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In this paper, we investigate two predator–prey models which take into consideration
hunting cooperation (i.e., mutualism) between two different predators and within one
predator species, respectively. Local and global dynamics are obtained for the model
systems. By a detailed bifurcation analysis, we investigate the dependence of predation
dynamics on mutualism (cooperative predation). From our study, we prove that mutu-
alism may enhance the survival of mutualist predators in a severe condition and break
the competitive exclusion principle. We further provide quantitative information about
how the cooperative predation (mutualism) may (i) establish multiple stability switches
on the positive equilibrium; (ii) generate backward bifurcation on equilibria; (iii) induce
supercritical or subcritical Hopf bifurcations; and (iv) establish bi-stability phenomenon
between the predator-free equilibrium and a positive equilibrium (or a limit cycle).

Keywords: Predator–Prey Model; Cooperative Predation; Mutualism; Hopf Bifurcation;
Global Dynamics.

1. Introduction

Competition, cooperation and predation are three major mechanisms in modeling
population biology. A cooperative (respectively, competitive) ordinary differential
system generates a monotone forward (respectively, backward) solution flow (see
p. 34 in Ref. 1. Especially, for a three dimensional cooperative or competitive sys-
tem, any compact limit set that contains no equilibrium points should be a limit
cycle (see p. 41 in Ref. 1). Predation, however, cannot be modeled by a mono-
tone system and thus may induce more complicated dynamics. Many mathematical
models of predation are based on the Lotka–Volterra system which was proposed
independently by Lotka in the study of parasite invasion on the host (see p. 88 in
Ref. 2, and by Volterra to interpret the fishery data in the Adriatic sea collected
before, during, and after the First World War.3
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Cooperative hunting plays a significant role in Phylogenetics4 and is essential for
some predators.5 For instance, the Yellowstone wolves with larger group size have
a bigger success rate in capturing their most formidable prey, bison.6 During the
nonbreeding season, Harris’ hawks in New Mexico hunt cooperatively to improve
capture success.7 Dictyostelium discoideum, a soil amoeba that feeds on bacteria,
lives mostly as single cells, but develops social cooperation under starvation con-
ditions.8,9 A two-dimensional system was proposed in Ref. 10 which includes the
Lotka–Volterra model with logistic growth of the prey and hunting cooperation
on the predator. This model was further extended in Ref. 11 to incorporate Allee
effects in the prey.

Competition arises when two different species of predators hunt on the same
prey. By the Gause’s law of competitive exclusion principle, only the strongest
predator survive after the competition. However, this law fails in some situations.
The raven population in Yellowstone became more stable after the reintroduction
of wolves.12 The ravens guide the wolves to the prey by croaking, and as a reward,
partake the wolf-acquired carcasses.13 A recorded observation of intimate relation
between the badger and the coyote was made more than 130 years ago.14 Statis-
tical data indicates that the coyote and the badger hunt the ground squirrel more
efficiently than a single coyote.15 Cooperative predation (mutualism) has also been
observed between groupers and giant moray eels in the Red Sea.16 In Ref. 17, a
general three-dimensional population model incorporating both competition and
cooperation on predation was proposed and some conditions for coexistence of two
different predators via persistence theory in dynamical system. Since the system
in Ref. 17 was too general and the predation functions were not specifically given,
it was too complicated, if not impossible, to determine the criteria for asymptotic
stability of positive equilibria.

The purpose of this paper is to provide a detailed analysis on the existence and
asymptotic stability of equilibria for a predator–prey model with competition and
cooperation. To achieve this, we simply assume that the predation functions take the
mass-action forms. Especially, we will investigate the dependence of model dynam-
ics on the mutualism parameter via bifurcation analysis. We will first propose a
three-dimensional predator–prey population model of cooperative hunting between
two predator species. Next, we will consider a two-dimensional predator–prey pop-
ulation model of cooperative hunting within one predator species. Mathematically,
the second system can be considered as a reduced system of the first one, and
thus, more quantitative information (such as the direction of Hopf bifurcation and
stability of periodic solutions bifurcated from a Hopf bifurcation point) may be
obtained via a detailed analysis. In this paper, we are only interested in the coop-
eration between predators. For the study of cooperation between preys, we refer to
Refs. 18–21 and references therein.

The first predator–prey model with competition and cooperation is given as

x′(t) = b − d0x(t) − p1x(t)y(t) − p2x(t)z(t) − 2qx(t)y(t)z(t),
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y′(t) = p1x(t)y(t) + qx(t)y(t)z(t) − d1y(t),

z′(t) = p2x(t)z(t) + qx(t)y(t)z(t) − d2z(t),

where x(t) denotes the prey density at time t, and y(t) and z(t) correspond to two
different predators which compete for the same prey x(t). The prey has a constant
birth rate b > 0 and per capita death rate d0 > 0. In the absence of predation,
the prey will eventually reach the carrying capacity K = b/d0. It is remarked that
our linear birth function for the prey is different from the logistic growth chosen in
Refs. 10 and 17 and the one with Allee effect in Ref. 11. The main reason for our
choice is to simplify the presentation of the mathematical results and proofs. The
predation rate (for the mass-action functional response) and death rate for each
predator are positive constants pi and di with i = 1, 2. In addition to competition
on predation, we assume that these two predators will collaborate on hunting for the
prey, and the corresponding functional response is 2qxyz. For simplicity, we assume
that the two predators will divide the hunted prey evenly or have the same chance
to catch the prey during collaborative predation. We also assume that there is no
loss in the procedure of transferring energy from the prey to the predators. Hence,
instead of three parameters, we only need to consider one parameter of mutualism
(cooperative predation): q.

To simplify mathematical analysis, we scale the time t by the survival time of
the prey and use a standard non-dimensionalization technique to reduce the number
of parameters in the model system. To be more specific, we define

t̃ = d0t, x̃ =
x

K
, ỹ =

y

K
, z̃ =

z

K
,

where K = b/d0 is the carrying capacity of the prey. Our model system can be
transformed to

dx̃

dt̃
= 1 − x̃ − p̃1x̃ỹ − p̃2x̃z̃ − 2q̃x̃ỹz̃,

dỹ

dt̃
= p̃1x̃ỹ + q̃x̃ỹz̃ − d̃1ỹ,

dz̃

dt̃
= p̃2x̃z̃ + q̃x̃ỹz̃ − d̃2z̃,

where

p̃1 =
p1K

2

b
, p̃2 =

p2K
2

b
, q̃ =

qK3

b
, d̃1 =

d1

d0
, d̃2 =

d2

d0
.

For convenience, we drop the tilde and rewrite the model system as

x′(t) = 1 − x(t) − p1x(t)y(t) − p2x(t)z(t) − 2qx(t)y(t)z(t), (1.1)

y′(t) = p1x(t)y(t) + qx(t)y(t)z(t) − d1y(t), (1.2)

z′(t) = p2x(t)z(t) + qx(t)y(t)z(t) − d2z(t), (1.3)
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where x(t) denotes the ratio of prey density with respect to the carrying capacity.
The time t is scaled by the survival time of the prey. Therefore, the birth and death
rates for the prey are normalized to be 1.

In the absence of cooperative predation (i.e., q = 0), the model dynamics is
simple and it can be determined by the basic reproduction numbers for the preda-
tors: R1 = p1/d1 and R2 = p2/d2. The predator-free equilibrium E0 = (1, 0, 0)
is locally asymptotically stable if and only if both R1 and R2 do not exceed the
threshold value 1. Moreover, if R1 ≤ 1 and R2 ≤ 1, we can use the Lyapunov
function V (x, y, z) = x − ln x + y + z to show that E0 is globally asymptot-
ically stable. If R1 > 1, then E0 is unstable and the model system possesses
another equilibrium E1 = (x1, y1, 0), where x1 = 1/R1 and y1 = 1/d1 − 1/p1.
By analyzing the characteristic roots and introducing the Lyapunov function
V (x, y, z) = x − x1 ln x + y − y1 ln y + z, one can prove that E1 is globally asymp-
totically stable if R1 > R2 and unstable if R1 < R2. A similar result holds when
R2 > 1. In one word, the Gause’s law of competitive exclusion principle holds for
the competitive predation model without cooperation. It is thus interesting to ask
whether the cooperative predation will violate the competitive exclusion principle.
This work aims at exploring the joint impact of competition and cooperation on
predation.

The rest of this paper is organized as follows. In Sec. 2, we analyze the equilibria
for system (1.1)–(1.3). Local and global analyses of this system are given in Secs. 3
and 4, respectively. In Sec. 5, we focus on a special case when competition is ignored
in cooperative predation. This enables us to reduce the number of model parameters
and obtain more detailed information about the direction of Hopf bifurcations and
stability of periodic solutions. Finally, we give a brief discussion in Sec. 6.

2. Equilibria

It is obvious that the solutions of (1.1)–(1.3) with nonnegative initial conditions
are always nonnegative and bounded. In this section, we characterize the existence
conditions for (nonnegative) equilibria. By symmetry, we assume that R1 > R2,
where R1 = p1/d1 and R2 = p2/d2 are the basic reproduction numbers for the
two predators. As we shall see later, it is convenient to introduce a new parameter
Q = q/(d1d2).

The model system (1.1)–(1.3) always has a predator-free equilibrium E0 =
(1, 0, 0). If R1 > 1, then a boundary equilibrium E1 = (x1, y1, 0) exists, where
x1 = 1/R1 and y1 = 1/d1 − 1/p1. If further R2 > 1, then another boundary equi-
librium E2 = (x2, 0, z2) exists, where x2 = 1/R2 and z2 = 1/d2 − 1/p2.

Now, we look for a positive equilibrium E = (x, y, z) with x > 0, y > 0 and
z > 0. A simple calculation shows that x = 1/s, y = (s − R2)/(d1Q) and z =
(s − R1)/(d2Q), where s is a root of

f(s) := 2s2 − (Q + R1 + R2)s + Q = 0. (2.1)
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We call s a feasible root if s is bigger than both 1 and R1. There are two cases to
be considered.

(1) If R1 + R2 ≥ 2, then R1 > 1 and f(1) ≤ 0. Thus, f(s) has two positive roots

s± =
Q + R1 + R2 ±

√
(Q + R1 + R2)2 − 8Q

4
. (2.2)

Since s− ≤ 1 ≤ s+, the smaller root s− is not feasible. Moreover, s+ is feasible
if and only if f(R1) < 0, or equivalently, Q > Q1, where

Q1 =
R1(R1 − R2)

R1 − 1
. (2.3)

(2) If R1 + R2 < 2, then f(s) has two (counting multiplicity) positive roots s± if
either Q ≥ Q+ or Q ≤ Q−, and no root if Q− < Q < Q+, where

Q± = 4 − (R1 + R2) ±
√

16 − 8(R1 + R2) = [
√

2 ±
√

2 − (R1 + R2)]2 (2.4)

are the solutions of (Q + R1 + R2)2 = 8Q. Since Q+Q− = (R1 + R2)2, we have
Q− < R1 + R2. If Q ≤ Q−, then s+ + s− = (Q + R1 + R2)/2 < R1 + R2 < 2,
which together with f(1) > 0 implies that both roots s± are not feasible. If
Q ≥ Q+, then Q > 4 − (R1 + R2), which implies that s+ + s− > 2. Since
f(1) > 0, we have s+ ≥ s− > 1. To compare s± with R1, we need to consider
the following three subcases.

(a) If R1 ≤ 1, then both s± are feasible.
(b) If R2 > 3R1 − 2R2

1, then Q+ > Q1, which implies that Q > Q1; namely,
f(R1) < 0. Hence, f(s) has a unique feasible root s+.

(c) If R1 > 1 and R2 ≤ 3R1−2R2
1, then Q+ ≤ Q1. If Q ≥ Q1, then f(R1) ≤ 0,

and f(x) has exactly one feasible root s+ except for the critical case Q =
Q1 = Q+ where s− = s+ = R1 becomes unfeasible. If Q+ < Q < Q1, then
s− > R1 and both s± are feasible.

If s± are the feasible solutions of (2.1); namely, s± are bigger than both 1 and
R1, we denote E± = (x±, y±, z±) where x± = 1/s±, y± = (s± − R2)/(d1Q) and
z± = (s± − R1)/(d2Q). The existence conditions for the positive equilibria E± are
illustrated in Fig. 1.

3. Local Analysis

The Jacobian matrix of the system (1.1)–(1.3) for an equilibrium E = (x, y, z) is
calculated as

J =

⎛
⎜⎝
−1 − p1y − p2z − 2qyz −p1x − 2qxz −p2x − 2qxy

p1y + qyz p1x + qxz − d1 qxy

p2z + qyz qxz p2x + qxy − d2

⎞
⎟⎠. (3.1)

For the predator-free equilibrium E0 = (1, 0, 0), the three characteristic roots are
−1, p1 − d1 and p2 − d2. In this section, we still assume that R1 > R2, where
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Fig. 1. Existence conditions of positive equilibria.

R1 = p1/d1 and R2 = p2/d2. It is readily seen that E0 is locally asymptotically
stable if R1 < 1 and unstable if R1 > 1. For the critical case R1 = 1, we need to
make use of the following lemma.

Lemma 3.1. Let u(t) = (u1(t), . . . , un(t))T be a vector-valued function. Consider
the ordinary differential system u′(t) = f(u(t)) with f(u) = (f1(u), . . . , fn(u))T ∈
C1(X, X), where X ∈ R

n is a positive invariant set of the differential system. Let
ū = (ū1, . . . , ūn)T ∈ X be an equilibrium and denote fij = ∂uj fi(ū). Assume the
following conditions are satisfied :

(1) ūn = 0, fn(u) = unh(u) and h(ū) = 0.
(2) All eigenvalues of the (n − 1) × (n − 1) matrix A with Aij = fij have negative

real parts.

Denote hi = ∂uih(ū), α = (h1, . . . , hn−1)T , β = (f1n, . . . , fn−1,n)T and λc = hn −
αT A−1β. Then ū is locally asymptotically stable if λc < 0 and unstable if λc > 0.

Proof. The Jacobian matrix of the linearized system about ū is

Duf(ū) =

(
A β

0 0

)

=

(
In−1 −A−1β

0 1

)(
A 0

0 0

)(
In−1 A−1β

0 1

)
,
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where In−1 is the (n − 1) × (n − 1) identity matrix. Let A−1β = (γ1, . . . , γn−1)T ,
and introduce new variables

⎛
⎜⎜⎝

z1

...

zn

⎞
⎟⎟⎠ =

(
In−1 A−1β

0 1

)⎛⎜⎜⎝
u1 − ū1

...

un − ūn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

u1 − ū1 + γ1un

...

un−1 − ūn−1 + γn−1un

un

⎞
⎟⎟⎟⎟⎟⎠.

It is easily seen that (0, . . . , 0)T is an equilibrium of the ordinary differential system
for (z1, . . . , zn)T with Jacobian matrix(

A 0

0 0

)
.

According to Sec. 2.1 of Ref. 22, the stability of ū is determined by the stability
of zn = 0 for the following restricted differential equation on the center manifold
zi = O(z2

n) with i = 1, . . . , n − 1,

z′n(t) = znh(ū1 − γ1zn + O(z2
n), . . . , ūn−1 − γn−1zn + O(z2

n), zn) = λcz
2
n + O(z3

n),

where λc = −h1γ1−· · ·−hn−1γn−1+hn = hn−αT A−1β. If λc < 0, then 0 is locally
asymptotically stable for the restricted equation and thus ū is locally asymptotically
stable for the original differential system. If λc > 0, then 0 is unstable for the
restricted equation and thus ū is unstable for the original system.

For the critical case R1 = 1, we use the notation in Lemma 3.1 to calculate

λc = 0 − (p1 q)

(
−1 −p2

0 p2 − d2

)(
−p1

0

)
= −p2

1 < 0,

which implies that E0 is locally asymptotically stable.
If R1 > 1, the competitive-exclusion equilibrium E1 = (x1, y1, 0) with x1 = 1/R1

and y1 = 1/d1 − 1/p1 exists. The stability of E1 is determined by the sign of the
characteristic root λ1 = p2x1 + qx1y1 − d2 since the other two characteristic roots
always have negative real parts. If λ1 > 0, or equivalently, Q > Q1, then E1 is
unstable. If λ1 < 0, or equivalently, Q < Q1, then E1 is locally asymptotically
stable. If λ1 = 0, or equivalently, Q = Q1, then J has a zero eigenvalue while the
other two eigenvalues have negative real parts. Using the notation in Lemma 3.1,
we calculate

λc = −(p2 + qy1 qx1)

(
−1/x1 −p1x1

p1y1 0

)−1(−p2x1 − 2qx1y1

qx1y1

)

= −d1d2q[2R2 + (2 − 3x1)Q]/p2
1.

Since Q = Q1 = R1(R1 − R2)/(R1 − 1), we have 2R2 + (2 − 3x1)Q = (R2 + 2R2
1 −

3R1)/(R1 − 1). If R2 > 3R1 − 2R2
1, then λc < 0 and E1 is locally asymptotically

stable. If R2 < 3R1 − 2R2
1, then λc > 0 and E1 is unstable.
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If R2 > 1, there exists another competitive-exclusion equilibrium E2 =
(x2, 0, z2) with x2 = 1/R2 and z2 = 1/d2 − 1/p2. The stability of E2 is deter-
mined by the sign of the characteristic root λ2 = p1x2 + qx2z2 − d1 since the other
two characteristic roots always have negative real parts. By symmetry, we only con-
sider the case R1 > R2. Hence, we have λ2 > 0 and E2 is always unstable whenever
it exists.

Now, we analyze the stability of cooperative-predation equilibria E± =
(x±, y±, z±). The characteristic polynomials are given by

p±(λ) = λ3 +
λ2

x±
+ qd1d2y±z±

(
2 − R1x±

d2(1 − R1x±)
+

2 − R2x±
d1(1 − R2x±)

− Qx2
±

)
λ

+ qd1d2y±z±(2 − Qx2
±). (3.2)

Note that x+x− = 2/Q. We have x2
+ < 2/Q < x2

−, which implies that p−(0) < 0
and the characteristic equation p−(λ) = 0 has at least one positive root. Thus, E−
is always unstable whenever it exists. To investigate the stability of E+, we need
the following lemma.

Lemma 3.2. Consider an ordinary differential system with a parameter Q.
Assume that an equilibrium E(Q) exists for Q in an interval I ⊂ R with charac-
teristic polynomial p(λ, Q) = λ3 + α(Q)a2(Q)λ2 + β(Q)a1(Q)λ + α(Q)β(Q)a0(Q).
Assume that α(Q), β(Q), a2(Q), a1(Q) and a0(Q) are all positive and differentiable
functions for Q ∈ I. Define g(Q) = a0(Q)−a1(Q)a2(Q). Then the equilibrium E(Q)
is locally asymptotically stable when g(Q) is negative and unstable when g(Q) is pos-
itive. If g(Q) has a simple root Qh ∈ I, then Hopf bifurcation occurs at Q = Qh

with crossing number Sign[g′(Qh)].

Proof. Since the signs of g(Q) and g′(Qh) do not change if both a0(Q) and
a1(Q)a2(Q) are multiplied by the same positive function, we may assume with-
out loss of generality that α(Q) = β(Q) = 1 for all Q ∈ I. The stability criterion of
E(Q) is then a direct application of Routh–Hurwitz criterion.

Assume that g(Q) has a simple root Qh ∈ I and set ωh :=
√

a1(Qh) =√
a0(Qh)/a2(Qh) > 0. It is readily seen that λh,± = ±iωh are a pair of imag-

inary roots of the characteristic equation p(λ, Qh) = 0. Since p(0, Qh) > 0, the
third characteristic root is negative. By implicit function theorem, there exist
two differentiable functions λ±(Q) near Q = Qh such that p(λ±(Q), Q) = 0 and
λ±(Qh) = ±iωh. Furthermore,

λ′
±(Qh) = − ∂Qp(λ, Q)

∂λp(λ, Q)

∣∣∣∣
λ=λh,±,Q=Qh

= −a′
2(Qh)λ2

h,± + a′
1(Qh)λh,± + a′

0(Qh)
3λ2

h,± + 2a2(Qh)λh,± + a1(Qh)

=
a′
0(Qh) − a1(Qh)a′

2(Qh) ± iωha′
1(Qh)

2ω2
h ∓ 2iωha2(Qh)

=
ωhg′(Qh) ± i[ω2

ha′
1(Qh) + a2(Qh)a′

0(Qh) − a2(Qh)a1(Qh)a′
2(Qh)]

2ωh[ω2
h + a2

2(Qh)]
,
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which implies that Sign[Re λ′±(Qh)] = Sign[g′(Qh)]. Hence, the crossing number at
Qh is the same as the sign of g′(Qh).

Denote

Qc =

{
Q1, R2 ≥ 3R1 − 2R2

1,

Q+, R2 ≤ 3R1 − 2R2
1.

(3.3)

One can prove that E+ exists if and only if Q ≥ Qc; see Fig. 1. Recall that x± =
1/s±, where s± are the roots of (2.1). It is easily seen from (2.2) that x+ = χ(Q),
where

χ(Q) :=
4

Q + R1 + R2 +
√

(Q + R1 + R2)2 − 8Q
(3.4)

is a decreasing function of Q ∈ [Qc,∞). Denote xc = χ(Qc). For convenience, we
define the inverse function of χ(Q) as

φ(x) :=
2 − (R1 + R2)x

x − x2
, 0 < x < xc. (3.5)

In view of Lemma 3.2, we obtain from (3.2) and 2/Q > x2
+ that the stability of E+

is determined by the sign of g(Q) = G(χ(Q)), where

G(x) = 4x − (R1 + R2)x2 − 2 − R1x

d2(1 − R1x)
− 2 − R2x

d1(1 − R2x)
. (3.6)

Note that G(0) < 0 and G′′(x) < 0 for all x ∈ [0, xc]. Hence, G(x) has a unique
maximum x̄ on [0, xc]. The signs of G(xc) and G(x̄) determine the zeros and signs
of G(x) in [0, xc], and thus determine the stability of E+.

We summarize our results in the following theorem with illustrations in Fig. 2.

Theorem 3.3. Consider model (1.1)–(1.3) with R1 > R2, where R1 = p1/d1

and R2 = p2/d2. Denote Q = q/(d1d2) and let s±, Q1, Q+ and Qc be defined
as in (2.2)–(2.4) and (3.3), respectively. Set xc = χ(Qc), Gc = G(xc) and
Ḡ = maxx∈[0,xc] G(x), where the functions χ and G are given in (3.4) and (3.6),
respectively.

The predator-free equilibrium E0 = (1, 0, 0) always exists, and E0 is locally
asymptotically stable if and only if R1 ≤ 1. The competitive-predation equilibrium
E2 = (x2, 0, z2) with x2 = 1/R2 and z2 = 1/d2 − 1/p2 exists if and only if R2 > 1,

and it is always unstable whenever it exists.
The existence conditions of another competitive-predation equilibrium E1 =

(x1, y1, 0) with x1 = 1/R1 and y1 = 1/d1 − 1/p1 and the cooperative-predation
equilibria E± = (x±, y±, z±) with x± = 1/s±, y± = (s± − R2)/(d1Q) and
z± = (s± − R1)/(d2Q), and the stability conditions of E1 and E− are given in
the following cases :

(1) R1 ≤ 1. In this case, Qc = Q+, xc =
√

2/Q+, E1 does not exist, E± exist if
and only if Q ≥ Q+, and E− is always unstable whenever it exists.
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(a) Case (1a) (b) Case (1b)

(c) Case (1c) (d) Case (2a)

(e) Case (2b) (f) Case (2c)

(g) Case (3a) (h) Case (3c)

Fig. 2. (Color online) Existence and stability conditions of equilibria E1 (red), E+ (blue), and E−
(green), with projection on y−Q plane. A solid curve indicates that the corresponding equilibrium
is locally asymptotically stable, and a dashed curve indicates that the corresponding equilibrium
is unstable. A dark dot with a text label “H” indicates the location of a Hopf bifurcation.

(2) R1 > 1 and R2 ≤ 3R1 − 2R2
1. In this case, Qc = Q+, xc =

√
2/Q+, E1 always

exists, E1 is locally asymptotically stable if and only if Q < Q1, E− exists if
and only if Q ∈ (Q+, Q1), E− is always unstable whenever it exists, and E+

exists if and only if Q > Q+.
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(3) R1 > 1 and R2 > 3R1 − 2R2
1. In this case, Qc = Q1, xc = 1/R1, E1 always

exists, E1 is locally asymptotically stable if and only if Q < Q1, E− does not
exist, and E+ exists if and only if Q > Q1.

The stability condition of E+ is given in the following cases :

(a) Ḡ < 0. In this case, E+ is always locally asymptotically stable.
(b) Gc > 0. In this case, G has a unique root, denoted by xh, on (0, xc). E+ is

locally asymptotically stable for Q ∈ (Qh,∞) and unstable for Q ∈ (Q+, Qh),
where Qh = φ(xh) is a Hopf bifurcation point.

(c) Gc < 0 and Ḡ > 0. In this case, G has two roots, xh1 > xh2, on (0, xc).
E+ is locally asymptotically stable for Q ∈ (Q+, Qh1) ∪ (Qh2,∞) and unstable
for Q ∈ (Qh1, Qh2), where Qh1 = φ(xh1) and Qh2 = φ(xh2) are two Hopf
bifurcation points.

There are nine possible combinations of the cases (1)–(3) and the cases (a)–(c).
For instance, case (1a) means both conditions in case (1) and case (a) are satisfied:
R1 ≤ 1 and Ḡ < 0. Note that case (3b) is an empty parameter region because
Gc = −∞ in case (3) but Gc > 0 in case (b).

To determine the direction of Hopf bifurcation and stability of periodic solutions
bifurcated from a Hopf bifurcation point, we shall diagonalize the Jacobian (3.1)
as J = PDP−1 with D = diag{iω,−iω,−1/x+} and

P =

⎛
⎜⎝

−ω2 − q2x2
+y+z+ −ω2 − q2x2

+y+z+ 1/x2
+ − q2x2

+y+z+

d2qy+z+ + iωd1y+/x+ d2qy+z+ − iωd1y+/x+ d2qy+z+ − d1y+/x2
+

d1qy+z+ + iωd2z+/x+ d1qy+z+ − iωd2z+/x+ d1qy+z+ − d2z+/x2
+

⎞
⎟⎠,

where ±iω are a pair of purely imaginary eigenvalues of J at the positive equilibrium
E+ = (x+, y+, z+). Now, we set⎛

⎜⎝
x

y

z

⎞
⎟⎠ =

⎛
⎜⎝

x+

y+

z+

⎞
⎟⎠+ P

⎛
⎜⎝

α

ᾱ

β

⎞
⎟⎠.

It follows that

α′ = iωα +
α200

2
α2 + α110αᾱ +

α020

2
ᾱ2 + α101αβ + α011ᾱβ +

α210

2
α2ᾱ + · · · ,

ᾱ′ = −iωᾱ +
ᾱ200

2
ᾱ2 + ᾱ110αᾱ +

ᾱ020

2
α2 + ᾱ101ᾱβ + ᾱ011αβ +

ᾱ210

2
αᾱ2 + · · · ,

β′ = − 1
x+

β +
β200

2
α2 + β110αᾱ +

β020

2
ᾱ2 + · · · ,

where the coefficients are given in terms of model parameters, though the explicit
formulas are tedious (and thus omitted here). By restricting the above system on
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the center manifold β = γ20
2 α2 + γ11αᾱ + γ02

2 ᾱ2 + O(|α|3), we obtain

α′ = iωα +
α200

2
α2 + α110αᾱ +

α020

2
ᾱ2 + α101αβ + α011ᾱβ +

α̃210

2
α2ᾱ + · · · ,

where α̃210 = α210 + 2x+α101β110 + α011β200/(2iω + 1/x+). The first Lyapunov
coefficient (see (3.20) in Ref. 23) is calculated as l1 = Re(iα200α110 +ωα̃210)/(2ω2).
The Hopf bifurcation is supercritical when l1 < 0 and subcritical when l1 > 0.

4. Global Analysis

In this section, we always assume R1 > R2. In the absence of cooperative predation
(q = 0), the global dynamics of competitive predation model is clear: either the
predators will be extinct (E0 is globally asymptotically stable when R1 ≤ 1) or
one predator dominates the predation (E1 is globally asymptotically stable when
R1 > 1). In this section, we will extend these results to the case when cooperation
in predation is weak (i.e., q > 0 is small).

Consider the system (1.1)–(1.3). If the initial value (x(0), y(0), z(0)) ∈ R
3
+, then

x(t) > 0 and (y(t), z(t)) ∈ R
2
+ for all t > 0. If y(0) = 0, then y(t) = 0 for all t ≥ 0.

If y(0) > 0, then y(t) > 0 for all t ≥ 0. If z(0) = 0, then z(t) = 0 for all t ≥ 0. If
z(0) > 0, then z(t) > 0 for all t ≥ 0. In this section, we always assume that the
initial values x(0), y(0) and z(0) are all positive. Consequently, x(t) > 0, y(t) > 0
and z(t) > 0 for all t ≥ 0. By adding the three equations (1.1)–(1.3), we obtain
from comparison principle that the solution is ultimately bounded. Especially, we
have

lim sup
t→∞

x(t) ≤ 1, lim sup
t→∞

[x(t) + y(t) + z(t)] ≤ 1/ min{1, d1, d2}.

Lemma 4.1. Let (x(t), y(t), z(t)) be a positive solution of (1.1)–(1.3). If x(t0) ≤ 1
for some t0 ≥ 0, then x(t) < 1 for all t > t0. If x(t) > 1 for all t ≥ 0, then
(x(t), y(t), z(t)) → (1, 0, 0) as t → ∞.

Proof. If x(t0) = 1 for some t0 ≥ 0, then x′(t0) < 0, which, together with a
contradiction argument, implies x(t) < 1 for all t > t0. If x(t0) < 1 for some t0 ≥ 0,
then we also have x(t) < 1 for all t > t0. Now, we assume that x(t) > 1 for all t ≥ 0.
It follows from (1.1) that x′(t) < 0 for all t ≥ 0. Since x(t) is bounded below by 1, the
limit x(∞) exists. It then follows from comparison principle that x(∞) = 1. Next,
we observe from (1.1) and (1.2) that x′(t) + y′(t) < 0, which implies that the limit
limt→∞[x(t) + y(t)] exists and hence y(∞) exists. We claim y(∞) = 0. Otherwise,
there exists t1 > 0 such that y(t) > y(∞)/2 for all t > t1. This together with (1.1)
gives x′(t) < 1− [1+p1y(∞)/2]x(t) for all t > t1. By comparison principle, the limit
x(∞) is bounded by 1/[1+p1y(∞)/2] < 1, a contradiction. Finally, in view of (1.1)
and (1.3), we have x′(t)+z′(t) < 0, which implies that the limit limt→∞[x(t)+z(t)]
exists and hence z(∞) exists. A similar argument gives z(∞) = 0. This completes
the proof.
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Now, we consider the case when R1 = p1/d1 ≤ 1 and intend to show that
E0 = (1, 0, 0) is globally asymptotically stable for sufficiently small q. On account
of Lemma 4.1, we may assume that x(t) ≤ 1 for all t ≥ 0. Let c0 > 0 be a constant
to be determined later. We construct a Lyapunov function

V0(x, y, z) = c0(x − ln x + y + z) + (x + y + z − 1)2/2

and restrict it on the solution of (1.1)–(1.3). It is easily seen that

d

dt
V0(x(t), y(t), z(t)) = c0[−(x − 1)2/x + (p1 − d1)y + (p2 − d2)z + 2qyz]

− (x − 1)2 − d1y
2 − d2z

2 − (d1 + 1)(x − 1)y

− (d2 + 1)(x − 1)z − (d1 + d2)yz

≤ −(c0 + 1)(x − 1)2 + (d1 + 1)(x − 1)y − d1y
2

+ [2c0q − (d1 + d2)]yz − d2z
2 + [d2 + 1 + c0(p2 − d2)]z,

which is nonpositive provided that

q ≤
d1 + d2 + 2

√
d2[d1 − (d1+1)2

4(c0+1) ]

2c0
, c0 = max

{
d2 + 1
d2 − p2

,
(d1 − 1)2

4d1

}
. (4.1)

LaSalle–Lyapunov invariance principle implies that E0 = (1, 0, 0) is globally attrac-
tive if R2 < R1 ≤ 1 and q satisfies the above inequality. Recall that E0 is locally
asymptotically stable when R2 < R1 ≤ 1. We obtain globally asymptotic stability
of E0 when q > 0 is small.

Next, we consider the case when R1 > 1 and prove globally asymptotic stability
of E1 = (x1, y1, 0) for sufficiently small q. Given any positive initial condition, we
claim that there exists t0 ≥ 0 such that x(t) ≤ 1 for all t ≥ t0. Assume to the
contrary, it follows from Lemma 4.1 that (x(t), y(t), z(t)) → (1, 0, 0) as t → ∞.
Especially, there exists t1 > 0 such that x(t) > (1 + d1/p1)/2 for all t > t1. By
(1.2), we have y′(t) > (p1 − d1)y(t)/2 for all t > t1, which implies y(t) → ∞ as
t → ∞, a contradiction. Hence, any trajectory will enter the positively invariant set
B = {(u1, u2, u3) ∈ R

3
+ : 0 ≤ u1 ≤ 1} after finite time. Without loss of generality,

we may assume x(t) ≤ 1 for all t ≥ 0. Now, we define the Lyapunov function

V1(x, y, z) = c1(x − x1 ln x + y − y1 ln y + z) + (x + y + z − x1 − y1)2/2,

where c1 > 0 is a constant to be determined later. Taking derivative of V1 along
the solution with respect to the time gives

d

dt
V1(x(t), y(t), z(t)) = c1[−(x − x1)2/(x1x) + (p2x1 − d2)z + 2qx1yz − qy1xz]

− (x − x1)2 − d1(y − y1)2 − d2z
2 − (d1 + 1)(x − x1)(y − y1)

− (d2 + 1)(x − x1)z − (d1 + d2)(y − y1)z
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≤ −(c1/x1 + 1)(x − 1)2 − (d1 + 1)(x − x1)(y − y1) − d1y
2

+ [2c1qx1 − (d1 + d2)]yz − d2z
2

+ [c1(p2x1 − d2) + (d2 + 1)x1 + (d1 + d2)y1]z,

which is nonpositive provided that

q ≤
d1 + d2 + 2

√
d2[d1 − (d1+1)2

4(c1/x1+1) ]

2c1x1
,

c1 = max
{

(d2 + 1)x1 + (d1 + d2)y1

d2 − p2x1
,
x1(d1 − 1)2

4d1

}
. (4.2)

LaSalle–Lyapunov invariance principle implies that E1 = (x1, y1, 0) is globally
attractive if R1 > 1 and q satisfies the above inequality. It is easily seen that
the above inequality implies Q < Q1; namely, E1 is also locally asymptotically
stable. Hence, we obtain globally asymptotic stability of E1 when q > 0 is small.

Summarizing the above arguments gives the following results.

Theorem 4.2. Assume R1 > R2 and the initial values (x(0), y(0), z(0)) are pos-
itive. If R1 ≤ 1 and q satisfies (4.1), then E0 = (1, 0, 0) is globally asymptotically
stable. If R1 > 1 and q satisfies (4.2), then E1 = (x1, y1, 0) is globally asymptotically
stable.

5. A Special Case: Competition-Free and Cooperative Predation

In this section, we consider a special case when p1 = p2 = p, d1 = d2 = d and
y(0) = z(0). Biologically, this assumption means that the two predators can be
regarded as the same. Mathematically, we can prove by uniqueness of solution that
y(t) = z(t) for all t ≥ 0. Thus, we can reduce the three-dimensional system (1.1)–
(1.3) to a planar system

x′(t) = 1 − x(t) − 2px(t)y(t) − 2qx(t)[y(t)]2, (5.1)

y′(t) = px(t)y(t) + qx(t)[y(t)]2 − dy(t). (5.2)

Note that the growth rate for the prey is linear, while in Ref. 10 a similar model with
logistic growth in prey was considered, and in Ref. 11 the growth rate for the prey
was a cubic function with Allee effect. The main focus of this section is to determine
the direction of Hopf bifurcation and stability of periodic solutions bifurcated from
a Hopf bifurcation point. Global dynamics of the above planar system will also be
investigated.

A positive equilibrium E = (x, y) of the above system satisfies the equations
1−x−2dy = 0 and px+qxy−d = 0. Denote R = p/d and Q = q/d2. By eliminating
y, we have

Qx2 − (2R + Q)x + 2 = 0. (5.3)
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If R < 1, then there exist two positive equilibria E± = (x±, y±) if and only if
(2R + Q)2 > 8Q and 2R + Q > 4; namely, Q > Q+, where

Q+ = 2(1 +
√

1 − R)2 (5.4)

and

x± =
4

2R + Q ±√(2R + Q)2 − 8Q
. (5.5)

If R > 1, then there exists a unique positive equilibrium E+. The Jacobi matrix of
the system linearized at a positive equilibrium E = (x, y) is given as

J =

(−1/x −2px− 4qxy

dy/x qxy

)
. (5.6)

The determinant of J is

det(J) = −qy + dy(2p + 4qy) =
d2y

x
(2 − Qx2).

Since x−x+ = 2/Q, we have Qx2
− > 2 > Qx2

+. Thus, E− is always unstable
whenever it exists. If R < 1 and Q > Q+, we further have x+ <

√
2/Q <

√
2/Q+ =

1/(1 +
√

1 − R). Note that the trace of J is qxy − 1/x = d − px − 1/x = −(px2 −
dx + 1)/x. Hence, Hopf bifurcation occurs when dR − ds + s2 = 0 has a root in
(sc,∞), where

sc =

{
1 +

√
1 − R, R < 1,

R, R > 1.
(5.7)

If R > 1, then Hopf bifurcation occurs if and only if R < d/4, and in this case,
there are two Hopf bifurcation points:

Qh,± =
2sh,±(sh,± − R)

sh,± − 1
with sh,± =

d ±√
d2 − 4dR

2
. (5.8)

If R < 1 and R ≥ d/4, then there does not exist any Hopf bifurcation. If R < 1 and
R < d/4, then we have one Hopf bifurcation point Qh,+ when R < d(d−2)/(d−1)2,
two Hopf bifurcation points Qh,± when R > d(d − 2)/(d − 1)2 and d > 3, and no
Hopf bifurcation point when R > d(d − 2)/(d − 1)2 and d < 3.

To analyze the direction of Hopf bifurcation and stability of periodic solutions
bifurcated from the Hopf bifurcation point, we consider a perturbation about the
positive equilibrium E+ = (x+, y+) and obtain an equivalent system

u′ = 1 − (x+ + u) − 2p(x+ + u)(y+ + v) − 2q(x+ + u)(y+ + v)2

= −(1 + 2py+ + 2qy2
+)u − (2px+ + 4qx+y+)v − 2qx+v2

− (2p + 4qy+)uv − 2quv2,



April 1, 2021 16:42 WSPC/S0218-3390 129-JBS 2150003

64 Ghimire & Wang

v′ = p(x+ + u)(y+ + v) + q(x+ + u)(y+ + v)2 − d(y+ + v)

= (py+ + qy2
+)u + (px+ + 2qx+y+ − d)v + qx+v2 + (p + 2qy+)uv + quv2.

In matrix form, we have(
u′

v′

)
=

(
−1/x+ −2px+ − 4qx+y+

dy+/x+ qx+y+

)(
u

v

)

+

(
−2
1

)
[qx+v2 + (p + 2qy+)uv + quv2]. (5.9)

At the Hopf bifurcation point, we have 2dy+ = 1 − x+, px+ + qx+y+ − d = 0,
qx+y+ = 1/x+ and ω2 = det(J) = d2y+(2 − Qx2

+)/x+ = (2d2y+ − 1)/x+, where
±iω are a pair of purely imaginary characteristic roots for the Jacobi matrix. Let
s = 1/x+. Then we have

ω2 = ds − d − s, p + 2qy+ = ds + s2, q =
2ds3

s − 1
.

The Jacobi matrix can be written as

J =

(
−s −2s − 2d

s/2 − 1/2 s

)
=

(
2iω − 2s −2iω − 2s

s − 1 s − 1

)

×
(

iω 0

0 −iω

)(
2iω − 2s −2iω − 2s

s − 1 s − 1

)−1

.

Set (
u

v

)
=

(
2iω − 2s −2iω − 2s

s − 1 s − 1

)(
α

ᾱ

)
=

(
(2iω − 2s)α − (2iω + 2s)ᾱ

(s − 1)(α + ᾱ)

)
.

It follows that(
α′

ᾱ′

)
−
(

iω 0

0 −iω

)(
α

ᾱ

)

=

(
2iω − 2s −2iω − 2s

s − 1 s − 1

)−1(−2
1

)
[qx+v2 + (p + 2qy+)uv + quv2]

=
1

2ω(s − 1)

(
ω − i

ω + i

)[
2ds2v2

s − 1
+ (ds + s2)uv +

2ds3uv2

s − 1

]
.

A simple calculation gives v2 = (s − 1)2(α2 + 2αᾱ + ᾱ2) and

uv

2(s − 1)
= (iω − s)α2 − 2sαᾱ − (iω + s)ᾱ2,

uv2

2(s − 1)2
= (iω − 3s)α2ᾱ + · · · .
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Consequently,

α′ − iωα =
ω − i

ω

[
ds2v2

(s − 1)2
+

(ds + s2)uv

2(s − 1)
+

ds3uv2

(s − 1)2

]

=
s(ω − i)

ω
[ds(α2 + 2αᾱ) + (d + s)(iω − s)α2

− 2s(d + s)αᾱ + 2ds2(iω − 3s)α2ᾱ + · · ·]
=

g20

2
α2 + g11αᾱ +

g02

2
ᾱ2 +

g21

2
α2ᾱ + · · · ,

where

g20 =
2s

ω
[ω(d + s − s2) + (s2 + ω2d + ω2s)i], g11 = −2s3(ω − i)

ω
,

g21 =
4ds3

ω
[ω − 3sω + (3s + ω2)i].

Now, we calculate the first Lyapunov coefficient (see (3.20) of Ref. 23) as

l1 =
1

2ω2
Re(ig11g20 + ωg21) =

2s3(s − 1)
ω3

[s2 + s(s + 2)d − (2s − 1)d2]

=
2ds3(s − 1)

ω3
[s(3 − d) + d − dR − R].

There are three cases to be considered.
(1) If d < 3 and R < d(d − 2)/(d − 1)2, then there exists one Hopf bifurcation

point. Since d(d − 2)/(d − 1)2 < d/(d + 1), we have d − (d + 1)R > 0 and l1 > 0.
Hence, the Hopf bifurcation is subcritical.

(2) If d > 3 and d(d − 2)/(d − 1)2 < R < d/4, then there exist two Hopf
bifurcation points. Since d(d − 2)/(d − 1)2 > d/(d + 1), we have d − (d + 1)R < 0
and l1 < 0. Hence, the Hopf bifurcation is supercritical.

(3) If d > 3 and R < d(d − 2)/(d − 1)2, then there exists one Hopf bifurcation
point. Assume l1 > 0, then d − (d + 1)R > s(d − 3), which, together with s > d/2,
implies that R < d(5 − d)/[2(d + 1)] and[

d − (d + 1)R
d − 3

]2
− d

[
d − (d + 1)R

d − 3

]
+ dR > 0,

which is equivalent to

R <
d(4 − d)

5d − d2 − 2 + (d − 3)
√

d(d − 3)
.

Thus, the Hopf bifurcation is subcritical if R < d(4 − d)/[5d − d2 − 2 + (d −
3)
√

d(d − 3)] and supercritical if R > d(4 − d)/[5d − d2 − 2 + (d − 3)
√

d(d − 3)].
To sum up, we have the following results, with illustration in Fig. 3.

Theorem 5.1. Let Qh,± be defined as in (5.8). If d < 3, then there exists no Hopf
bifurcation point if R > d(d−2)/(d−1)2, and one subcritical Hopf bifurcation point
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Fig. 3. (Color online) Existence and property of Hopf bifurcation points in the (d, R) parameter
space. The red solid, blue dashed and black dot–dashed curves are R = d(d − 2)/(d − 1)2, R =

d(4 − d)/[5d − d2 − 2 + (d − 3)
p

d(d − 3), and R = d/4, respectively.

Qh,+ if R < d(d− 2)/(d− 1)2. If d > 3, then there exists no Hopf bifurcation point
if R > d/4, two supercritical Hopf bifurcation points Qh,± if d(d − 2)/(d − 1)2 <

R < d/4, one supercritical Hopf bifurcation point Qh,+ if d(4 − d)/[5d − d2 − 2 +
(d − 3)

√
d(d − 3)] < R < d(d − 2)/(d − 1)2, and one subcritical Hopf bifurcation

point Qh,+ if R < d(4 − d)/[5d − d2 − 2 + (d − 3)
√

d(d − 3)].

The local analysis of equilibria and Hopf bifurcation is summarized in the fol-
lowing theorem and illustrated in Fig. 4.

Theorem 5.2. Let Q+ and Qh,± be defined as in (5.4) and (5.8), respectively.
Denote E0 = (1, 0) and E± = (x±, y±) with x± given in (5.5) and y± = (1 −
x±)/(2d). We divide the first quadrant of (d, R) plane into two regions which contain
six subregions.

(I) R ≤ 1. In this region, E0 is locally asymptotically stable; E± exist if and only
if Q > Q+; E− is always unstable whenever it exists. To describe the locally
asymptotic stability of E+ and the property of Hopf bifurcation, we need to
divide this region into four subregions.

(I.1) R > d(d − 2)/(d − 1)2 with d ≤ 3 or R > d/4 with 3 ≤ d < 4. In this
subregion, E+ is always locally asymptotically stable whenever it exists.

(I.2) R < d(d − 2)/(d − 1)2 with 2 < d ≤ 3 or R < d(4 − d)/[5d − d2 −
2 + (d − 3)

√
d(d − 3) with 3 ≤ d < 4. In this subregion, E+ is locally

asymptotically stable when Q > Qh,+ and unstable when Q+ < Q <

Qh,+. Subcritical Hopf bifurcation occurs at Q = Qh,+; namely, unstable
periodic solutions appear to right of Qh,+.

(I.3) d(4−d)/[5d−d2−2+(d−3)
√

d(d − 3) < R < d(d−2)/(d−1)2 with d > 3.
In this subregion, E+ is locally asymptotically stable when Q > Qh,+ and
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(a) Case (I.1) (b) Case (I.2) (c) Case (I.3)

(d) Case (I.4) (e) Case (II.1) (f) Case (II.2)

Fig. 4. (Color online) Existence and stability conditions of equilibria E+ (blue), and E− (green),
with projection on y−Q plane. A solid curve indicates that the corresponding equilibrium is locally
asymptotically stable, and a dashed curve indicates that the corresponding equilibrium is unstable.
A dark dot with an arrow and a text label “H” indicates the location and direction of a Hopf
bifurcation, where a solid arrow means a supercritical Hopf bifurcation (i.e., periodic solutions
are locally asymptotically stable), and a dashed arrow means a subcritical Hopf bifurcation (i.e.,
periodic solutions are unstable).

unstable when Q+ < Q < Qh,+. Supercritical Hopf bifurcation occurs at
Q = Qh,+; namely, stable periodic solutions appear to left of Qh,+.

(I.4) d(d − 2)/(d − 1)2 < R < 1 with d > 3. In this subregion, E+ is locally
asymptotically stable when Q ∈ (Q+, Qh,−) ∪ (Qh,+,∞) and unstable
when Q ∈ (Qh,−, Qh,+). Supercritical Hopf bifurcations occur at Q =
Qh,±; namely, stable periodic solutions appear to left of Qh,+ and to the
right of Qh,−.

(II) R > 1. In this region, E0 is always unstable; there exists a unique positive equi-
librium E+. To describe the locally asymptotic stability of E+ and the property
of Hopf bifurcation, we need to divide this region into two subregions.

(II.1) R > d/4. In this subregion, E+ is always locally asymptotically stable.
(II.2) R < d/4. In this subregion, E+ is locally asymptotically stable when Q ∈

(0, Qh,−)∪(Qh,+,∞) and unstable when Q ∈ (Qh,−, Qh,+). Supercritical
Hopf bifurcations occur at Q = Qh,±; namely, stable periodic solutions
appear to left of Qh,+ and to the right of Qh,−.
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We then state the following result on dissipativity and uniform persistence.

Lemma 5.3. The solution of the system (5.1)–(5.2) with positive initial condi-
tions are positive. Furthermore, there exist positive constants M > 0 and δ > 0,

independent of initial conditions, such that

lim sup
t→∞

[x(t) + 2y(t)] ≤ M, lim inf
t→∞ x(t) ≥ δ.

If R > 1, then there exists ε > 0, independent of initial conditions, such that

lim inf
t→∞ y(t) ≥ ε.

Proof. The positiveness of solutions is trivial. Since x′(t)+2y′(t) = 1−x(t)−2dy(t),
we obtain from comparison principle that lim supt→∞[x(t) + 2y(t)] ≤ M , where
M = 1/ min{1, d} > 0. Especially, there exists t1 > 0 such that x(t)+2y(t) < M +1
for all t > t1. Consequently, it follows from (5.1) that x′(t) ≥ 1−[1+p(M+1)+q(M+
1)2]x(t) for t > t1. Comparison principle implies that lim inft→∞ x(t) ≥ δ, where
δ = 1/[1+ p(M +1)+ q(M +1)2]. If further, R > 1, we denote X = (0,∞)× [0,∞)
with interior X0 = (0,∞) × (0,∞) and boundary ∂X = (0,∞) × {0}. It can be
proved by contradiction that the stable set of E0 = (1, 0) does not intersect X0;
otherwise, there exists t2 > 0 such that x(t) > (1 + d/p)/2 for all t > t2, and
consequently, y′(t) > [(p − d)/2]y(t), but y(t) → 0 as t → ∞, a contradiction.
It then follows from the persistence theorem (see Theorem 3.1 in Ref. 24) that
lim inft→∞ y(t) ≥ ε for some ε > 0 independent of initial conditions. This completes
the proof.

Before presenting the global stability of equilibria for the planar system (5.1)–
(5.2), we use Bendixson–Dulac criterion to find sufficient conditions for nonexistence
of limit cycles. Let f = 1− x− pxy − qxy2 and g = pxy + qxy2 − dy. Note that the
divergence of (f, g)T /(xy2) is

− 1
x2y2

− px − d

xy2
= −px2 − dx + 1

x2y2
< 0

when d2 < 4p. Thus, there exists no periodic solution when R > d/4. Also the
divergence of (f, g)T /y2 is

−1 + py + qy2

y2
− px − d

y2
< 0

when d < 1. Thus, there exists no periodic solution when d < 1.

Theorem 5.4. Consider the system (5.1)–(5.2) with positive initial conditions.
The equilibrium E0 = (1, 0) is globally asymptotically stable if R ≤ 1 and q <

2(d +
√

d − p)2. On the other hand, if R > 1, then the unique positive equilibrium
E+ = (x+, y+) is globally asymptotically stable when d < 4R or q < 2/(3x2

+).

Proof. If R ≤ 1 and q < 2(d +
√

d − p)2, then E0 is the unique equilibrium of
system (5.1)–(5.2). We introduce a new variable s = 1/x and consider an equivalent
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planar system

s′ = s(−s + 1 + 2py + 2qy2),

y′ = (y/s)(p + qy − ds).

The first quadrant of (y, s) plane can be divided into three regions

X1 := {(y, s) ∈ R
2
+ : s ≤ (p + qy)/d},

X2 := {(y, s) ∈ R
2
+ : (p + qy)/d ≤ s ≤ 1 + 2py + 2qy2},

X3 := {(y, s) ∈ R
2
+ : s ≥ 1 + 2py + 2qy2}.

Note that y′ ≥ 0 and s′ ≥ 0 in X1; y′ ≤ 0 and s′ ≥ 0 in X2; and y′ ≤ 0 and s′ ≤ 0
in X3. It is readily seen that the regions X2 ∪ X3 and X3 are positively invariant.
Since s and y are ultimately bounded, all trajectories must enter X3 after finite
time and converge to the unique equilibrium E0 as t → ∞. Thus, E0 is globally
attractive, which together with locally asymptotic stability of E0 implies that E0

is globally asymptotically stable.
Next, we consider the case R > 1. If d < 4R, then the argument preceding

this theorem shows that system (5.1)–(5.2) does not possess any periodic solution.
Lemma 5.3 implies that this system is uniformly persistent. Thus, it follows from
Poincaré–Bendixson theorem that the unique positive equilibrium E+ is globally
asymptotically stable.

Finally, we assume R > 1 and d ≥ 4R. By a similar argument as in the proof of
Lemma 4.1, we can show that x(t) < 1 for all sufficiently large t. Without loss of
generality, we assume x(t) < 1 for all t ≥ 0. Construct a Lyapunov function

V (x, y, z) = c2[x − x+ ln x + 2(y − y+ ln y)] + (x + 2y − x+ − 2y+)2/2,

where c2 > 0 is a constant to be determined later. Taking derivative along the
solution gives
d

dt
V (x(t), y(t), z(t)) = c2[−(x − x+)2/(xx+) + 2qx+(y − y+)2

− 2qy+(x − x+)(y − y+)] − (x − x+)2

− 2(1 + d)(x − x+)(y − y+) − 4d(y − y+)2

≤ −(1 + c2/x+)(x − x+)2 − 2(1 + d + c2qx+)(x − x+)(y − y+)

− (4d − 2c2qx+)(y − y+)2,

which is nonpositive provided

4d − 2c2qx+ ≥ (1 + d + c2qx+)2

1 + c2/x+
.

Choose c2 = 3x+(d−1)/4. Then the above inequality is satisfied when q ≤ 2/(3x2
+).

Lasalle–Lyapunov invariance principle implies that E+ is globally asymptotically
stable. The proof is completed.
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6. Discussion

In both models (with or without competition), we observe that cooperative pre-
dation (mutualism) may increase the survival probability of predators in a severe
environment where non-cooperative predation is not sufficient to battle with the
natural death. Competitive exclusion principle may not hold when cooperation
plays a dominant role. Moreover, cooperative predation (mutualism) may destabi-
lize a positive equilibrium and induce a Hopf bifurcation. Depending on the model
parameters, the limit cycles bifurcated from the Hopf points may or may not be
stable.

In the parameter region where only one Hopf bifurcation point exists (cf.
Figs. 2(b), 2(e), 4(b) and 4(c)), the global Hopf branch should be unbounded. Since
the solution is ultimately bounded, either the period or the bifurcation parameter
is unbounded. Numerical simulation seems to suggest the former; namely, a hete-
roclinic cycle is connected to the Hopf point by the global Hopf branch. When two
Hopf bifurcation points exist (cf. Figs. 2(c), 2(f), 2(h), 4(d) and 4(f)), it is possi-
ble that the global Hopf branch is bounded and connects these two Hopf points.
However, numerical exploration indicates another possibility that each Hopf point
is connected to a heteroclinic cycle; see Fig. 5. It is conjectured that global Hopf
branches for system (5.1)–(5.2) are bounded in region II.2 (Fig. 4(f)) and unbounded
in region I.4 (Fig. 4(d)).

Since the model in Ref. 17 is more general than our model (1.1)–(1.3), it is
worthwhile to compare their main results with ours. Even though the linear growth
rate of prey in our model differs from the logistic growth in their model, the persis-
tence results and mathematical arguments in Ref. 17 can be easily extended to our

(a) Bounded hopf branch. (b) Unbounded hopf branches.

Fig. 5. (Color online) Global Hopf branches for system (5.1)–(5.2). The red solid and blue dashed
curves give the amplitudes (max y(t)−min y(t)) and frequencies of periodic solutions. The param-
eters are chosen as d = 6 and R = 1.02 in the left panel, and d = 6 and R = 0.98 in the right
panel. The Hopf points (black dots) are Qh,− = 2.43 and Qh,+ = 9.34 (left); and Qh,− = 2.68
and Qh,+ = 9.58 (right).
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model. The facultative case considered in Sec. 4 of Ref. 17 is equivalent to the case
R1 > R2 > 1, and their main result was uniform persistence of the system under
the condition Q > Q1. The facultative-obligate case considered in Sec. 5 of Ref. 17
is equivalent to the case R1 > 1 > R2 and their main result was persistence of the
system under the condition Q > Q1. For both cases, our study complimented these
persistence results, in the sense that, we provided stability analysis of all equilib-
ria and conducted local Hopf bifurcation analysis. The obligate case considered in
Sec. 6 of Ref. 17 is equivalent to the case 1 > R1 > R2 and it was remarked that “the
criteria for asymptotic stability” of the positive equilibrium were “complicated”. In
this paper, thanks to the specific forms of predation functions, we were able to pro-
vide quantitative criteria for asymptotic stability of all equilibria. For our second
model with only one predator species, we further calculated the direction of Hopf
bifurcation and derived explicit necessary and sufficient conditions for the stability
of periodic solutions bifurcated from Hopf bifurcation points.

Note that periodic solution does not exist when mutualism (cooperative preda-
tion) is weak (due to globally asymptotic stability of the equilibrium). Based on
numerical simulations, we conjecture that periodic solution cannot exist when the
cooperative predation is sufficiently strong. Had this been justified, any unbounded
Hopf branch would be connected by a heteroclinic cycle. For the three-dimension
system (1.1)–(1.3), it is conjectured that the positive equilibrium E+ is globally
asymptotically stable when E− does not exist (i.e., R1 > 1) and Q is sufficiently
large.

Finally, we mention that the model (1.1)–(1.3) is a simplified version of the
general system when energy loss during predation is taken into consideration:

x′(t) = b − d0x(t) − p1x(t)y(t) − p2x(t)z(t) − q0x(t)y(t)z(t),

y′(t) = α1p1x(t)y(t) + q1x(t)y(t)z(t) − d1y(t),

z′(t) = α2p2x(t)z(t) + q2x(t)y(t)z(t) − d2z(t),

where α1, α2 ∈ (0, 1] account for the transmission rate of energy during predation,
and q1 + q2 ≤ q0. By introducing the dimensionless scale t̃ = d0t, x = x̃b/d0,
y = ỹα1b/d0 and z = z̃α2b/d0, we may assume without loss of generality that
b = d0 = α1 = α2 = 1. However, there are still three parameters q0, q1, q2 to
characterize the cooperative predation. In our analysis, we have assumed q1 = q2 =
q0/2 = q so that only one parameter of cooperative predation is left. Biologically,
this assumption indicates that the energy loss during predation is negligible. A
more detailed analysis is needed if the energy transmission rates (in terms of q1/q0

and q2/q0) are taken values other than 1/2. We leave this problem for further
investigation. Another generalization is to replace the linear growth function of
prey by a more general function to account for the logistic growth10,17 or Allee
effect.11 It is expected that the model dynamics would be more complicated and
we will consider this problem in a forthcoming paper.
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