel-in-time (PinT) direct solver,
which can achieve a dramatic speedup in CPU times when compared with MATLAB’s
sparse direct solver. In particular, the time-discretization matrix B is shown to be
diagonalizable, and the condition number of its eigenvector matrix V is proven to exhibit
only quadratic growth, which guarantees that the roundoff errors due to diagonalization
is well-conditioned. Several 1D and 2D examples are presented to demonstrate the very
promising computational efficiency of our proposed method, where the CPU times in 2D
cases can be speeded up by three orders of magnitude.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

Let T > 0 and Ω ⊂ Rd(d = 1, 2, 3) be an open and bounded domain with a piecewise smooth boundary ∂Ω . We
onsider the inverse source problem (ISP) [1–3] of reconstructing the unknown space-dependent source term f ∈ L2(Ω)
rom the final condition g = u(·, T ) ∈ H1

0 (Ω), according to a heat equation⎧⎪⎨⎪⎩
ut −∆u = f , in Ω × (0, T ),
u(·, t) = 0, on ∂Ω × (0, T ),
u(·, 0) = φ, in Ω,

u(·, T ) = g, in Ω,

(1)

where φ ∈ H1
0 (Ω) is a given initial condition. In practice, the final condition g is unknown and it is only available as a

noisy measurement gδ ∈ L2(Ω) satisfying ∥g − gδ∥2 ≤ δ for a noise level δ > 0. This leads to an ill-posed inverse problem
hat requires effective numerical regularization techniques [4–7].

Much research has been dedicated to the inverse source problem since 1970s, where the desired source term is usually
ssumed to have a priori form. For f that depends on the state function u, the problem was investigated in [2,8,9]. For f that
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depends on space or time variable only, many regularization methods have been developed such as Fourier method [10],
quasi-reversibility method [3], quasi-boundary value method [11] and simplified Tikhonov regularization method [12]. In
particular, in [3,11,12], the original problem is perturbed by a regularization parameter and the unknown source term is
expressed in the form of a series expansion tailored by a regularizing filter. Following appropriate convergence analysis,
the regularization parameter in these work is determined to balance the approximation accuracy and the stability of
the regularized problem. The Fourier method in [10] solves the problem in the frequency domain and alleviates the ill-
posedness of the problem by cutting off the high frequency components in the source solution, where the cut-off frequency
is also chosen based on a convergence analysis. Such idea that truncates the terms contributing to the ill-posedness is also
seen in [13]. In this work, a finite difference method is used to solve the inverse problem and the resulting linear system
is solved by the singular value decomposition, where the small singular values are filtered out based on generalized cross-
validation criterion [14]. There are some other numerical methods adopted in the research on inverse source problems,
usually in conjunction with a classical regularization technique like Tikhonov method. For example, the boundary element
method [15], the method of fundamental solutions [16–18] and the finite element method [19]. Some iterative algorithms
can be found in [20–23]. For f that is a function of both time and space variables but is additive or separable, we refer
o [24–27]. All of these works are mainly focused on the convergence analysis of various regularization techniques, without
ddressing the practical implementation issue of how to efficiently solve the regularized systems in large-scale setting.
On the other hand, for solving direct (or forward) evolutionary PDEs, many efficient parallelizable numerical algorithms

ave been developed in the last few decades due to the advent of massively parallel computers. Beyond the achieved
igh parallelism in space, a lot of recent advances in various parallel-in-time (PinT) algorithms for solving forward time-
ependent PDE problems were reviewed in [28]. However, the application of such PinT algorithms to ill-posed inverse
DE problems were rarely investigated, except in a short paper [29] about the parareal algorithm for a different parabolic

inverse problem and another earlier paper [30] based on numerical (inverse) Laplace transform techniques in time. Our
proposed fast diagonalization-based PinT direct solver in current work contributes to narrowing in the gap between
two somewhat different communities. One obvious difficulty is how to address the underlying regularization treatment
in the framework of PinT algorithms, which seems to be highly dependent on the regularized problem structure and
discretization schemes. Inspired by several recent works [31–37] on diagonalization-based PinT algorithms, we propose
to redesign the existing quasi-boundary value methods in a structured manner such that the diagonalization-based PinT
direct solver can be successfully employed. Such a PinT direct solver can greatly speed up the quasi-boundary value
methods while achieving a comparable reconstruction accuracy. Recently, such an interesting approach of integrating PinT
direct solver with quasi-boundary method regularization was applied to backward heat conduction problems [38–40],
where a block ω-circulant structure was exploited for developing a fast FFT-based direct PinT solver [41].

Besides the above mentioned ISPs for PDEs based on ordinary integer-order derivatives, there are also several recent
works on solving ISPs in the framework of time-fractional PDEs, to name just a few [42–50]. Again, the majority of
these contributions focuses on the convergence properties of the proposed regularization techniques without discussing
their fast algorithms. For solving related time-fractional diffusion inverse source problems, the authors in [51] proposed
a fast structured preconditioner based on approximate Schur complement and block ω-circulant matrix. However, as
an iterative solver, the underlying convergence analysis for preconditioned GMRES in [51] is a daunting task (due to
nonsymmetric systems) and the Schur complement-based preconditioner cannot be easily parallelized. Our proposed
direct PinT solver does not have such limitations for its practical use. Due to different discretization schemes in time, our
proposed direct PinT solver may not be directly applicable to such time-fractional ISPs. The generalization of our method
to such time-fractional ISPs is interesting but is beyond our current scope.

In this paper we design and analyze a new parameterized quasi-boundary value method (PQBVM) for regularizing
the ISPs, where a well-conditioned diagonalization-based PinT direct solver is developed for its efficient numerical
implementation. The major goal is to improve the overall computational efficiency in terms of CPU times, without
obviously degrading the convergence rates in comparison with existing methods. As major theoretical contributions, the
condition number of the diagonalization of the time discretization matrix is rigorously estimated and the convergence
rate of the new PQBVM is also shown with suitable a priori choice of the regularization parameter. For 2D problems with
a small 643 mesh (see results in Table 4), our direct PinT solver can drastically speed up the CPU times of the standard
QBVM based on sparse direct solver from over 2 mins to about 0.04 s (on a desktop PC).

The rest of this paper is organized as follows. In Section 2, we propose a new parameterized QBVM based on full
finite difference discretization and present a diagonalization-based direct PinT solver based on the derived Kronecker
product system structure. In Section 3, we derive a sufficient condition to assure that the time discretization matrix B can
be diagonalized into B = VDV−1 and, more importantly, we further rigorously estimate the growth rate of the 1-norm
condition number of its eigenvector matrix V with a special choice of the free design parameter. The convergence analysis
with suitable choices of the regularization parameter is given in Section 4. Several numerical examples are presented to
illustrate the high efficiency of the proposed algorithm in Section 5. Finally, some conclusions are made in Section 6.
2
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2. A new quasi-boundary value method and its PinT implementation

The QBVM in [11] for regularizing (1) solves the following well-posed regularized problem⎧⎪⎨⎪⎩
ut −∆u = f , in Ω × (0, T ),
u(·, t) = 0, on ∂Ω × (0, T ),
u(·, 0) = φ, in Ω,

u(·, T )+βf (·) = gδ, in Ω,

(2)

here β > 0 is a regularization parameter to be chosen based on the noise level δ > 0. Compared with the Tikhonov
egularization [12] of minimizing a regularized functional ∥Kf −gδ∥2

2+γ ∥f ∥2
2 with K being a compact solution operator and

γ being a regularization parameter, the QBVM provides a better control of the discretized system structure. In particular,
the QBVM does not need to explicitly construct K (and its adjoint K ∗) or use any eigenfunctions of the spatial differential
perator that are unknown in general cases.
We consider a 2D square domain Ω = (0, L)2 with finite difference discretization in space and time, which can be

asily adapted to 1D and 3D regular spatial domains. For an irregular spatial domain, finite element discretization can
lso be used in space. Let τ = T/n and h = L/(M + 1) for two given positive integers n and M , we partition the time
nterval [0, T ] uniformly into 0 = t0 < t1 < · · · < tn = T with tj = jτ , and discretize the 2D space domain Ω = [0, L]2

nto a uniform mesh of grid nodes Ωh = {(xi = ih, yl = lh)|0 ≤ i ≤ (M + 1), 0 ≤ l ≤ (M + 1)}. Denote all the interior grid
odes by Ωh = {(xi, yl)|1 ≤ i ≤ M, 1 ≤ l ≤ M}. For any function u(x, y, t), let uj

il be the finite difference approximation
f u(xi, yl, tj). Define the concatenated column vector uj

= [uj
11, u

j
21, . . . , u

j
M1, . . . , u

j
1M , u

j
2M , . . . , u

j
MM ]

T in a lexicographic
rder. Similarly, let fil = f (xi, yl) and define the concatenated column vector fh = [f11, f21, . . . , fM1, . . . , f1M , f2M , . . . , fMM ]

T.
oth φh and gδ,h are defined analogously. Let ∆h denote the discretized Laplacian matrix with the second-order accurate
ive-point central finite difference and the homogeneous Dirichlet boundary conditions. In matrix Kronecker product
otation [52], we explicitly have ∆h = (IM ⊗ Qh + Qh ⊗ IM ) ∈ Rm×m, where m = M2 is the degree of freedom in
pace, IM ∈ RM×M is an identity matrix, and Qh = (1/h2)tridiag{1,−2, 1} ∈ RM×M is the tridiagonal 1D discrete Laplacian
atrix. With the central finite difference in space and a backward Euler scheme in time, the full discretization of (2) reads

with u0
= φh being the given initial condition){
(uj

− uj−1)/τ −∆huj
− fh = 0, j = 1, 2, . . . , n,

un
+ βfh = gδ,h,

(3)

hich can be coupled into a nonsymmetric sparse linear system

Âhuh = b̂h ∈ Rm(n+1), (4)

here ( here Ih ∈ Rm×m is an identity matrix of the same size as ∆h ∈ Rm×m)

Âh =

⎡⎢⎢⎢⎢⎢⎢⎣

βIh 0 0 · · · 0 Ih
−Ih Ih/τ −∆h 0 · · · 0 0
−Ih −Ih/τ Ih/τ −∆h 0 · · · 0
... 0

. . .
. . .

. . . 0
−Ih 0 · · · −Ih/τ Ih/τ −∆h 0
−Ih 0 · · · 0 −Ih/τ Ih/τ −∆h

⎤⎥⎥⎥⎥⎥⎥⎦ , uh =

⎡⎢⎢⎢⎢⎢⎢⎣

fh
u1

u2

...

un−1

un

⎤⎥⎥⎥⎥⎥⎥⎦ , b̂h =

⎡⎢⎢⎢⎢⎢⎢⎣

gδ,h
φh/τ

0
...

0
0

⎤⎥⎥⎥⎥⎥⎥⎦ .

learly, the (1, 1) block βIh is different from the other diagonal blocks (Ih/τ −∆h), which prevents a Kronecker product
ormulation of Âh desired in direct PinT algorithm as shown in our new parameterized QBVM.

.1. A new quasi-boundary value method based on finite difference scheme

To get a better structured linear system that allows a fast direct PinT solver upon finite difference discretization, we
ropose the following new parameterized QBVM (PQBVM)⎧⎪⎨⎪⎩

ut −∆u = f , in Ω × (0, T ),
u(·, t) = 0, on ∂Ω × (0, T ),
u(·, 0) = φ, in Ω,

u(·, T ) + β(αf (·) −∆f (·)) = gδ, in Ω,

(5)

here α ≥ 0 is a free design parameter to control the condition number of the subsequent direct PinT solver. In general
ith α ̸= 0, we expect the above new PQBVM to have a similar convergence rate as the standard QBVM in [11] due to
he shared term f . We highlight that the special choice of α = 0 in fact leads to the known modified QBVM (MQBVM)
stablished in [44] within the framework of time-fractional diffusion equation. However, the authors in [44] focused on
tudying the improved convergence rates of MQBVM, without discussing fast algorithms for solving the regularized linear
ystems. In this paper, we propose the above PQBVM mainly from the perspective of designing regularized linear systems

ith better structures that are suitable for constructing direct PinT algorithms, while at the same time retaining the

3
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convergence rates of QBVM. We emphasize that α ≥ 0 should not be treated as another regularization parameter like
β > 0 and it will be chosen purely for facilitating the development of fast direct PinT system solvers.

With the same central finite difference scheme in space and backward Euler scheme in time as used in the above
discretization (3), the full discretization of (5) leads to{

(uj
− uj−1)/τ −∆huj

− fh = 0, j = 1, 2, . . . , n,
un

+ β(αfh −∆hfh) = gδ,h,
(6)

which, after dividing the last equation by β , can be reformulated into a nonsymmetric linear system

Ahuh = bh ∈ Rm(n+1), (7)

where

Ah =

⎡⎢⎢⎢⎢⎢⎢⎣

αIh −∆h 0 0 · · · 0 Ih/β
−Ih Ih/τ −∆h 0 · · · 0 0
−Ih −Ih/τ Ih/τ −∆h 0 · · · 0
... 0

. . .
. . .

. . . 0
−Ih 0 · · · −Ih/τ Ih/τ −∆h 0
−Ih 0 · · · 0 −Ih/τ Ih/τ −∆h

⎤⎥⎥⎥⎥⎥⎥⎦ , bh =

⎡⎢⎢⎢⎢⎢⎢⎣

gδ,h/β
φh/τ

0
...

0
0

⎤⎥⎥⎥⎥⎥⎥⎦ .

e can now rewrite the block-structured matrix Ah in (7) into an elegant Kronecker product form

Ah = B ⊗ Ih − It ⊗∆h (8)

where It ∈ R(n+1)×(n+1) denotes an identity matrix and the time discretization matrix B is given by

B =

⎡⎢⎢⎢⎢⎢⎢⎣

α 0 0 · · · 0 1/β
−1 1/τ 0 · · · 0 0
−1 −1/τ 1/τ 0 · · · 0
... 0

. . .
. . .

. . . 0
−1 0 · · · −1/τ 1/τ 0
−1 0 · · · 0 −1/τ 1/τ

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R(n+1)×(n+1). (9)

Notice that the identity matrices Ih and It are of different size, due to the different discretization in space and time,
respectively. Such a Kronecker product reformulation (8) is crucial to develop our following fast direct PinT solver, which
requires the matrix B to be diagonalizable. Since B is nonsymmetric and has a nontrivial structure, its diagonalizability is
ot straightforward and will be discussed separately in Section 3.

.2. A diagonalization-based direct PinT solver

Suppose B has a diagonalization B = VDV−1, where D = diag(d1, . . . , dn+1) with dj being the jth eigenvalue of B and
the jth column of the invertible matrix V gives the corresponding eigenvector. Then we can factorize Ah into the product
form

Ah = (VDV−1) ⊗ Ih − It ⊗∆h = (V ⊗ Ih)  
Step-(a)

(D ⊗ Ih − It ⊗∆h)  
Step-(b)

(V−1
⊗ Ih)  

Step-(c)

.

ence, let Z = mat(bh) ∈ Rm×(n+1), the solution uh = A−1
h bh can be computed via three steps:

Step-(a) S1 = ZV−T,

Step-(b) S2(:, j) =
(
djIh −∆h

)−1 S1(:, j), j = 1, 2, . . . , n + 1,

Step-(c) uh = vec(S2V T),

(10)

here S1,2(:, j) denotes the jth column of S1,2 and V T defines the non-conjugate transpose of V . Here we have used the
fficient Kronecker product property (C ⊗ Ih)vec(X) = vec(XCT) for any compatible matrices C and X . Clearly, the (n+1)
ully independent complex-shifted linear systems in Step-(b) can be computed in parallel. Notice that a different spatial
iscretization will only affect the matrix ∆h in Step-(b).
Let κp(V ) = ∥V∥p∥V−1

∥p with p = 1, 2,∞ denotes the matrix p-norm condition number of V . Numerically, the overall
ound-off errors of such a three-step diagonalization-based PinT direct solver is proportional to the condition number of
, see Lemma 3.2 in [53] for a detailed round-off error analysis. Hence, it is essential to design the matrix B so that the
ondition number of V is well controlled for stable computations. In particular, it would become numerically unstable if
4
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κ(V ) grows exponentially with respect to n. In view of the discretization errors in space and time, it is acceptable to have
(V ) = O(nq) with a small q (say q ≤ 3).

. The diagonalization of B and the condition number of V

In this section we will prove that the matrix B in (9) with a special choice of α is indeed diagonalizable and also provide
xplicit formulas for computing its eigenvector matrix V and estimating its condition number. More specifically, we will
rove that κ1(V ) = O(cn) with c = β/τ 2 under the special choice α = α∗ := 1/τ + τ/β . Although the trivial choice of
α = 0 can be numerically used in the diagonalization-based direct PinT solver, there is no theoretical guarantee that the
corresponding matrix B is diagonalizable and/or the eigenvector matrix V is well-conditioned for stable computation. In
particular, the corresponding analysis based on the trivial choice of α = 0 seems to be far too difficult to perform due
to much more complicated eigenvalue/eigenvector expressions, which shows the necessity of introducing the free design
parameter α.

Let λ be an eigenvalue of B with nonzero eigenvector v = [v0, . . . , vn]
T. By Bv = λv we have

αv0 + vn/β = λv0, (11)

−v0 + v1/τ = λv1, (12)

nd

− v0 − vk−1/τ + vk/τ = λvk, k = 2, . . . , n. (13)

Obviously, v0 ̸= 0 and λ ̸= 1/τ since otherwise it leads to v = 0. Without loss of generality, we choose v0 = 1/τ . It is
readily seen from (12) and (13) that

vk = µ+ · · · + µk
=
µk+1

− µ

µ− 1
, k = 1, . . . , n, (14)

here µ = 1/(1 − τλ) ̸= 1. Assume α = α∗ := 1/τ + τ/β and denote c = β/τ 2. Substituting v0 = 1/τ and the above
ormula for vn into Eq. (11) yields

1
τ 2

+
1
β

+
1
β
(µ+ · · · + µn) =

λ

τ
,

hich, upon multiplying both sides by βµ, reduces to

c + µ+ · · · + µn+1
= 0. (15)

he (n + 1) roots of (15) determine the (n + 1) eigenvalues of B. For convenience, we define

ψ(µ) := (µ− 1)(c + µ+ · · · + µn+1) = µn+2
+ (c − 1)µ− c. (16)

s a sufficient condition for guaranteeing the diagonalizability of B, we have the following result.

emma 3.1. If α = α∗ := 1/τ + τ/β and c := β/τ 2 > 1, then the matrix B has n + 1 distinct eigenvalues. In particular,
his implies the nonsymmetric matrix B is indeed diagonalizable.

roof. It suffices to prove that Eq. (15) has no repeated roots. Assume to the contrary that µ = µ0 is a repeated root of
15). We then have ψ(µ0) = ψ ′(µ0) = 0. From ψ ′(µ0) = 0 we obtain

µn+1
0 = (1 − c)/(n + 2).

ubstituting this into ψ(µ0) = 0 gives

µ0 =
c(n + 2)

(c − 1)(n + 1)
.

oupling the above two equations yields

cn+1(n + 2)n+2
+ (c − 1)n+2(n + 1)n+1

= 0,

which contradicts to the condition c > 1. This completes the proof. □

Denote by µ1, . . . , µn+1 the distinct roots of Eq. (15). The eigenvalues of B are λk = (1−1/µk)/τ with k = 1, . . . , n+1.
The above eigenvector expression (14) implies that the eigenvector (after rescaled by (µk − 1)) corresponding to the
eigenvalue λk can be chosen as

v(k)
= [(µ − 1)/τ , µ2

− µ , . . . , µn+1
− µ ]

T.
k k k k k

5
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Hence, we have the eigendecomposition B = Vdiag{λ1, . . . , λn+1}V−1 with the eigenvector matrix

V =

⎡⎢⎢⎢⎣
(µ1 − 1)/τ · · · (µn+1 − 1)/τ
µ2

1 − µ1 · · · µ2
n+1 − µn+1

...
...

µn+1
1 − µ1 · · · µn+1

n+1 − µn+1

⎤⎥⎥⎥⎦ . (17)

We remark that VΦ is also an eigenvector matrix for any nonsingular diagonal matrix Φ .
The following lemma shows that the roots of Eq. (15) are located in the annulus 1 < |µ| < (2c − 1)1/(n+1) on the

complex plane. This implies |τλk − 1| =
1

|µk|
∈ ((2c − 1)−1/(n+1), 1).

Lemma 3.2. Let µ1, . . . , µn+1 be distinct roots of Eq. (15). If c > 1, then |µk| > 1 and |µk|
n+1 < 2c−1 for k = 1, . . . , n+1.

In particular, this implies ℜ(λk) > 0 for k = 1, . . . , n + 1.

Proof. It is obvious from c > 1 that µk ̸= 1. We claim that |µk| > 1; otherwise, we obtain from ψ(µk) = 0 that

c = µn+2
k + (c − 1)µk ≤ |µk|

n+2
+ (c − 1)|µk| ≤ c,

which is satisfied if and only if µk = 1, a contradiction. Next, it follows from ψ(µk) = 0 and |µk| > 1 that

|µn+1
k | = |c/µk − (c − 1)| ≤ c/|µk| + |c − 1| < 2c − 1.

Clearly, with µk = 1/(1 − τλk) we have

1 − τℜ(λk) = ℜ(1 − τλk) ≤ |1 − τλk| = 1/|µk| < 1,

which implies ℜ(λk) > 0 for k = 1, . . . , n + 1. The proof is completed. □

To find an explicit expression for the inverse matrix W = V−1, we shall make use of the Lagrange interpolation
polynomials (such that Lj(µl) = δj,l with δj,l being the Kronecker delta)

Lj(µ) =

∏
1≤k≤n+1,k̸=j

µ− µk

µj − µk
=

n+1∑
k=1

Ljkµk−1, j = 1, . . . , n + 1, (18)

here Ljk = L(k−1)
j (0)/(k − 1)! is the coefficient of µk−1 in the polynomial expression of Lj(µ). Let U = [Ukl]n+1

k,l=1 be the
andermonde matrix with Ukl = µk−1

l and L =
[
Ljk
]n+1
j,k=1. It follows from the identities Lj(µl) =

∑n+1
k=1 Ljkµ

k−1
l = δj,l that

U = I with I being an identity matrix of size (n + 1).

emma 3.3. Let W = V−1
=
[
Wjk

]n+1
j,k=1. We have the following expressions

Wjk =

⎧⎨⎩
Lj,k+1 − Lj(1)/(n + c + 1), 1 < k < n + 1,
−Lj(1)/(n + c + 1), k = n + 1,
cτLj(1)/(n + c + 1) − τLj1, k = 1.

(19)

roof. First, we consider the case k > 1. It follows from (17) and VW = I that
n+1∑
j=1

(µj − 1)Wjk = 0,

nd
n+1∑
j=1

(µl
j − µj)Wjk =

{
1, l = k,
0, l > 1, l ̸= k.

For convenience, we denote Sk =
∑n+1

j=1 Wjk. It is readily seen from the above equations that

n+1∑
j=1

µl
jWjk =

{
Sk + 1, l = k,
Sk, l ̸= k.

(20)

Recall that µ1, . . . , µn+1 are the roots of the Eqs. (15); namely, c +
∑n+1

l=1 µ
l
j = 0. We then obtain

0 = c
n+1∑

Wjk +

n+1∑ n+1∑
µl

jWjk = cSk +

⎛⎝ n+1∑
Sk

⎞⎠+ (Sk + 1) = cSk + (n + 1)Sk + 1,

j=1 l=1 j=1 l=1,l̸=k

6
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which implies Sk = −1/(n+ c + 1) is independent of k. Now, we multiply both sides of (20) by Lm,l+1 and then add from
l = 0 to l = n to find

Wmk =

n+1∑
j=1

Lm(µj)Wjk =

n∑
l=0

Lm,l+1Sk +

{
Lm,k+1, k < n + 1,
0 , k = n + 1

= −
Lm(1)

n + c + 1
+

{
Lm,k+1, k < n + 1,
0 , k = n + 1.

Next, we consider the case k = 1. It follows from (17) and VW = I that

n+1∑
j=1

(µj − 1)Wj1 = τ ,

and
n+1∑
j=1

(µl
j − µj)Wj1 = 0, l > 1.

For convenience, we denote S1 =
∑n+1

j=1 Wj1. It is readily seen from the above equations that

n+1∑
j=1

µl
jWjk =

{
S1, l = 0,
S1 + τ , l = 1, . . . , n + 1..

(21)

Recall that µ1, . . . , µn+1 are the roots of the Eqs. (15). We then obtain

0 = c
n+1∑
j=1

Wjk +

n+1∑
l=1

n+1∑
j=1

µl
jWjk = cS1 + (n + 1)(S1 + τ ),

which implies S1 = −(n+1)τ/(n+ c +1). Now, we multiply both sides of (21) by Lm,l+1 and then add from l = 0 to l = n
to find

Wm1 =

n+1∑
j=1

Lm(µj)Wjk = Lm1S1 +

n∑
l=1

Lm,l+1(S1 + τ ) = −τLm1 +
cτLm(1)
n + c + 1

.

his completes the proof. □

The following lemma gives an explicit formula for Ljk, which will be used to estimate ∥W∥1.

emma 3.4. Let Ljk with 1 ≤ j, k ≤ n + 1 be the coefficient of µk−1 in the polynomial expression of Lagrange interpolation
olynomial Lj(u) defined in (18). We have

Ljk =
µn+2−k

j − 1

(n + 2)µn+1
j + c − 1

=
µ1−k

j − µ−n−1
j

n + 2 + (c − 1)µ−n−1
j

. (22)

roof. Recall from (16) that ψ(µ) = (µ− 1)(c +µ+ · · · +µn+1). Since µ1, . . . , µn+1 are distinct roots of the polynomial
equation c + µ+ · · · + µn+1

= 0, we can factor the polynomial as

c + µ+ · · · + µn+1
=

n+1∏
k=1

(µ− µk).

Consequently, ψ(µ) = (µ− 1)(µ− µ1) · · · (µ− µn+1) and

ψ(µ)
(µ− 1)(µ− µj)

=

∏
1≤k≤n+1,k̸=j

(µ− µk).

e denote

aj =

∏
(µj − µk) = lim

µ→µj

ψ(µ)
(µ− 1)(µ− µj)

=
ψ ′(µj)
µj − 1

.

1≤k≤n+1,k̸=j

7
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On the other hand, we obtain from (18) that

c + µ+ · · · + µn+1
=

n+1∏
k=1

(µ− µk) = aj(µ− µj)Lj(u) = aj(µ− µj)
n+1∑
k=1

Ljkµk−1

=aj[Lj,n+1µ
n+1

+ (Ljn − µjLj,n+1)µn
+ · · · + (Lj1 − µjLj2)µ− µjLj1].

omparing the polynomial coefficients on both side of the equation gives c = −ajµjLj1, and

1 = aj(Lj1 − µjLj2) = · · · = aj(Ljn − µjLj,n+1) = ajLj,n+1.

It is readily seen that

ajLjk = 1 + µj + · · · + µn+1−k
j =

µn+2−k
j − 1

µj − 1
.

his together with aj = ψ ′(µj)/(µj − 1) and (16) proves (22). □

To show that |Ljk| = O(1/n) uniformly for all 1 ≤ j, k ≤ n + 1, we need the following lemma.

Lemma 3.5. Assume c > 1 and n > 11. Let µ1, . . . , µn+1 be the distinct roots of (15). We have |n + 2 + (c − 1)µ−n−1
j | > n/2

for all j = 1, . . . , n + 1.

Proof. We will prove by contradiction. Assume to the contrary that |n + 2 + (c − 1)µ−n−1
j | ≤ n/2 for some µj = reiθ

with r > 1 and θ ∈ [0, π]. Let b = rn+1/(c − 1) > 0, we then have

|b(n + 2) + cos[(n + 1)θ ] − i sin[(n + 1)θ ]| ≤ bn/2,

which gives

cos[(n + 1)θ ] < 2b + cos[(n + 1)θ ] < −
bn
2
, | sin[(n + 1)θ ]| ≤

bn
2
. (23)

ote from (15) and (16) that µn+1
j = c/µj − (c − 1), which upon dividing both sides by (c − 1) gives

b (cos[(n + 1)θ ] + i sin[(n + 1)θ ]) = a(cos θ − i sin θ ) − 1,

here a = c/[r(c − 1)] > 0. Hence we have

b =

√
1 − 2a cos θ + a2, b cos[(n + 1)θ ] = a cos θ − 1, b sin[(n + 1)θ ] = −a sin θ. (24)

The third equality together with θ ∈ [0, π] implies sin[(n + 1)θ ] = −(a/b) sin θ ≤ 0, which gives θ ≥ π/(n + 1). We
urther obtain from the three equalities in (24) and two inequalities in (23) that

0 < 1 − 2a cos θ + a2 = b2 <
b2n
2
< −b cos[(n + 1)θ ] = 1 − a cos θ < b < −

2
n
cos[(n + 1)θ ] <

2
n

and hence (note the inequality 1 − 2a cos θ + a2 < 1 − a cos θ gives a < cos θ )

a sin θ = b| sin[(n + 1)θ ]| ≤
b2n
2
<

2
n
, 1 −

2
n
< a cos θ < a < cos θ. (25)

Consequently, we obtain (n − 2) < na, θ ∈ [π/(n + 1), π/2) such that θ < tan θ , and
π (n − 2)
n(n + 1)

< θ cos θ < sin θ <
2
na
<

2
n − 2

, (26)

hich is not true for n > 11 and hence contradicts our assumption. This completes our proof. □

Finally, we are ready to estimate the condition number of the eigenvector matrix V in (17).

Theorem 3.1. If α = α∗ := 1/τ + τ/β and c = β/τ 2 > 1, then κ1(V ) = ∥V∥1∥W∥1 = O(cn).

Proof. Lemma 3.2 implies |µk|
j < 2c − 1 for any 1 ≤ j, k ≤ n + 1. It is easily seen from (17) that

n+1∑
j=1

|Vjk| = |µk − 1|/τ +

n+1∑
j=2

|µ
j
k − µk| ≤ (2c)/τ + (4c − 2)n = (2c/T )n + (4c − 2)n.

n particular, ∥V∥1 = O(cn). Lemma 3.2 also implies |µj| > 1 for any 1 ≤ j ≤ n + 1. Assume n > 11. It then follows from
emmas 3.4 and 3.5 that

|Ljk| ≤
|µj|

1−k
+ |µj|

−n−1

−n−1 <
1 + 1
n/2

= 4/n

|n + 2 + (c − 1)µj |

8
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Fig. 1. Comparison of the condition number κ1(V ) and its estimated bounds with two different choices of α and β .

for all 1 ≤ j, k ≤ n + 1. This together with Lemma 3.3 and |Lj(1)| = |
∑n+1

k=1 Ljk| <
4(n+1)

n yields

Wjk ≤

⎧⎪⎪⎨⎪⎪⎩
|Lj,k+1| +

|Lj(1)|
n+c+1 ≤

4
n +

4(n+1)
n(n+c+1) ≤

8
n , 1 < k < n + 1,

|Lj(1)|
n+c+1 ≤

4(n+1)
n(n+c+1) <

4
n , k = n + 1,

cτ |Lj(1)|
n+c+1 + τ |Lj1| ≤

4cτ (n+1)
n(n+c+1) +

4τ
n <

4τ (n+1)
n +

4τ
n =

4τ (n+2)
n , k = 1.

he above inequalities can be combined into |Wjk| < [8 + 4τ (n + 2)]/n for all 1 ≤ j, k ≤ n + 1 with n > 11. In
articular, ∥W∥1 = O(1). Therefore, the condition number of the eigenvector matrix V with respect to the matrix 1-norm
s κ1(V ) = ∥V∥1∥W∥1 = O(cn). This completes the proof. □

Our subsequent convergence analysis shows that with α = α∗ the choice of regularization parameter β = τδ1/2 gives
n O(δ1/2) convergence rate, which yields a provable condition number estimate κ1(V ) = O(δ1/2n/τ ) = O(δ1/2n2). We
emark that the trivial choice α = 0 may also work well in numerical, but the corresponding condition number of V can
e larger and it is more difficult to estimate due to very complicated characteristic equations for the eigenvalues of B.
Fig. 1 illustrates the two very different growth rates of the condition number of V corresponding to the MQBVM (with
= 0, β = δ) and our PQBVM (with α = α∗, β = τδ1/2), respectively. For a large mesh size n and noise level δ, the

ondition number of V with α = α∗ is indeed several order of magnitude smaller than the trivial case with α = 0,
hich also numerically validated the estimated condition number growth rate with the optimized choice α = α∗. This

mprovement is achieved through the above rigorous detailed analysis.

. Convergence analysis

In this section, we will analyze the convergence rate of our proposed PQBVM, where the optimized parameter
= α∗ = 1/τ + τ/β leads to a mesh-dependent regularization parameter β > 0. We emphasize that the presented

onvergence analysis is different from the MQBVM [44] case with α = 0.
Let A = −∆ and define a Hilbert function space H = H1

0 (Ω) equipped with the standard L2 norm

∥f ∥2 := (f , f )1/2 =

(∫
Ω

f 2dx
) 1

2

.

Then the self-adjoint operator A admits a set of orthonormal eigenfunctions {Xl}l≥1 in H , associated to a set of eigenvalues
{λl}l≥1 such that AXl = λlXl with 0 < λ1 < λ2 < · · · and liml→∞ λl = +∞. Given any g ∈ H , it has a series expansion

=
∑

∞

l=1(g, Xl)Xl, with (g, Xl) :=
∫
Ω
gXldx for all l. We assume the measured data gδ(x) ∈ L2(Ω) and it satisfies

∥g − gδ∥2 ≤ δ. (27)

e also impose a priori bound for the heat source, that is,

∥f ∥Hp(Ω) :=

(
∞∑
λ
p
l (f , Xl)2

) 1
2

≤ Ef , p ≥ 0, (28)

l=1

9
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where Ef > 0 is a constant. In particular, when p = 0, (28) is reduced to the L2 norm, that is

∥f ∥H0(Ω) =

(
∞∑
l=1

(f , Xl)2
)1/2

= ∥

∞∑
l=1

(f , Xl)Xl∥2 = ∥f ∥2 =

(∫
Ω

f 2dx
) 1

2

. (29)

onsider the exact noisy-free problem (1), by separation of variables and the initial condition φ =
∑

∞

l=1(φ, Xl)Xl, the
unknown solution function u can be expressed as (by solving the sequence of separated ODE initial value problem:
u′

l(t) + λlul(t) = (f , Xl) with ul(0) = (φ, Xl))

u(·, t) =

∞∑
l=1

ul(t)Xl =

∞∑
l=1

e−λlt
(
(f , Xl)

eλlt

λl
+ cl

)
Xl, cl = (φ, Xl) −

(f , Xl)
λl

. (30)

pplying the final time condition u(·, T ) = g =
∑

∞

l=1(g, Xl)Xl, we further obtain

u(·, T ) =

∞∑
l=1

(
1 − e−λlT

λl
(f , Xl) + e−λlT (φ, Xl)

)
Xl =

∞∑
l=1

(g, Xl)Xl = g, (31)

hich gives the exact source expression

f =

∞∑
l=1

(f , Xl)Xl, with (f , Xl) =
λl

1 − e−λlT

(
(g, Xl) − e−λlT (φ, Xl)

)
. (32)

Clearly, this exact formula (32) is unstable for reconstructing f with a noisy gδ since λl → ∞ will magnify the noise,
unless certain noise filters or regularization techniques are incorporated. Similarly, we can obtain the representation for
the regularized solutions. See (37) and (38) below.

Now we give the error estimate between the regularized solution and the exact solution.

Theorem 4.1. Let f δα,β (x) be the regularized solution of the problem (5) with the measured data gδ satisfying (27). Let f (x) be
the exact solution of the problem (1) and satisfy a priori condition (28) for any p ≥ 0. Then, by fixing α = α∗ = 1/τ + τ/β ,
there holds

(1) for 0 < p < 2, if we choose β = τ

(
δ
Ef

) 2
p+2

, we have

∥f δα,β − f ∥2 ≤ C1E
2

p+2
f δ

p
p+2 + O(τ

p
2 ); (33)

(2) for 2 ≤ p < 4, if we choose β = τ

(
δ
Ef

) 1
2
, we have

∥f δα,β − f ∥2 ≤

(
1 + C2(Ef δ)

1
2 max

{
1,
(
δ

Ef

) p−2
4
})

(Ef δ)
1
2 + O(τ ); (34)

(3) for p ≥ 4, if we choose β =
τ

√
τ+1

(
δ
Ef

) 1
2
, we have

∥f δα,β − f ∥2 ≤ C3
√
τ + 1(Ef δ)

1
2 + O(τ ); (35)

here C1, C2, C3 are positive constants that only depend on p, T , and λ1.

roof. Let fα,β be the noise-free regularized solution. By the triangular inequality, we have

∥f δα,β − f ∥2 ≤ ∥f δα,β − fα,β∥2 + ∥fα,β − f ∥2, (36)

here each term will be estimated separately based on the corresponding series expression.
By the separation of variables and the given side conditions, we can verify the following expressions

(fα,β , Xl) =
λl

1 − e−λlT + αβλl + βλ2l

(
(g, Xl) − e−λlT (φ, Xl)

)
(37)

(f δα,β , Xl) =
λl

1 − e−λlT + αβλ + βλ2

(
(gδ, Xl) − e−λlT (φ, Xl)

)
. (38)
l l

10
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∥f δα,β − fα,β∥2 =∥

∞∑
l=1

λl

1 − e−λlT + αβλl + βλ2l
(gδ − g, Xl)Xl∥2

≤ sup
l≥1

(
λl

1 − e−λlT + αβλl + βλ2l

)
∥gδ − g∥2

≤ sup
l≥1

(
1

γ1
λl

+ αβ + βλl

)
δ ≤

δ

2
√
γ1β + αβ

,

where γ1 := 1 − e−λ1T > 0. When α = α∗ = 1/τ + τ/β , we have

∥f δα,β − fα,β∥2 ≤
δ

2
√
γ1β + β/τ + τ

≤
τδ

β
. (39)

eanwhile, based on (32) and (37), the error between the noise-free regularized solution and the exact solution satisfies

∥fα,β − f ∥2 ≤


∞∑(

λl

1 − e−λlT + αβλl + βλ2l
−

λl

1 − e−λlT

) (
(g, Xl) − (φ, Xl)e−λlT

)
Xl


2

=

(
∞∑
l=1

(
λl

1 − e−λlT + αβλl + βλ2l
−

λl

1 − e−λlT

)2 (
(g, Xl) − (φ, Xl)e−λlT

)2) 1
2

=

(
∞∑
l=1

(
αβλl + βλ2l

1 − e−λlT + αβλl + βλ2l

)2 1
λ
p
l

λ
p
l λ

2
l(

1 − e−λlT
)2 ((g, Xl) − (φ, Xl)e−λlT

)2) 1
2

≤

(
sup
l≥1

Al

)( ∞∑
l=1

λ
p
l (f , Xl)2

) 1
2

=

(
sup
l≥1

Al

)
∥f ∥Hp(Ω) ≤

(
sup
l≥1

Al

)
Ef ,

here

Al =
αβλl + βλ2l

(1 − e−λlT + αβλl + βλ2l )λ
p
2
l

=
αβλ

1− p
2

l + βλ
2− p

2
l

1 − e−λlT + αβλl + βλ2l
≤

αβλ
1− p

2
l

γ1 + αβλl
+

βλ
2− p

2
l

γ1 + βλ2l
.

ccording to Lemma 2.7 in [44], we can obtain

αβλ
1− p

2
l

γ1 + αβλl
≤

{
C4(αβ)

p
2 , 0 < p < 2,

C5αβ, p ≥ 2,
and

βλ
2− p

2
l

γ1 + βλ2l
≤

{
C6β

p
4 , 0 < p < 4,

C7β, p ≥ 4,

where Ci, i = 4, 5, 6, 7, are positive constants that only depend on p, T , and λ1, which leads to

Al ≤

⎧⎪⎨⎪⎩
C4(αβ)

p
2 + C6β

p
4 , 0 < p < 2,

C5αβ + C6β
p
4 , 2 ≤ p < 4,

C5αβ + C7β, p ≥ 4.
(40)

or α = α∗ = 1/τ + τ/β , combining (39), (40) and the fact αβ = β/τ + τ ≥ 2
√
β , we show the desired error estimates

in the following three different cases depending on the range of p:
Case (1): when 0 < p < 2, we have (due to (a + b)p ≤ 2p(ap + bp) for any a > 0, b > 0, p > 0)

Al ≤ C4(αβ)
p
2 + C62−

p
2 (αβ)

p
2 ≤ C̃1(β/τ + τ )

p
2 ≤ C̃12

p
2 ((β/τ )

p
2 + τ

p
2 ),

hen it holds that

∥f δα,β − f ∥2 ≤
τδ

β
+ C̃12

p
2 ((β/τ )

p
2 + τ

p
2 )Ef ≤

τδ

β
+ C̃2(β/τ )

p
2 Ef + O(τ

p
2 ), (41)

which, upon choosing β = τ

(
δ
Ef

) 2
p+2

such that τδ
β

= (β/τ )
p
2 Ef , gives the desired error estimate as in (33) with C1 = 1+C̃2.

Here C̃1, C̃2 are positive constants that only depend on p, T , and λ1.
Case (2): when 2 ≤ p < 4, we have

A ≤ C αβ + C 2−
p
2 (αβ)

p
2 , (42)
l 5 6

11
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and therefore

∥f δα,β − f ∥2 ≤
τδ

β
+

(
C5(β/τ + τ ) + C62−

p
2 (β/τ + τ )

p
2

)
Ef

≤
τδ

β
+

(
C5(β/τ + τ ) + C6((β/τ )

p
2 + τ

p
2 )
)
Ef

≤
τδ

β
+ C2 max{β/τ, (β/τ )

p
2 }Ef + O(τ + τ

p
2 ),

where C2 > 0 is a constant. By taking β = τ

(
δ
Ef

) 1
2
such that τδ

β
= (β/τ )Ef , we have

∥f δα,β − f ∥2 ≤(Ef δ)
1
2 + C2 max

{(
δ

Ef

) 1
2

,

(
δ

Ef

) p
4
}
Ef + O(τ )

≤(Ef δ)
1
2

(
1 + C2(Ef δ)

1
2 max

{
1,
(
δ

Ef

) p−2
4
})

+ O(τ ),

hich proves the estimate (34).
Case (3): when p ≥ 4, we have

∥f δα,β − f ∥2 ≤
τ

β
δ + (C5(β/τ + τ ) + C7β)Ef ≤

τ

β
δ + C̃4(1/τ + 1)βEf + O(τ ), (43)

here C̃4 > 0 is a constant. The error estimate in (35) is achieved with C3 = 1 + C̃4 if we choose β =
τ

√
τ+1

(
δ
Ef

) 1
2
such

hat τ
β
δ = (1/τ + 1)βEf . □

Remark 4.1. For p > 0, Theorem 4.1 indicates that ∥f δα,β − f ∥2 → 0 as δ → 0, and the convergence rate depends on
the regularity of f (i.e. p > 0). In particular, for p ≥ 4, the obtained convergence rate O(δ

1
2 ) is slightly slower than the

derived convergence rate O(δ
2
3 ) of MQBVM [44]. This is reasonable since our PQBVM uses additional nonzero αf (·) term

to control the condition number of V .

Remark 4.2. For p = 0, we have Al ≤ 1, then only the boundedness of ∥f δα,β − f ∥2 can be ensured.

Remark 4.3. In Theorem 4.1, the regularization parameter β (depends on δ and Ef ) was chosen based on an a priori choice
rule, which is less practical since Ef is in general difficult to obtain. Alternatively, for a given gδ , an a posterior choice rule,
i.e., Morozovs discrepancy principle (MDP) [4], can be used to choose the regularization parameter β (independent of Ef );
see [54, Section 4.2] for related discussion. Within this framework, a nonlinear equation based on MDP usually needs to
be solved for finding the a posterior regularization parameter β , for which our proposed direct PinT solver can also be
incorporated. However, this requires different analysis and implementation, which is beyond the scope of our paper.

Remark 4.4. The error estimates in Theorem 4.1 are obtained in L2(Ω) norm. In practical implementation, one has
to discretize the spatial differential operator as shown in Section 2, leading to O(h2) discretization errors in space.
However, such O(h2) discretization errors can be neglected since the magnitude of noise level δ is usually assumed to be
significantly larger than the discretization errors. To provide a rational guide on the suitable choice of h when δ is small,
let f δ,hα,β (x) be the discrete regularized solution with α and β being chosen by Theorem 4.1. Due to the used second-order
central finite difference in space and first-order backward Euler scheme in time, we formally have the error estimate
∥f δ,hα,β − f δα,β∥2 ≤ C0(h2

+ τ ) for some constant C0. For simplicity, consider the third case with p ≥ 4 in Theorem 4.1, we
can easily obtain

∥f δ,hα,β − f ∥2 ≤ ∥f δ,hα,β − f δα,β∥2 + ∥f δα,β − f ∥2 ≤ C0h2
+ C3

√
τ + 1(Ef δ)

1
2 + O(τ ), (44)

hich implies that h = O(δ1/4) is the most appropriate choice since it gives the coarsest mesh step size that achieves the
(δ1/2) total error. In particular, for a large δ, it is not recommended to use a too small h ≪ δ1/4 in practice, since the

total error is dominated by the δ term. Similar discussion applies to the time step size τ , which plays an additional role
n determining the choice of α∗. This also explains the observed clear stagnation of approximation errors in numerical
esults (see below Tables 1–5) as the mesh is refined while fixing the noise level, and a smaller noise level gives smaller
otal errors for a sufficiently fine mesh.

. Numerical examples

In this section, we present some numerical examples to illustrate the computational efficiency of our proposed PQBVM
ethod. All simulations are implemented in serial with MATLAB on a Dell Precision 5820 Workstation with Intel(R)
12
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Fig. 2. Reconstructed f (x) in Example 1 with different methods and noise levels ϵ ∈ {10−1, 10−2, 10−3, 10−4
} (using the mesh h = π/1024, τ =

/1024, α = δ1/2 for QBVM, α = δ for MQBVM, and α = τδ1/2 for PQBVM). The black solid curve is the exact solution.

ore(TM) i9-10900X CPU@3.70 GHz CPU and 64 GB RAM, where CPU times (in seconds) are estimated by the timing
unctions tic/toc. In QBVM, we directly solve the full sparse linear systems with MATLAB’s backslash sparse direct solver,
hich runs very fast for several thousands (but not millions) of unknowns. Our proposed PQBVM (including MQBVM as a
pecial case) will be solved by the three-step fast direct PinT solver (10), where the independent complex-shifted sparse
inear systems in Step-(b) can be solved by fast direct solvers (Thomas’ algorithm for 1D cases and FFT solver for 2D cases)
or rectangular domains with regular grids. The diagonalization of B = VDV−1 is computed with MATLAB’s eig function
nd Step-(a) ZV−T is done (with MATLAB code: Z/(V.’)) by MATLAB’s slash(’/’) direct solver.
To avoid inverse crimes, for a given exact source f we first solve the forward (direct) problem with Crank–Nicolson

ime-stepping scheme to compute g and then generate the noisy final condition measurement by gδ = g × (1 + ϵ ×

and(−1, 1)), where ϵ > 0 controls the noise level and rand(−1, 1) denotes random noise uniformly distributed within
−1, 1]. We then further compute the estimated noise bound δ := ∥gδ − g∥2. In practice, the obtained noise bound δ
may be over-estimated or under-estimated. Since Ef in Theorem 4.1 is unknown, we select more practical regularization
parameters β = δ1/2, β = δ, β = τδ1/2 for QBVM, MQBVM(α = 0), and our proposed PQBVM(α = α∗), respectively. After
solving the discretized full linear system, we obtain the approximate source fh and then compute its discrete L2(Ω) norm
error as eh = ∥fh − f (·)∥2. For a fixed mesh, we would expect eh to decrease as the noise level δ gets smaller, but the
discretization errors also affect the overall accuracy, especially for our PQBVM (with β = τδ1/2). The convergence rate
also depends on the regularity of f , where a smoother f shows faster convergence rate.

5.1. 1D and 2D examples with space-dependent source term

Example 1. Choose Ω = (0, π ), T = 1, φ(x) = 0, and a smooth source function

f (x) = x(π − x) sin(4x).

Table 1 reports the error results and CPU times with three different regularization methods, where the CPU times of
both MQBVM and PQBVM with the PinT direct solver are significantly smaller than that of the QBVM based on MATLAB’s
backslash direct solver. With a very smooth f , the MQBVM in [44] indeed shows faster convergence rate than both QBVM
and PQBVM. As shown in Fig. 2, the QBVM displays undesirable artificial oscillations for large noise levels, which was not
visible in both MQBVM and PQBVM, mainly due to the introduced Laplacian regularization term ∆f that smooths out the
reconstructed approximation.

Example 2. Choose Ω = (0, π ), T = 1, φ(x) = 0, and a non-smooth source function

f (x) =

{
2x, 0 ≤ x ≤ π/2,
2(π − x), π/2 ≤ x ≤ π,

Table 2 reports the error results and CPU times with three different regularization methods, where again the CPU times
of both MQBVM and PQBVM based on our PinT direct solver are much smaller than that of QBVM. Fig. 3 illustrates
the reconstructed f (x) with different noise levels, where the MQBVM shows only slightly better accuracy with a non-
differentiable f . We mention that the QBVM-based regularization has a degraded approximation accuracy near the
sharp non-smooth corner at x = π/2 due to the non-smoothness of f . In such non-smooth cases, total variation
13
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Table 1
Error and CPU results for Example 1 with different mesh sizes and noise levels.
Method (m, n)\ ϵ Errors in L2 norm CPU (in seconds)

10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4

QBVM
(β = δ1/2)

(256, 256) 1.43e+00 8.08e−01 3.43e−01 1.31e−01 0.5 0.5 0.5 0.5
(512, 512) 1.41e+00 8.09e−01 3.57e−01 1.26e−01 2.6 2.5 2.6 2.7
(1024,1024) 1.42e+00 7.97e−01 3.56e−01 1.28e−01 18.6 18.7 18.5 18.6

MQBVM
(β = δ)

(256, 256) 1.66e+00 6.16e−01 1.12e−01 1.78e−02 0.1 0.1 0.1 0.1
(512, 512) 1.66e+00 6.22e−01 1.16e−01 1.75e−02 0.3 0.3 0.3 0.3
(1024,1024) 1.65e+00 6.03e−01 1.11e−01 1.76e−02 1.3 1.3 1.2 1.2

PQBVM
(β = τδ1/2)

(256, 256) 1.48e+00 8.94e−01 4.70e−01 2.67e−01 0.1 0.1 0.1 0.1
(512, 512) 1.44e+00 8.54e−01 4.08e−01 2.00e−01 0.3 0.3 0.3 0.3
(1024,1024) 1.42e+00 8.32e−01 3.83e−01 1.65e−01 1.2 1.2 1.2 1.2

Fig. 3. Reconstructed f (x) in Example 2 with different methods and noise levels ϵ ∈ {10−1, 10−2, 10−3, 10−4
} (using the mesh h = π/1024, τ =

/1024, α = δ1/2 for QBVM, α = δ for MQBVM, and α = τδ1/2 for PQBVM). The black solid curve is the exact solution.

Table 2
Error and CPU results for Example 2 with different mesh sizes and noise levels.
Method (m, n)\ ϵ Errors in L2 norm CPU (in seconds)

10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4

QBVM
(β = δ1/2)

(256, 256) 1.21e+00 5.17e−01 2.05e−01 7.62e−02 0.5 0.5 0.5 0.5
(512, 512) 1.19e+00 5.18e−01 2.06e−01 7.86e−02 2.7 2.6 2.6 2.6
(1024,1024) 1.21e+00 5.26e−01 2.04e−01 7.93e−02 18.4 18.8 18.4 18.8

MQBVM
(β = δ)

(256, 256) 5.96e−01 2.31e−01 9.53e−02 4.05e−02 0.1 0.1 0.1 0.1
(512, 512) 5.98e−01 2.35e−01 9.52e−02 3.97e−02 0.3 0.3 0.3 0.3
(1024,1024) 6.21e−01 2.34e−01 9.53e−02 3.97e−02 1.3 1.3 1.3 1.3

PQBVM
(β = τδ1/2)

(256, 256) 1.17e+00 5.26e−01 2.15e−01 1.01e−01 0.1 0.1 0.1 0.1
(512, 512) 1.16e+00 5.16e−01 2.15e−01 8.95e−02 0.3 0.3 0.3 0.3
(1024,1024) 1.16e+00 5.11e−01 2.08e−01 8.50e−02 1.3 1.2 1.2 1.2

regularization [55–57] may provide better reconstruction accuracy, which requires significantly different treatment and
will be further studied in our future work.

Example 3. Choose Ω = (0, π ), T = 1, φ(x) = 0, and a discontinuous source function

f (x) =

{
1, π/3 ≤ x ≤ 2π/3,
0, else,

Table 3 reports the error results and CPU times with three different regularization methods, where the errors of all
three methods are comparable but the CPU times of both MQBVM and PQBVM based on our PinT direct solver are much
smaller. Fig. 4 illustrates the reconstructed f (x) with different noise levels, where the MQBVM shows more clear Gibbs
14
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Fig. 4. Reconstructed f (x) in Example 3 with different methods and noise levels ϵ ∈ {10−1, 10−2, 10−3, 10−4

} (using the mesh h = π/1024, τ =

/1024, α = δ1/2 for QBVM, α = δ for MQBVM, and α = τδ1/2 for PQBVM). The black solid curve is the exact solution.

Table 3
Error and CPU results for Example 3 with different mesh sizes and noise levels.
Method (m, n)\ ϵ Errors in L2 norm CPU (in seconds)

10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4

QBVM
(β = δ1/2)

(256, 256) 5.04e−01 3.53e−01 2.55e−01 1.91e−01 0.5 0.5 0.5 0.5
(512, 512) 5.21e−01 3.58e−01 2.58e−01 1.91e−01 2.6 2.5 2.6 2.5
(1024,1024) 5.25e−01 3.57e−01 2.57e−01 1.92e−01 18.4 18.2 18.3 18.4

MQBVM
(β = δ)

(256, 256) 5.22e−01 3.42e−01 2.64e−01 1.97e−01 0.1 0.1 0.1 0.1
(512, 512) 5.18e−01 3.40e−01 2.65e−01 1.97e−01 0.3 0.3 0.3 0.3
(1024,1024) 5.16e−01 3.42e−01 2.63e−01 1.97e−01 1.3 1.3 1.3 1.3

PQBVM
(β = τδ1/2)

(256, 256) 5.15e−01 3.68e−01 2.84e−01 2.34e−01 0.1 0.1 0.1 0.1
(512, 512) 4.97e−01 3.61e−01 2.73e−01 2.19e−01 0.3 0.3 0.3 0.3
(1024,1024) 4.97e−01 3.53e−01 2.65e−01 2.09e−01 1.2 1.2 1.3 1.2

phenomenon due to discontinuity and the PQBVM seems to provide the most stable approximation in the sense of avoiding
oscillations and overshooting near the discontinuities.

Example 4. Choose Ω = (0, π )2, T = 1, φ(x, y) = 0, and a smooth source function

f (x, y) = x(π − x) sin(2x)y(π − y) cos(y).

Table 4 reports the error results and CPU times with three different regularization methods, where the CPU times of both
MQBVM and PQBVM based on our PinT direct solver are much smaller although the errors of QBVM are slightly smaller
than MQBVM and PQBVM. Notice that even for a small mesh size (m, n) = (642, 64) the CPU times are decreased from
over 2 mins to about 0.04 s, let alone a larger mesh size (such as (m, n) = (1282, 128) with about 2.1 million unknowns).
Here we used ‘‘–’’ to indicate the computation takes an excessively long time for MATLAB’s backslash sparse direct solver.
Fig. 5 illustrates the reconstructed f (x) with different noise levels, where the differences between three methods are not
visible. This example demonstrates the superior computational efficiency of our proposed PinT direct solver in treating
more practical 2D/3D problems that are costly to solve by the sparse direct solver.

5.2. Application to separable space and time-dependent source term

Consider the following generalized model [51] with a given positive time-dependent source term q(t) > 0:⎧⎪⎨⎪⎩
ut −∆u = f (x)q(t), in Ω × (0, T ),
u(·, t) = 0, on ∂Ω × (0, T ),
u(·, 0) = φ, in Ω,

u(·, T ) + β(αf (·) −∆f (·)) = gδ, in Ω.

(45)

With the same finite-difference discretization, we get a linear system of Kronecker product form

A = B ⊗ I − I ⊗∆ (46)
h q h t h
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Fig. 5. Reconstructed f (x) in Example 4 with different methods and noise levels ϵ ∈ {10−1, 10−2, 10−3
} (using the mesh h = π/512, τ = T/512,

= δ1/2 for QBVM, α = δ for MQBVM, and α = τδ1/2 for PQBVM).

Table 4
Error and CPU results for 2D Example 4 with different mesh sizes and noise levels.
Method (m, n)\ ϵ Errors in L2 norm CPU (in seconds)

10−1 10−2 10−3 10−1 10−2 10−3

QBVM
(β = δ1/2)

(322 , 32) 2.21e+00 1.18e+00 4.98e−01 2.00 2.09 2.08
(642 , 64) 2.21e+00 1.18e+00 4.93e−01 132.01 127.05 132.84
(1282 , 128) – – – – – –

MQBVM
(β = δ)

(322 , 32) 3.26e+00 2.20e+00 9.83e−01 0.01 0.01 0.01
(642 , 64) 3.26e+00 2.21e+00 9.82e−01 0.04 0.04 0.05
(1282 , 128) 3.26e+00 2.20e+00 9.85e−01 0.28 0.29 0.28
(2562 , 256) 3.26e+00 2.20e+00 9.84e−01 2.83 2.90 2.91
(5122 , 512) 3.26e+00 2.20e+00 9.84e−01 33.68 33.80 33.56

PQBVM
(β = τδ1/2)

(322 , 32) 2.53e+00 1.72e+00 1.19e+00 0.01 0.01 0.01
(642 , 64) 2.39e+00 1.49e+00 8.92e−01 0.04 0.04 0.04
(1282 , 128) 2.31e+00 1.35e+00 7.05e−01 0.29 0.28 0.28
(2562 , 256) 2.26e+00 1.27e+00 6.04e−01 3.41 2.92 3.44
(5122 , 512) 2.23e+00 1.23e+00 5.49e−01 34.42 33.96 33.72

where the time discretization matrix Bq is given by (let qj = q(tj))

Bq =

⎡⎢⎢⎢⎢⎢⎢⎣

α 0 0 · · · 0 1/β
−q1 1/τ 0 · · · 0 0
−q2 −1/τ 1/τ 0 · · · 0
... 0

. . .
. . .

. . . 0
−qn−1 0 · · · −1/τ 1/τ 0
−qn 0 · · · 0 −1/τ 1/τ

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R(n+1)×(n+1). (47)

ence, our proposed direct PinT solver can still be applied if assuming Bq = VqDqV−1
q is diagonalizable and Vq is well-

onditioned (which are not proved yet). In this case, the diagonalizability of Bq and the estimate of κ(Vq) are much more
omplicated to discuss as we did for the B with q(t) ≡ 1, which will be left as future work. The following numerical
xample shows numerically our proposed method indeed works very well.

xample 5. Choose Ω = (0, π ), T = 1, φ(x) = 0, and the smooth source functions

f (x) = x(π − x) sin(4x), g(t) = e−t
+ ln(t + 1) + t2.
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Fig. 6. Reconstructed f (x) in Example 5 with different methods and noise levels ϵ ∈ {10−1, 10−2, 10−3, 10−4

} (using the mesh h = π/1024, τ =

/1024, α = δ1/2 for QBVM, α = δ for MQBVM, and α = τδ1/2 for PQBVM). The black solid curve is the exact solution.

Table 5
Error and CPU results for Example 5 with different mesh sizes and noise levels.
Method (m, n)\ ϵ Errors in L2 norm CPU (in seconds)

10−1 10−2 10−3 10−4 10−1 10−2 10−3 10−4

QBVM
(β = δ1/2)

(256, 256) 1.23e+00 6.27e−01 2.60e−01 8.50e−02 0.5 0.5 0.5 0.5
(512, 512) 1.24e+00 6.32e−01 2.58e−01 9.03e−02 2.5 2.5 2.5 2.5
(1024,1024) 1.23e+00 6.39e−01 2.54e−01 9.13e−02 18.3 18.1 18.0 18.2

MQBVM
(β = δ)

(256, 256) 1.61e+00 5.29e−01 1.07e−01 1.44e−02 0.1 0.1 0.1 0.1
(512, 512) 1.62e+00 5.73e−01 1.02e−01 1.56e−02 0.3 0.3 0.3 0.3
(1024,1024) 1.62e+00 5.73e−01 1.03e−01 1.58e−02 1.3 1.3 1.3 1.3

PQBVM
(β = τδ1/2)

(256, 256) 1.28e+00 6.94e−01 3.27e−01 1.61e−01 0.1 0.1 0.1 0.1
(512, 512) 1.25e+00 6.62e−01 2.92e−01 1.27e−01 0.3 0.3 0.3 0.3
(1024,1024) 1.25e+00 6.53e−01 2.79e−01 1.10e−01 1.3 1.2 1.4 1.3

Table 5 reports the error results and CPU times with three different regularization methods as before and Fig. 6 compares
the reconstructed f , where similar conclusions can be made as in Example 1. The extra non-constant q(t) term does not
seem to affect the effectiveness of our proposed method, although our current analysis does not support this case yet.

6. Conclusions

Inverse space-dependent source problems are ill-posed and effective regularization is required for their stable
numerical computation. The quasi-boundary value method and its variants are often used for regularizing such problems,
which lead to large-scale ill-conditioned nonsymmetric sparse linear systems upon suitable finite difference discretization
in space and time. Such nonsymmetric ill-conditioned all-at-once linear systems are costly to solve by either direct or
iterative methods. In this paper we propose to modify the existing quasi-boundary value methods such that the full
discretized system matrix admits a block Kronecker sum structure that can be solved by a fast diagonalization-based PinT
direct solver. To control the roundoff errors of such a PinT direct solver, we carefully estimate the condition number of
the eigenvector matrix of the time discretization matrix, where the free parameter α = α∗ is determined for this purpose.
Convergence analysis (with a priori choice of regularization parameter β) for our proposed parameterized quasi-boundary
value method (PQBVM) is given under the special choice of α = α∗. Both 1D and 2D examples show our proposed PinT
methods can achieve a comparable accuracy with significantly smaller CPU times. It is interesting to generalize our idea
of integrating regularization and fast solvers to other related inverse PDE problems, such as to simultaneously recover
the source term and initial value [58–62].
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